Comparative Analysis of Finite Difference Methods for Coupled Surface and Subsurface Flows in Extended Shallow Water Equations
Abstract
Numerical simulation of coupled surface and subsurface flows is crucial for modeling equations for flood waves, runoff processes, and tsunami wave propagation with topographical functions in different fields of science and engineering. The shallow water 2D equation was used to model the coupled dynamics of surface and subsurface flows. These equations form a system of coupled nonlinear partial differential equations. The development of an easy-to-use and robust numerical method to accurately determine fluid motion in this coupled flow scenario, including topographic considerations, is of utmost importance. The numerical simulation results of these equations are obtained explicitly using two numerical methods: the forward time-centered scheme and the Lax-Wendroff method. This study compares the numerical simulation results of the connected region at different time steps. The stability is checked through error analysis. Both methods give identical numerical results, although the Lax-Wendroff method shows a slightly better performance. All these numerical results are obtained using CFL stability criteria.
Keywords: extended shallow water equation, forward time central scheme, the Lax-Wendroff method.
Full Text:
PDFReferences
MUJUMDAR P. P. Flood wave propagation: The saint venant equations. Resonance, 2001, 6(5): 66-73. https://doi.org/10.1007/BF02839085
DE SCHEPPER G., THERRIEN R., REFSGAARD J. C., and HANSEN A. L. Simulating coupled surface and subsurface water flow in a tile-drained agricultural catchment. Journal of Hydrology, 2015, 521: 374-388. https://doi.org/10.1016/j.jhydrol.2014.12.035
OSEI-KUFFUOR D., MAXWELL R. M., and WOODWARD C. S. Improved numerical solvers for implicit coupling of subsurface and overland flow. Advances in Water Resources, 2014, 74: 185-195. https://doi.org/10.1016/j.advwatres.2014.09.006
DAVISON J. H., HWANG H. T., SUDICKY E. A., MALLIA D. V., and LIN J. C. Full coupling between the atmosphere, surface, and subsurface for integrated hydrologic simulation. Journal of Advances in Modeling Earth Systems, 2018, 10(1): 43-53. https://doi.org/10.1002/2017MS001052
LIANG D., FALCONER R. A., and LIN B. Coupling surface and subsurface flows in a depth averaged flood wave model. Journal of Hydrology, 2007, 337(1-2): 147-158. https://doi.org/10.1016/j.jhydrol.2007.01.045
KUMAR A., & PAHAR G. A unified depth-averaged approach for integrated modeling of surface and subsurface flow systems. Journal of Hydrology, 2020, 591: 125339. https://doi.org/10.1016/j.jhydrol.2020.125339
BISHT G., HUANG M., ZHOU T., CHEN X., DAI H., HAMMOND G. E., RILEY W. J., DOWNS J. L., LIU Y., and ZACHARA J. M. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1. 0). Geoscientific Model Development, 2017, 10(12): 4539-4562. https://doi.org/10.5194/gmd-10-4539-2017
KUFFOUR B. N., ENGDAHL N. B., WOODWARD C. S., CONDON L. E., KOLLET S., and MAXWELL R. M. Simulating coupled surface–subsurface flows with ParFlow v3. 5.0: capabilities, applications, and ongoing development of an open-source, massively parallel, integrated hydrologic model. Geoscientific Model Development, 2020, 13(3): 1373-1397. https://doi.org/10.5194/gmd-13-1373-2020
COON E. T., MOULTON J. D., KIKINZON E., BERNDT M., MANZINI G., GARIMELLA R., LIPNIKOV K., and PAINTER S. L. Coupling surface flow and subsurface flow in complex soil structures using mimetic finite differences. Advances in Water Resources, 2020, 144: 103701. https://doi.org/10.1016/j.advwatres.2020.103701
RIESTIANA V. A., SETIYOWATI R., and KURNIAWAN V. Y. Numerical solution of the one dimentional shallow water wave equations using finite difference method: Lax-Friedrichs scheme. AIP Conference Proceedings, 2021, 2326: 020022. https://doi.org/10.1063/5.0039545
SETIYOWATI R. A Simulation of Shallow Water Wave Equation Using Finite Volume Method: Lax-Friedrichs Scheme. Journal of Physics: Conference Series, 2019, 1306: 012022. https://doi.org/10.1088/1742-6596/1306/1/012022
PANTELAKIS D., ZISSIS T., ANASTASIADOU-PARTHENIOU E., and BALTAS E. Numerical models for the simulation of overland flow in fields within surface irrigation systems. Water Resources Management, 2012, 26: 1217-1229. https://doi.org/10.1007/s11269-011-9955-2
RICHARDS L. A. Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1931, 1(5): 318-333. https://doi.org/10.1063/1.1745010
LI Y., YUAN D., LIN B., and TEO F. Y. A fully coupled depth-integrated model for surface water and groundwater flows. Journal of Hydrology, 2016, 542: 172-184. https://doi.org/10.1016/j.jhydrol.2016.08.060
BHUTTO A. A., AHMED I., RAJPUT S. A., and SHAH S. A. R. The effect of oscillating streams on heat transfer in viscous magnetohydrodynamic MHD fluid flow. VFAST Transactions on Mathematics, 2023, 11(1): 1-16. https://doi.org/10.21015/vtm.v11i1.1386
BHUTTO A. A., SHAH S. F., KHOKHAR R. B., HARIJAN K., and HUSSAIN M. To Investigate Obstacle Configuration Effect on Vortex Driven Combustion Instability. VFAST Transactions on Mathematics, 2023, 11(1): 67-82. https://doi.org/10.21015/vtm.v11i1.1411
KHOKHAR R. B., BHUTTO A. A., BHUTTO I. A., MENGAL A., SHAIKH F., and SHAIKH A. A. Numerical Analysis of Non-Newtonian Fluid Flows through an Annulus Occupied with or without Porous Materials. Balochistan Journal of Engineering & Applied Sciences (BJEAS) HEC Recognized in “Y” Category, 2023.
FLOURI E. T., KALLIGERIS N., ALEXANDRAKIS G., KAMPANIS N. A., and SYNOLAKIS C. E. Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Applied Numerical Mathematics, 2013, 67: 111-125. https://doi.org/10.1016/j.apnum.2011.06.003
LU X., DONG B., MAO B., and ZHANG X. Convergence Improved Lax-Friedrichs Scheme Based Numerical Schemes and Their Applications in Solving the One-Layer and Two-Layer Shallow-Water Equations. Mathematical Problems in Engineering, 2015, 2015: 379281. https://doi.org/10.1155/2015/379281
SAIDUZZAMAN M., & RAY S. K. Comparison of Numerical Schemes for Shallow Water Equation. Global Journal of Science Frontier Research: Mathematics and Decision Sciences, 2013, 13(4): 28-46. https://www.researchgate.net/profile/Sobuj-Ray/publication/258342122_Comparison_of_Numerical_Schemes_for_Shallow_Water_Equation/links/5882ff55a6fdcc6b790ef1b8/Comparison-of-Numerical-Schemes-for-Shallow-Water-Equation.pdf
LU C., XIE L., and YANG H. The simple finite volume Lax-Wendroff weighted essentially nonoscillatory schemes for shallow water equations with bottom topography. Mathematical Problems in Engineering, 2018, 2018, 2652367. https://doi.org/10.1155/2018/2652367
BING Y. U. A. N., JIAN S. U. N., YUAN D. K., and TAO J. H. Numerical simulation of shallow-water flooding using a two-dimensional finite volume model. Journal of Hydrodynamics, Ser. B, 2013, 25(4): 520-527. https://doi.org/10.1016/S1001-6058(11)60391-1
ZOPPOU C., & ROBERTS S. Numerical solution of the two-dimensional unsteady dam break. Applied Mathematical Modelling, 2000, 24(7): 457-475. https://doi.org/10.1016/S0307-904X(99)00056-6
RAJPUT S. A., KAMBOH S. A., AMUR K. B., MEMON S., and GHOTO A. A. Numerical simulation of 2D shallow water equation with constant external body force by using finite difference method. VFAST Transactions on Mathematics, 2023, 11(1): 170-179. https://doi.org/10.21015/vtm.v11i1.1469
KAMBOH S. A., SARBINI I. N., LABADIN J., and EZE M. O. Simulation of 2D Saint-Venant Equations in Open Channel by Using MATLAB. Journal of IT in Asia, 2015, 5(1): 15-22. https://doi.org/10.33736/jita.47.2015
KIRSTETTER G., HU J., DELESTRE O., DARBOUX F., LAGRÉE P. Y., POPINET S., FULLANA J. M., and JOSSERAND C. Modeling rain-driven overland flow: Empirical versus analytical friction terms in the shallow water approximation. Journal of Hydrology, 2016, 536: 1-9. https://doi.org/10.1016/j.jhydrol.2016.02.022
GARCIA R., & KAHAWITA R. A. Numerical solution of the St. Venant equations with the MacCormack finite‐difference scheme. International Journal for Numerical Methods in Fluids, 1986, 6(5): 259-274. https://doi.org/10.1002/fld.1650060502
AMIRI S. M., TALEBBEYDOKHTI N., and BAGHLANI A. A two-dimensional well-balanced numerical model for shallow water equations. Scientia Iranica, 2013, 20(1): 97-107. https://doi.org/10.1016/j.scient.2012.12.001
ANASTASIOU K., & CHAN C. T. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluids, 1997, 24(11): 1225-1245. https://doi.org/10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO;2-D
KURGANOV A. Finite-volume schemes for shallow-water equations. Acta Numerica, 2018, 27: 289-351. https://doi.org/10.1017/S0962492918000028
NAMIO F. T., NGONDIEP E., NTCHANTCHO R., and NTONGA J. C. Mathematical Model of Complete Shallow Water Problem with Source Terms, Stability Analysis of Lax-Wendroff Scheme. Journal of Theoretical and Computational Science, 2015, 2(4): 1000132. https://doi.org/10.4172/2376-130x.1000132
LIANG S. J., TANG J. H., and WU M. S. Solution of shallow-water equations using least-squares finite-element method. Acta Mechanica Sinica, 2008, 24: 523-532. https://doi.org/10.1007/s10409-008-0151-4
ALCRUDO F., & GARCIA‐NAVARRO P. A high‐resolution Godunov‐type scheme in finite volumes for the 2D shallow‐water equations. International Journal for Numerical Methods in Fluids, 1993, 16(6): 489-505. https://doi.org/10.1002/fld.1650160604
BRAND S. Parallel Algorithm for Numerical Solution of the Shallow Water Equation. Proceedings of the Czech–Japanese Seminar in Applied Mathematics, Prague, 2006, pp. 25–36. https://geraldine.fjfi.cvut.cz/cjs2006/proc/brand.pdf
WAKJIRA G. T. Numerical Solution for Flood Propagation Model Using Finite Difference and Finite Volume Methods. Doctoral thesis, 2017.
Refbacks
- There are currently no refbacks.