Productive and Sustainability Approach to Biodiesel Production Chain: A Systematic Literature Review

Anny Astrid Espitia Cubillos, Cesar Augusto López Ramírez, Rafael Guillermo García Cáceres

Abstract

This article presents a taxonomy supported by a systematic literature review on the productive and sustainability approach to biodiesel production chain. The purpose of this research is to determine the competitive and productive contexts of the biodiesel production chain identified in the literature. The results of the investigation provide answers to the following questions: How is the biodiesel market and what raw materials are used for its production? What are the raw material treatment methods and production processes for oil extraction? What is the energy balance required to produce biodiesel from different raw materials? What are the carbon and hydraulic footprints of the raw materials? The most significant developments impacting the biodiesel market are the scarcity of raw materials for biodiesel production and the global decline in crude oil prices, which could hinder the market’s growth. The primary raw materials used in biodiesel production are vegetable oils, with palm oil accounting for 32%, soybean oil for 26%, and rapeseed oil for 15%. The remaining 27% comprises other raw materials, including used cooking oil, animal fats, and other virgin vegetable oils.

 

Keywords: biodiesel production chain, production of biofuels, raw materials, systematic literature review, taxonomy.

 

https://doi.org/10.55463/issn.1674-2974.50.11.2


Full Text:

PDF


References


YAAKOB Z., MOHAMMAD M., ALHERBAWI M., ALAM Z., and SOPIAN K. Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews, 2013, 18(1): 184-193. https://doi.org/10.1016/j.rser.2012.10.016

BASHIR M. A., WU S., ZHU J., KROSURI A., KHAN M. U., and NDEDDY-AKA R. J. Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Processing Technology, 2022, 227: 107120. https://doi.org/10.1016/j.fuproc.2021.107120

WORLD BIOENERGY ASSOCIATION. Global bioenergy statistics 2019. https://www.worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_HQ.pdf

GONZÁLEZ D. P., BORDA D. C., MELE F. D., SARMIENTO A. B., and SANTIAGO M. D. An optimization approach for the design and planning of the oil palm supply chain in Colombia. Computers & Chemical Engineering, 2021, 146: 107208. https://doi.org/10.1016/j.compchemeng.2020.107208

RITCHIE H. Palm Oil. Our World in Data, 2021. https://ourworldindata.org/palm-oil

VOORA V., LARREA C., BERMUDEZ S., and BALIÑO S. Global market report: Palm oil. International Institute for Sustainable Development, Manitoba, 2020. https://www.iisd.org/publications/report/global-market-report-palm-oil

MAHDAVI M., ABEDINI E., and DARABI A.H. Biodiesel synthesis from oleic acid by nano-catalyst (ZrO2/Al2O3) under high voltage conditions. RSC Advances, 2015, 5: 55027–55032. https://doi.org/10.1039/c5ra07081c

ANWAR M., RASUL M. G., ASHWATH N., and NABI M. N. The potential of utilising papaya seed oil and stone fruit kernel oil as non-edible feedstock for biodiesel production in Australia-A review. Energy Reports, 2019, 5: 280-297. https://doi.org/10.1016/j.egyr.2019.02.007

FAHMY H. The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus. Energy Economics, 2022, 106: 105738. https://doi.org/10.1016/j.eneco.2021.105738

TAMJIDI S., ESMAEILI H., and MOGHADAS B. K. Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: A review study. Journal of Cleaner Production, 2021, 305(1): 127200. http://dx.doi.org/10.1016/j.jclepro.2021.127200

BICER Y., & DINCER I. Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles. Resources, Conservation and Recycling, 2018, 132(1): 141–157.

OKOLI C. A Guide to Conducting a Standalone Systematic Literature Review. Communications of the Association for Information Systems, 2015, 37(43): 879-910. https://doi.org/10.17705/1CAIS.03743

KITCHENHAM B. A., & CHARTERS S. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Keele: Software Engineering Group, School of Computer Science and Mathematics, Keele University; Durham: Department of Computer Science, University of Durham, 2007. https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering

YAHYA M., DUTTA A., BOURI E., WADSTRÖM C., and UDDIN G. S. Dependence structure between the international crude oil market and the European markets of biodiesel and rapeseed oil. Renewable Energy, 2022, 197(1): 594-605. https://doi.org/10.1016/j.renene.2022.07.112

CHERNG-YUAN L., & CHERIE L. Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renewable and Sustainable Energy Reviews, 2021, 136(1): 110445. http://dx.doi.org/10.1016/j.rser.2020.110445

CHONG C. T., LOE T. Y., WONG K. Y., ASHOKKUMAR V., LAM S. S., CHONG W. T., BORRION A., TIAN B., and NG J.-H. Biodiesel sustainability: The global impact of potential biodiesel production on the energy–water–food (EWF) nexus. Environmental Technology & Innovation, 2021, 22(1): 101408. http://dx.doi.org/10.1016/j.eti.2021.101408

VAN TOL M. C. M., MONCADA J. A., LUKSZO Z., and WEIJNEN M. Modelling the interaction between policies and international trade flows for liquid biofuels: an agent-based modelling approach. Energy Policy, 2020, 149(1): 112021. https://doi.org/10.1016/j.enpol.2020.112021

OGUNKUNLE O., & AHMED N. A. A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines. Energy Reports, 2019, 5(1): 1560-1579. https://doi.org/10.1016/j.egyr.2019.10.028

MARIN-BURGOS V., & CLANCY J. S. Understanding the expansion of energy crops beyond the global biofuel boom: evidence from oil palm expansion in Colombia. Energy, Sustainability and Society, 2017, 7(1): 21. https://doi.org/10.1186/s13705-017-0123-2

POPP J., HARANGI-RÁKOS M., GABNAI Z., BALOGH P., ANTAL G., and BAI A. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications. Molecules, 2016, 21(4): 2-26. https://doi.org/10.3390/molecules21030285

YANG J., HUANG J., MSANGI S., ROZELLE S., WEERSINK A., and DANIELLE T. The Role of Cultivated Land Expansion on the Impacts to Global Agricultural Markets from Biofuels. Energy Procedia, 2014, 61(1): 999–1011. http://dx.doi.org/10.1016/j.egypro.2014.11.1012

RAJAGOPAL D., & RICHARD J. P. Implications of market-mediated emissions and uncertainty for biofuel policies. Energy Policy, 2013, 56(1): 75–82. http://dx.doi.org/10.1016/j.enpol.2012.09.076

HUANG J., YANG J., MSANGI S., ROZELLE S., and WEERSINK A. Global biofuel production and poverty in China. Applied Energy, 2012, 98(1): 246-255. https://doi.org/10.1016/j.apenergy.2012.03.031

LAMERS P., JUNGINGER M., HAMELINCK C., and FAAIJ A. Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors. Renewable and Sustainable Energy Reviews, 2012, 16(5): 3176–3199. https://doi.org/10.1016/j.rser.2012.02.027

OOSTERVEER P., & MOL A. P. J. Biofuels, trade and sustainability: a review of perspectives for developing countries. Biofuels, Bioproducts and Biorefining, 2010, 4(1): 66–76. https://doi.org/10.1002/bbb.194

BARREIROS T., YOUNG A., CAVALCANTE R., and QUEIROZ E. Impact of biodiesel production on a soybean biorefinery. Renewable Energy, 2020, 159: 1066-1083. http://dx.doi.org/10.1016/j.renene.2020.06.064

HABIB M. S., TAYYAB M., ZAHOOR S., and SARKAR B. Management of animal fat-based biodiesel supply chain under the paradigm of sustainability. Energy Conversion and Management, 2020, 225(1): 113345. http://dx.doi.org/10.1016/j.enconman.2020.113345

DHARMAWAN A. H., FAUZI A., PUTRI E. I. K., PACHECO P., DERMAWAN A., NUVA N., AMALIA R., and SUDARYANTI D. A. Bioenergy Policy: The Biodiesel Sustainability Dilemma in Indonesia. International Journal of Sustainable Development and Planning, 2020, 15(4): 537-546. http://dx.doi.org/10.18280/ijsdp.150414

BIBIN C., GOPINATH S., ARAVINDRAJ R., DEVARAJ A., GOKULA KRISHNAN S., and JEEVAANANTHAN J. K. S. The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review. Materials Today: Proceedings, 2020, 33(1): 84-92. http://dx.doi.org/10.1016/j.matpr.2020.03.205

VICCARO M., COZZI M., ROCCHI B., and ROMANO S. Conservation agriculture to promote inland biofuel production in Italy: An economic assessment of rapeseed straight vegetable oil as a self-supply agricultural biofuel. Journal of Cleaner Production, 2019, 217: 153–161. https://doi.org/10.1016/j.jclepro.2019.01.251

FUMI H., SEMIDA S., and DILIP K. Cost competitiveness of palm oil biodiesel production in Indonesia. Energy, 2018, 170(1): 62-72. http://dx.doi.org/10.1016/j.energy.2018.12.115

YUNYUN H., TONG P., YANFANG G., SHUSHU L., YIRAN G., LIN T., and FANG C. Nontoxic oil preparation from Jatropha curcas L. seeds by an optimized methanol/n-hexane sequential extraction method. Industrial Crops and Products, 2017, 97(1): 308–315. http://dx.doi.org/10.1016/j.indcrop.2016.12.034

ALAM A., ULLAH S., AFTAB S., ALAM S., KHAN Y., RAHMAN K., and ZAHOOR. Evaluation of Sirogonium sticticum, Uronema elongatum, Chroococcus turgidus and Temnogyra reflexa for biodiesel production in Pakistan. Biofuels, 2017, 8: 391–399. https://doi.org/10.1080/17597269.2016.1231959

GUABIROBA R. C. S., SILVA R. M. D., CÉSAR A. D. S., and SILVA M. A. V. D. Value chain analysis of waste cooking oil for biodiesel production: Study case of one oil collection company in Rio de Janeiro - Brazil. Journal of Cleaner Production, 2016, 124(4): 3928-3937. https://doi.org/10.1016/j.jclepro.2016.10.064

JUNKER F. G. A., MARQUARDT S., OSTERBURG B., and STICHNOTHE H. Biofuel sustainability requirements - the case of rapeseed biodiesel. German Journal of Agricultural Economics, 2015, 64(1): 274–285. https://www.gjae-online.de/articles/biofuel-sustainability-requirements-the-case-of-rapeseed-biodiesel/

IASTIAQUE-MARTINS G., SECCO D., TOKURA L. K., BARICCATTI R. A., DOLCI B. D., and SANTOS R. F. Potential of tilapia oil and waste in biodiesel production. Renewable and Sustainable Energy Reviews, 2015, 42(1): 234–239. http://dx.doi.org/10.1016/j.rser.2014.10.020

GALADIMA A., & MURAZA O. Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy, 2014, 78(1): 72–83. http://dx.doi.org/10.1016/j.energy.2014.06.018

YANG L., TAKASE M., ZHANG M., ZHAO T., and WU X. Potential non-edible oil feedstock for biodiesel production in Africa: A survey. Renewable and Sustainable Energy Reviews, 2014, 38(1): 461–477. https://doi.org/10.1016/j.rser.2014.06.002

DA SILVA CÉSAR A., & BATALHA M. O. Biodiesel production from castor oil in Brazil: A difficult reality. Energy Policy, 2010, 38(8): 4031– 4039. http://dx.doi.org/10.1016/j.enpol.2010.03.027

JUAN J. C., KARTIKA D. A., WU T. Y., and HIN T. Y. Y. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresource Technology, 2011, 102(2): 452–460. https://doi.org/10.1016/j.biortech.2010.09.093

ALCANTARA R., AMORES J., CANOIRA L., FIDALGO E., FRANCO M. J., and NAVARRO A. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass and Bioenergy, 2000, 18(6): 515–527. https://doi.org/10.1016/S0961-9534(00)00014-3

EFTHYMIOPOULOS I., HELLIER P., LADOMMATOS N., and MILLS-LAMPTEY B. Transesterification of high-acidity spent coffee ground oil and subsequent combustion and emissions characteristics in a compression-ignition engine. Fuel, 2019, 247(1): 257–271. http://dx.doi.org/10.1016/j.fuel.2019.03.040

IDOWU I., PEDROLA M. O., WYLIE S., TENG K. H., KOT P., PHIPPS D., and SHAW A. Improving biodiesel yield of animal waste fats by combination of a pre-treatment technique and microwave technology. Renewable Energy, 2019, 142(1): 535-542. http://dx.doi.org/10.1016/j.renene.2019.04.103

HAWASH S. A., EBRAHIEM E. E., and FARAG H. A. Kinetics Study of the Esterification of Unsaturated Free Fatty Acids. Proceedings of the Institution of Civil Engineers - Energy, 2019, 172(3): 105-114. https://doi.org/10.1680/jener.19.00006

PARK J.-Y., LEE J.-S., WANG Z.-M., and KIM D.-K. Production and characterization of biodiesel from trap grease. Korean Journal of Chemical Engineering, 2010, 27: 1791–1795. https://doi.org/10.1007/s11814-010-0297-1

ELGHARBAWY A. S., SADIK W. A., SADEK O. M., and KASABY M. A. Maximizing biodiesel production from high free fatty acids feedstocks through glycerolysis treatment. Biomass and Bioenergy, 2021, 146(1): 105997. https://doi.org/10.1016/j.biombioe.2021.105997

ELGHARBAWY A. S., SADIK W. A., SADEK O. M., and KASABY M. A. Glycerolysis treatment to enhance biodiesel production from low-quality feedstocks. Fuel, 2021, 284(1): 118970. https://doi.org/10.1016/j.fuel.2020.118970

ANDERSON E., ADDY M., XIE Q., MA H., LIU Y., CHENG Y., ONUMA N., CHEN P., and RUAN R. Glycerin esterification of scum derived free fatty acids for biodiesel production. Bioresource Technology, 2016, 200(1): 153- 160. https://doi.org/10.1016/j.biortech.2015.10.018

LI Y., & JIANG Y. Preparation of a palygorskite supported KF/CaO catalyst and its application for biodiesel production via transesterification. RSC Advances, 2018, 8(29): 16013–16018. https://doi.org/10.1039/C8RA02713G

VAKROS J. Biochars and Their Use as Transesterification Catalysts for Biodiesel Production: A Short Review. Catalysts, 2018, 8(11): 562. https://doi.org/10.3390/catal8110562

WANG Y. B., & JEHNG J. M. Hydrotalcite-like compounds containing transition metals as solid base catalysts for transesterification. Chemical Engineering Journal, 2011, 175(1): 548–554. https://doi.org/10.1016/j.cej.2011.09.126

YU X., WEN Z., LI H., TU S.-T., and YAN J. Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO–CeO2 mixed oxides. Fuel, 2011, 90(5): 1868–1874. https://doi.org/10.1016/j.fuel.2010.11.009

CHANTHON N., NGAOSUWAN K., KIATKITTIPONG W., WONGSAWAENG D., APPAMANA W., and ASSABUMRUNGRAT S. A review of catalyst and multifunctional reactor development for sustainable biodiesel production. ScienceAsia, 2021, 47: 531–541. http://dx.doi.org/10.2306/scienceasia1513-1874.2021.095

MALLAH T. A., & SAHITO A. R. Optimization of castor and neem biodiesel blends and development of empirical models to predicts its characteristics. Fuel, 2020, 262(1): 116341. https://doi.org/10.1016/j.fuel.2019.116341

POPOVICH C. A., PISTONESI M., HEGEL P., CONSTENLA D., BIELSA G. B., MARTÍN L. A., DAMIANI M. C., and LEONARDI P. I. Unconventional alternative biofuels: Quality assessment of biodiesel and its blends from marine diatom Navicula cincta. Algal Research, 2019, 39(1): 101438. https://doi.org/10.1016/j.algal.2019.101438

HANIF M. A., NISAR S., and RASHID U. Supported solid and heteropoly acid catalysts for production of biodiesel. Catalysis Reviews, 2017, 59(2): 165-188. https://doi.org/10.1080/01614940.2017.1321452

LEE J. H., JEON H., PARK J. T., and KIM J. H. Synthesis of hierarchical flower-shaped hollow MgO microspheres via ethylene-glycol-mediated process as a base heterogeneous catalyst for transesterification for biodiesel production. Biomass and Bioenergy, 2020, 142(1): 105788. https://doi.org/10.1016/j.biombioe.2020.105788

TASLIM B. O., PARINDURI S. Z., NINGSIH P., and TARUNA N. Preparation, Characterization and Application of Natural Zeolite from Tapanuli Indonesia Modified with KOH as Catalyst Support for Transesterification of Rice Bran Oil. International Journal of Engineering Research and Technology, 2019, 12(9): 1452-1456. http://irphouse.com/ijert19/ijertv12n9_11.pdf

LEE H. V., JUAN J. C., TAUFIQ-YAP Y. H., KONG P. S., and RAHMAN N. A. Advancement in heterogeneous base catalyzed technology: An efficient production of biodiesel fuels. Journal of Renewable and Sustainable Energy, 2015, 7(3): 032701. https://doi.org/10.1063/1.4919082

SINGH N. K., SINGH Y., and SHARMA A. Optimization of biodiesel synthesis from Jojoba oil via supercritical methanol: A response surface methodology approach coupled with genetic algorithm. Biomass and Bioenergy, 2022, 156(1): 106332. https://doi.org/10.1016/j.biombioe.2021.106332

SRIVASTAVA G., PAUL A. K., and GOUD V. V. Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition. Energy Conversion and Management, 2018, 156(1): 269–278. http://dx.doi.org/10.1016/j.enconman.2017.10.093

ZHU Q. L., SHAO R., DONG R., and YUN Z. Two different kinds of processes for biodiesel production from Chinese cottonseed. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(4): 583– 589. https://doi.org/10.1080/15567036.2013.813989

SHIN H.-Y., RYU J.-H., AN S.-H., and BAE S.-Y. Biodiesel Synthesis from Soybean Oil Using Zinc Oxide in Supercritical Methanol. Journal of Chemical Engineering of Japan, 2014, 47(11): 815–820. https://doi.org/10.1252/jcej.13we359

O’CONNELL A., KOUSOULIDOU M., LONZA L., and WEINDORF W. Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renewable and Sustainable Energy Reviews, 2019, 101(1): 504–515. https://doi.org/10.1016/j.rser.2018.11.033

KUMAR L. R., YELLAPU S. K., ZHANG X., and TYAGI R. D. Energy balance for biodiesel production processes using microbial oil and scum. Bioresource Technology, 2018, 272(1): 379-388. https://doi.org/10.1016/j.biortech.2018.10.071

ZHANG X., YAN S., TYAGI R. D., SURAMPALLI R. Y., and VALÉRO J. R. Energy balance of biofuel production from biological conversion of crude glycerol. Journal of Environmental Management, 2016, 170(1): 169–176. https://doi.org/10.1016/j.jenvman.2015.09.031

ZHAO X., MONNELL J. D., NIBLICK B., ROVENSKY C. D., and LANDIS A. E. The viability of biofuel production on urban marginal land: An analysis of metal contaminants and energy balance for Pittsburgh's Sunflower Gardens. Landscape and Urban Planning, 2014, 124(1): 22–33. https://doi.org/10.1016/j.landurbplan.2013.12.015

ESHTON B., KATIMA J. H. Y., and KITUYI E. Greenhouse gas emissions and energy balances of jatropha biodiesel as an alternative fuel in Tanzania. Biomass and Bioenergy, 2013, 58(1): 95–103. https://doi.org/10.1016/j.biombioe.2013.08.020

SLADE R., & BAUEN A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 2013, 53(1): 29–38. http://dx.doi.org/10.1016/j.biombioe.2012.12.019

ALCOCK T. D., SALT D. E., WILSON P., and RAMSDEN S. J. More sustainable vegetable oil: Balancing productivity with carbon storage opportunities. Science of the Total Environment, 2022, 829(1): 154539. https://doi.org/10.1016/j.scitotenv.2022.154539

DE ROSA M., SCHMIDT J., and PASANG H. Industry-driven mitigation measures can reduce GHG emissions of palm oil. Journal of Cleaner Production, 2022, 365(1): 132565. http://dx.doi.org/10.1016/j.jclepro.2022.132565

BRANDAO M., HEIJUNGS R., and COWIE A. On quantifying sources of uncertainty in the carbon footprint of biofuels: crop/feedstock, LCA modelling approach, land-use change, and GHG metrics. Biofuel Research Journal, 2022, 9(2): 1608-1616. http://dx.doi.org/10.18331/BRJ2022.9.2.2

ELSHOUT P. M. F., VAN DER VELDE M., VAN ZELM R., STEINMANN Z. J. N., and HUIJBREGTS M. A. J. Comparing greenhouse gas footprints and payback times of crop-based biofuel production worldwide. Biofuels, 2019, 13(1): 55-61. http://dx.doi.org/10.1080/17597269.2019.1630056

WAGNER M., LIPPE M., LEWANDOWSKI I., SALZER M., and CADISCH G. CO2 Footprint of the Seeds of Rubber (Hevea Brasiliensis) as a Biodiesel Feedstock Source. Forests, 2018, 9(9): 548-565. https://doi.org/10.3390/f9090548

VALENTE A., IRIBARREN D., and DUFOUR J. How do methodological choices affect the carbon footprint of microalgal biodiesel? A harmonised life cycle assessment. Journal of Cleaner Production, 2018, 207(1): 560-568. https://doi.org/10.1016/j.jclepro.2018.10.020

VELAZQUEZ-ABAD A., CHERRETT T., and HOLDSWORTH P. Waste-to-fuel opportunities for British quick service restaurants: A case study. Resources, Conservation and Recycling, 2015, 104(1): 239-253. https://doi.org/10.1016/j.resconrec.2015.08.004

NETSHIFHEFHE K., & JORDAAN H. The Water Footprint of Biodiesel Produced from Sunflower in South Africa. Water, 2022, 14(1): 1141. https://doi.org/10.3390/w14071141

PUGAZHENDHI A., NAGAPPAN S., BHOSALE R. R., TSAI P. C., NATARAJAN S., DEVENDRAN S., AL-HAJ L., PONNUSAMY V. K., and KUMAR G. Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel-A review. Science of the Total Environment, 2020, 749(1): 142218. https://doi.org/10.1016/j.scitotenv.2020.142218

KUNCORO A., & PURWANTO W. Analysis of Energy-Water Nexus Palm Oil Biodiesel Production in Riau Using Life Cycle Assessment and Water Footprint Methods. Evergreen, 2020, 7(1): 104-110. https://doi.org/10.5109/2740965

MIGLIETTA P. P., GIOVE S., and TOMA P. An optimization framework for supporting decision making in biodiesel feedstock imports: Water footprint vs. import costs. Ecological Indicators, 2018, 85(1): 1231-1238. https://doi.org/10.1016/j.ecolind.2017.11.053

FENG P.-Z., ZHU L.-D., QIN X.-X., and LI Z.-H. Water Footprint of Biodiesel Production from Microalgae Cultivated in Photobioreactors. Journal of Environmental Engineering, 2016, 142(12): 04016067. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001150

BATAN L., QUINN J. C., and BRADLEY T. H. Analysis of water footprint of a photobioreactor microalgae biofuel production system from blue, green and lifecycle perspectives. Algal Research, 2013, 2(3): 196–203. http://dx.doi.org/10.1016/j.algal.2013.02.003

YANG J., XU M., ZHANG X., HU Q., SOMMERFELD M., and CHEN Y. Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 2011, 102(1): 159–165. https://doi.org/10.1016/j.biortech.2010.07.017

MEKONNEN M., & HOEKSTRA A. The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 2011, 8: 763–809. https://doi.org/10.5194/hess-15-1577-2011

NAJI S. Z., TYE C. T., and ABD A. A. State of the art of vegetable oil transformation into biofuels using catalytic cracking technology: Recent trends and future perspectives. Process Biochemistry, 2021, 109(1): 148-168. http://dx.doi.org/10.1016/j.procbio.2021.06.020

UTHMAN H., & ABDULKAREEM A. S. Comparatives Study of Production Biodiesel from Soybean Oil and Jatropha Curcas Seeds Oil. Distributed Generation & Alternative Energy Journal, 2013, 28(2): 31-42. https://doi.org/10.1080/21563306.2013.10677549


Refbacks

  • There are currently no refbacks.