Marker-Assisted Selection for Leaf Bronzing Associated with Fe Tolerance in Rice (Oryza Sativa L.)

Lili Chrisnawati, Miftahudin, Dwinita Wikan Utami

Abstract

Iron (Fe) toxicity characterized by bronzing leaves is a significant factor that reduces rice productivity. The severity of this disease varies in rice fields, making molecular selection with markers associated with Fe tolerance an important process. Therefore, this study aimed to analyze the diversity of BMIP rice population lines based on their response to Fe toxicity in the field and combine molecular evaluation to obtain Fe-tolerant lines. The results showed that the BMIP lines inherited Fe-tolerant traits from its parent, Markuti. Phenotypic response analysis showed that there were 5 clusters of tolerance variation in the BMIP population. Furthermore, the phylogenetic tree constructed based on phenotypic response as well as OsIRT1, OsIRT2, and OsFRO2 markers indicated the existence of 3 large clusters. This analysis identified BMIP 24, BMIP 25, BMIP 20, BMIP 26, BMIP 46, BMIP 47, BMIP 49, and BMIP 50 lines as tolerant lines.

 

Keywords: Fe toxicity, marker-assisted selection, bronzing leave, rice, molecular marker.

 

https://doi.org/10.55463/issn.1674-2974.51.1.9


Full Text:

PDF


References


USDA’S ECONOMIC RESEARCH SERVICE. Rice outlook: June 2023, 2023. https://www.ers.usda.gov/publications/pub-details/?pubid=106707

TRADEMAGAZIN. FAO: World 2023 cereal production forecast up from last month; early prospects for 2024 point to limited area growth for wheat, 2023. https://trademagazin.hu/en/fao-nem-valtozott-a-nemzetkozi-elelmiszerkosar-ara-novemberben/

FAHMID I. M., WAHYUDI, AGUSTIAN A., ALDILLAH R., and GUNAWAN E. The Potential Swamp Land Development to Support Food Estates Programmes in Central Kalimantan, Indonesia. Environment and Urbanization ASIA, 2022, 13(1): 44–55. https://doi.org/10.1177/09754253221078178

NURSYAMSI D., NOOR M., and MAFTU’AH E. Peatland Management for Sustainable Agriculture. In: OSAKI M., & TSUJI N. (eds.) Tropical Peatland Ecosystems. Springer, Tokyo, 2016: 493–511. https://doi.org/10.1007/978-4-431-55681-7_34

SULAKHUDIN S., & HATTA M. Increasing Productivity of Newly Opened Paddy Field in Tidal Swampy Areas Using a Local Specific Technology. Indonesian Journal of Agricultural Science, 2018, 19(1): 9–16. http//dx.doi.org/10.21082/ijas.v.19.n1.2018.p.9–16

BECKER M., & ASCH F. Iron toxicity in rice - Conditions and management concepts. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 558–573. https://doi.org/10.1002/jpln.200520504

KIRK G. J. D., MANWARING H. R., UEDA Y., SEMWAL V. K., and WISSUWA M. Below-ground plant–soil interactions affecting adaptations of rice to iron toxicity. Plant Cell and Environment, 2022, 45(3): 705–718. https://doi.org/10.1111/pce.14199

DRAME K. N., INES S., GLENN G., and MARIE N. Suitability of a selected set of simple sequence repeats (SSR) markers for multiplexing and rapid molecular characterization of African rice (Oryza glaberrima Steud.). African Journal of Biotechnology, 2011, 10: 6675-6685. https://doi.org/10.5897/AJB10.2279

MELANDRI G., ABDELGAWAD H., FLOKOVÁ K., JAMAR D. C., ASARD H., BEEMSTER G. T. S., RUYTER-SPIRA C., and BOUWMEESTER H. J. Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses. Planta, 2021, 254(1): 1–16. https://doi.org/10.1007/s00425-021-03659-4

NDJIONDJOP M. N., SEMAGN K., SOW M., MANNEH B., GOUDA A. C., KPEKI S. B., PEGALEPO E., WAMBUGU P., SIÉ M., and WARBURTON M. L. Assessment of genetic variation and population structure of diverse rice genotypes adapted to lowland and upland ecologies in Africa using SNPs. Frontiers in Plant Science, 2018, 9: 446. https://doi.org/10.3389/fpls.2018.00446

CHRISNAWATI L., MIFTAHUDIN, and UTAMI D. W. STS Marker Associated with Iron Toxicity Tolerance in Rice. Journal of Tropical Life Science, 2016, 6(1): 59–64. https://doi.org/10.11594/jtls.06.01.11

INTERNATIONAL RICE RESEARCH INSTITUTE. Standard Evaluation System for Rice (SES), 2002. http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf

DOYLE J. J., & DOYLE J. L. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 1987, 19(1): 11–15. https://webpages.uncc.edu/~jweller2/pages/BINF8350f2011/BINF8350_Readings/Doyle_plantDNAextractCTAB_1987.pdf

GLAUBITZ J. C., CASSTEVENS T. M., LU F., HARRIMAN J., ELSHIRE R. J., SUN Q., and BUCKLER E. S. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE, 2014, 9(2): e90346. https://doi.org/10.1371/journal.pone.0090346

WU L. B., SHHADI M. Y., GREGORIO G., MATTHUS E., BECKER M., and FREI M. Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice, 2014, 7: 8. https://doi.org/10.1186/s12284-014-0008-3

NUGRAHA Y., UTAMI D. W., ROSDIANTI I., ARDIE S. W., GHULAMMAHDI M. S., and ASWIDINNOOR H. Markers-traits association for iron toxicity tolerance in selected Indonesian rice varieties. Biodiversitas, 2016: 17(2): 753–763. https://doi.org/10.13057/biodiv/d170251

BALK J., & SCHAEDLER T. A. Iron cofactor assembly in plants. Annual Review of Plant Biology, 2014, 65: 125–153. https://doi.org/10.1146/annurev-arplant-050213-035759

STEIN R. J., DUARTE G. L., SPOHR M. G., LOPES S. I. G., and FETT J. P. Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Annals of Applied Biology, 2009, 154(2): 269–277. https://doi.org/10.1111/j.1744-7348.2008.00293.x

MÜLLER C., SILVEIRA S. F. D. S., DALOSO D. D. M., MENDES G. C., MERCHANT A., KUKI K. N., OLIVA M. A., LOUREIRO M. E., and ALMEIDA A. M. Ecophysiological responses to excess iron in lowland and upland rice cultivars. Chemosphere, 2017, 189: 123–133. https://doi.org/10.1016/j.chemosphere.2017.09.033

UTAMI D. W., & HANARIDA I. Evaluasi Lapang dan Identifikasi Molekuler Plasma Nutfah Padi terhadap Keracunan Fe. Jurnal AgroBiogen, 2014, 10(1): 9–17. https://www.researchgate.net/publication/264497005_Evaluasi_Lapang_dan_Identifikasi_Molekuler_Plasma_Nutfah_Padi_terhadap_Keracunan_Fe

AUNG M. S., MASUDA H., KOBAYASHI T., and NISHIZAWA N. K. Physiological and transcriptomic analysis of responses to different levels of iron excess stress in various rice tissues. Soil Science and Plant Nutrition, 2018, 64(3): 370–385. https://doi.org/10.1080/00380768.2018.1443754

KOBAYASHI T., NOZOYE T., and NISHIZAWA N. K. Iron transport and its regulation in plants. Free Radical Biology and Medicine, 2019, 133: 11–20. https://doi.org/10.1016/j.freeradbiomed.2018.10.439

KOBAYASHI K., YASUNO N., SATO Y., YODA M., YAMAZAKI R., KIMIZU M., and KYOZUKAA J. Inflorescence Meristem Identity in Rice Is Specified by Overlapping Functions of Three AP1/FUL-Like MADS Box Genes and PAP2, a SEPALLATA MADS Box Gene. The Plant Cell, 2012, 24(5): 1848–1859. https://doi.org/10.1105/tpc.112.097105

MARTÍN-BARRANCO A., SPIELMANN J., DUBEAUX G., VERT G., and ZELAZNY E. Dynamic control of the high-affinity iron uptake complex in root epidermal cells. Plant Physiology, 2020, 184(3): 1236–1250. https://doi.org/10.1104/pp.20.00234

KROHLING C. A., EUTRÓPIO F. J., BERTOLAZI A. A., DOBBSS L. B., CAMPOSTRINI E., DIAS T., and RAMOS A. C. Ecophysiology of iron homeostasis in plants. Soil Science and Plant Nutrition, 2016, 62(1): 39–47. https://doi.org/10.1080/00380768.2015.1123116

MORRISSEY J., & GUERINOT M. L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chemical Reviews, 2009, 109(10): 4553–4567. https://doi.org/10.1021%2Fcr900112r

ROSCHZTTARDTZ H., CONÉJÉRO G., DIVOL F., ALCON C., VERDEIL J.-L., CURIE C., and MARI S. New insights into Fe localization in plant tissues. Frontiers in Plant Science, 2013, 4: 350. https://doi.org/10.3389/fpls.2013.00350


Refbacks

  • There are currently no refbacks.