Effect of Black Crab (Scylla Serrata) Chitosan Gel on the Three-Dimensional Socket Response and Fibroblasts after Tooth Extraction in Rattus Norvegicus

Hendry Rusdy, Gostry Aldica Dohude, Bagoes Anggoro Cesar Putro, Nasywa Tiara Syadana, Samuel Kevin

Abstract

Tooth extraction is a common procedure in dentistry that can result in wounds to the soft and hard tissues of the alveolar process, thereby triggering the healing process. The wound healing process is often complicated by several factors, leading to delayed wound healing. The principles of wound healing involve four phases: hemostasis, inflammation, proliferation, and remodeling. This study aimed to determine the effect of black crab (Scylla serrata) chitosan gel on three-dimensional socket response and fibroblast proliferation after tooth extraction in Wistar rats (Rattus norvegicus). In this study, chitosan material with a degree of deacetylation of 84.9% was used, thus exhibiting good biological properties in the wound healing process. This research is an experimental study with a post-test only with a controlled group design. The sampling technique used was purposive sampling, and the sample size was calculated using the Federer formula. Observations were made by measuring the mesial-distal, lingual-buccal, and socket depths using calipers and the UNC15 probe and observing the number of fibroblasts histologically on Days 1, 3, and 7. The results of the one-way ANOVA and post hoc LSD tests indicate significant outcomes in socket wound closure and fibroblast proliferation in the chitosan gel group. This study demonstrates that black crab (Scylla serrata) chitosan gel is effective in accelerating socket wound closure and stimulating fibroblasts in socket wounds after tooth extraction.

 

Keywords: tooth extraction, black crab chitosan gel, socket response, fibroblast.

 

https://doi.org/10.55463/issn.1674-2974.51.3.12


Full Text:

PDF


References


DANOEDININGRAT R. M. C. P. Pencabutan Gigi. In: RUSLIN M., & POEDJIASTOETI W. (eds.) Buku Ajar Bedah Mulut dan Maksilofasial. EGC, Jakarta, 2019: 279-309.

LANDE R., BILLY J. K., and KRISTA V. Gambaran Faktor Risiko dan Komplikasi Pencabutan Gigi Di RSGM PSPDG-FK Unsrat. E-GiGi, 2015, 3(2): 476-481. https://doi.org/10.35790/eg.3.2.2015.10012

SULARSIH, & RAHMITASARI F. Penggunaan Scaffold Kitosan Aloe Vera terhadap Proliferasi Sel Fibroblas pada Penyembuhan Luka Pasca Pencabutan Gigi Cavia Cobaya. Jurnal Material Kedokteran Gigi, 2018, 7(2): 24-32. https://doi.org/10.32793/jmkg.v7i2.370

TRISNAWATI E., ANDESTI D., and SALEH A. Pembuatan Kitosan Dari Limbah Cangkang Kepiting Sebagai Bahan Pengawet Buah Duku Dengan Variasi Lama Pengawetan. Jurnal Teknik Kimia, 2013, 19(2): 17-26.

COSTA B. E., & ANDRADE C. T. Chitosan as a Valuable Biomolecule from Seafood Industry Waste in the Design of Green Food Packaging. Biomolecules, 2021, 11(11): 1599. https://doi.org/10.3390/biom11111599

YANTI R., DRASTINAWATI, and YUSNIMAR. Sintesis Kitosan dari Limbah Cangkang Kepiting dengan Variasi Suhu dan Waktu pada Proses Deasetilasi. Jurnal Online Mahasiswa Fakultas Teknik, 2018, 5(2): 1–7. https://jom.unri.ac.id/index.php/JOMFTEKNIK/article/view/22084

BEKTAS N., SENEL B., and YENILMEZ E. Evaluation of Wound Healing Effect of Chitosan-Based Gel Formulation Containing Vitexin. Saudi Pharmaceutical Journal, 2020, 28(1): 87-94. https://doi.org/10.1016/j.jsps.2019.11.008

ALI M., SHAKEEL M., and MEHMOOD K. Extraction and Characterization of High Purity Chitosan by Rapid and Simple Techniques from Mud Crabs Taken from Abbottabad. Pakistan Journal of Pharmaceutical Sciences, 2019, 32(1): 171-175. https://www.pjps.pk/uploads/pdfs/32/1/Paper-24.pdf

CHEN Z., YAO X., and LIU L. Blood Coagulation Evaluation of N-Alkylated Chitosan. Carbohydrate Polymers, 2017, 172: 259-268. https://doi.org/10.1016/j.carbpol.2017.05.085

ZHOU X., ZHANG X., ZHOU J., and LI L. An Investigation of Chitosan and Its Derivatives on Red Blood Cell Agglutination. RSC Advances, 2017, 7(20): 12247–12254. https://doi.org/10.1039/C6RA27417J

FAN P., ZENG Y., ZALDIVAR, and SILVA D. Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules, 2023, 28(3): 1473. https://doi.org/10.3390/molecules28031473

PUSPITA B. S., SULARSIH, and DAMAIYANTI D. W. Perbedaan Pengaruh Pemberian Kitosan Berat Molekul Tinggi dan Rendah Terhadap Jumlah Pembuluh Darah Pada Proses Penyembuhan Luka Pencabutan Gigi. DENTA, 2015, 9(2): 209–215. https://journal-denta.hangtuah.ac.id/index.php/jurnal/article/view/192

JESUS D. G., MARQUES L., and VALE N. The Effects of Chitosan on the Healing Process of Oral Mucosa: An Observational Cohort Feasibility Split-Mouth Study. Nanomaterials, 2023, 13(4): 706. https://doi.org/10.3390/nano13040706

FENG P., LUO Y., KE C., WANG W., QIU H., and ZHU Y. Chitosan-Based Functional Materials for Skin Wound Repair: Mechanisms and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9: 650598. https://doi.org/10.3389/fbioe.2021.650598

HARTONO F. A., PRABOWO P. B., and REVIANTI S. Aplikasi Gel Kitosan Berat Molekul Tinggi dan Rendah terhadap Ketebalan Epitel Mukosa pada Proses Penyembuhan Luka Pencabutan Gigi. DENTA, 2015, 9(1): 1-10. https://journal-denta.hangtuah.ac.id/index.php/jurnal/article/view/195

SALIM S., ROSTINY, and KUNTJORO M. Effect Spirulina Chitosan Combination as a Socket Preservation Toosteblast, Osteoclast, and Collagen Density. Dentika: Dental Journal, 2015, 18(3): 225-231. https://doi.org/10.32734/dentika.v18i3.1955

ELGHARABLY H., GANESH K., DICKERSON J., KHANNA S., ABAS M., and GHATAK P. D. A Modified Collagen Gel Dressing Promotes Angiogenesis in a Preclinical Swine Model of Chronic Ischemic Wounds. Wound Repair and Regeneration, 2014, 22(6): 720-729. https://doi.org/10.1111/wrr.12229

GUPTA A., RATTAN V., and RAI S. Efficacy of Chitosan in promoting wound healing in extraction socket: A prospective study. Journal of Oral Biology and Craniofacial Research, 2019, 9(1): 91-95. https://doi.org/10.1016/j.jobcr.2018.11.001


Refbacks

  • There are currently no refbacks.