The Evaluation of the Drying Kinetics of Cassava Slices (Manihot Esculenta Crantz) Variety Ica Catumare
Abstract
Convection drying of food and vegetables is a slow and energy-intensive process and takes a long time, up to 25 h, to complete the drying process depending on the drying conditions due to the high latent heat of vaporization of water, the low or limited rate of internal transport of water to the product surface, particularly in food, and the inefficiency of using hot air as drying medium. Accordingly, it is imperative to find the optimum drying conditions for economical operation. In this work, the effect of temperature (40, 50, 60, and 70°C) and the thickness of the slices (2, 4 and 6 mm) on the cassava drying process were evaluated. the samples of Manihot Esculenta Crantz, variety Ica Catumare (CM-523) were placed in perforated trays 12.5 cm * 13.1 cm with an air velocity of 2.34 m/s, leaving 70% free for drying air recirculation; drying time (ts) and effective diffusivity (Deff) and activation energy (Ea) of cassava slices were determined, conforming to mathematical models to describe drying kinetics. The results showed a significant effect of drying temperature and slice thickness, decreasing drying time as air temperature increases and slice thickness decreases, achieving a 93% reduction of the initial moisture in the cassava slices. The mathematical model that best described the kinetics behavior of the drying curves was Page with a linear regression (0.995 ≤ R2 ≤ 0.998) and RMSE of 0.001–0.005. The effective diffusivity coefficient varied according to its thickness (2, 4, and 6 mm) between 3.164E-8 and 5.526E-8 m2/s, 1.568E-8 and 2.872E-8 m2/s, and 1.067E-8 and 1.967E-8 m2/s, respectively. The activation energy (Ea) varied between 19.092, 19.464, and 19.519 Kj/mol, which is within the ranges of agricultural products. Color changes of cassava slices were not negative considering the values of L*, a* and b*; achieving low values for a* and b* and high luminosity, usual characteristics of dry products. It was possible to determine the effect and influence of temperature on the reduction of cassava moisture content, observing an increase in the rate of free moisture loss with increasing temperature. The predominant period in drying was the decreasing period since most of the time is spent in this period.
Keywords: cassava, drying curves, mathematical modeling, color, diffusivity, activation energy.
Full Text:
PDFReferences
ABASS A B, AWOYALE W, ALENKHE B, et al. Can food technology innovation change the status of a food security crop? A review of cassava transformation into “bread” in Africa. Food Reviews International, 2018, 34(1): 87-102. https://doi.org/10.1080/87559129.2016.1239207.
ARISTIZÁBAL J, GARCÍA J A, & OSPINA B. Refined cassava flour in bread making: a review. Ingeniería e Investigación, 2017, 37(1): 25-33. https://dx.doi.org/10.15446/ing.investig.v37n1.57306.
EL-SHARKAWY M A. Global warming: Causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica, 2014, 52(2): 161-178. https://doi.org/10.1007/s11099-014-0028-7.
FALADE K O, OLURIN T O, IKE E, & AWORH O. Effect of pretreatment and temperature on air-drying of Discorea alata and Discorea rotundata slices. Journal of Food Engineering, 2007, 80(4): 1002-1010. https://doi.org/10.1016/j.jfoodeng.2006.06.034.
BARRAGÁN-ALTURO M I, LÓPEZ J M, CADAVID L F, & LUCAS-AGUIRRE J C. Manual de Tecnologías en la Cadena Agroindustrial de la Yuca (Manihot sculenta Crantz). Programa Nacional de Competitividad y Desarrollo Tecnológico en la Cadena Agroindustrial de Frutas y Hortalizas, SENA Dirección General, Dirección de Formación Profesional Grupo de Competitividad. Bogotá, Colombia. Impresora. Feriva S.A., 2002.
WHEATLEY C C. Studies on cassava (Manihot esculenta Crantz) root post-harvest physiological deterioration. Ph.D. Thesis. University of London, UK, 1982
BOOTH R H. Almacenamiento de raíces de yuca. Causas del deterioro que se presenta después de la cosecha de raíces frescas. Centro Internacional de Agricultura Tropical. Cali, Colombia, 1976.
BRENNAN J C, BUTTERS J R, COWRELL R L, & LILLY A E. Las Operaciones de la Ingeniería de los alimentos. España: Editorial Acribia, 1980.
CASTRO A M, MAYORGA E Y, & MORENO F L. Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 2018, 223: 152-167. https://doi.org/10.1016/j.jfoodeng.2017.12.012.
DEFRAEYE T, & RADU A. Insights in convective drying of fruit by coupled modeling of fruit drying, deformation, quality evolution and convective exchange with the airflow. Applied Thermal Engineering, 2018, 129: 1026-1038. https://doi.org/10.1016/j.applthermaleng.2017.10.082.
PURLIS E. Modelling convective drying of foods: A multiphase porous media model considering heat of sorption. Journal of Food Engineering, 2019, 263: 132-146. https://doi.org/10.1016/j.jfoodeng.2019.05.028.
A.O.A.C. International. Official methods of analysis of AOAC International. 20 ed. Rockville (USA): AOAC International, 2006.
SINGH P, & TALUKDAR P. Diseño y evaluación del rendimiento de un secador convectivo y predicción de las características de secado de la papa en condiciones variables. Revista Internacional de Ciencias Térmicas, 2019, 142: 176-187.
ROMAN M C, FABANI M P, LUNA L C, et al. Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds. Information Processing in Agricultura, 2020, 7(2): 333-341.
RAMÍREZ-ESTRADA N, LÓPEZ-GONZÁLEZ C, GARCIÁ-SUÁREZ F L, et al. Secado en Lote de Plátano Macho Verde (Musa paradisiaca L.) a Tres Temperaturas. IX Congreso de ciencia de los alimentos y V foro de ciencia y tecnología de alimentos, 2011, pp. 601-608.
KOUKOUCH A, IDLIMAM A, ASBIK M, et al. Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste. Renewable Energy, 2017, 101: 565-574. https://doi.org/10.1016/j.renene.2016.09.006.
KAVEH M, SHARABIANI V R, CHAYJAN R A, et al. ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Information Processing in Agriculture, 2018, 5: 372-387. https://doi.org/10.1016/j.inpa.2018.05.003.
SALCEDO-MENDOZA J, MERCADO J L, VANEGAS M, et al. Cinética de secado de la yuca (Manihot esculenta Crantz) variedad CORPOICA M-tai en función de la temperatura y de la velocidad de aire. Revista ION, 2014, 27(2): 29-42.
ROMAN M C, FABANI M P, LUNA L C, et al. Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds. Information Processing in Agricultura, 2020, 7(2): 333-341.
NADERY-DEHSHEIKH F, & TAGHIAN-DINANI S. Coating pretreatment of banana slices using carboxymethyl cellulose in an ultrasonic system before convective drying. Ultrasonics – Sonochemistry, 2019, 52: 401-413. https://doi.org/10.1016/j.ultsonch.2018.12.018.
GARCÍA-MOGOLLÓN C, ALVIS-BERMÚDEZ A, & ROMERO-BARRAGÁN P. Capacidad de Rehidratación y Cambio de Color de Yuca (Manihot esculenta Crantz) Deshidratada en Microondas. Información Tecnológica, 2016, 27: 53-60.
CARRANZA J, & SÁNCHEZ M. Cinética de secado de Musa Paradisiaca L. plátano, y Manihot esculenta Grantz, yuca. Revista amazónica de investigación alimentaria, 2002, 2(1): 15-25.
OJEDIRAN JO, OKONKWO CE, ADEYI AJ, et al. Características de secado de rodajas de ñame (Dioscorea rotundata) en un secador de aire caliente convectivo: aplicación de ANFIS en la predicción de la cinética de secado. Heliyon, 2020, 6(3), e03555.
SRIKANTH K S, SHARANAGAT V S, KUMAR Y, et al. Secado por convección y atributos de calidad del ñame pata de elefante (Amorphophallus paeoniifolius). LWT - Food Science and Technology, 2019, 99: 8-16.
GEANKOPLIS C. Procesos de transporte y operaciones unitarias. 2ª Edición, Editora Continental, México D.F, México, 1995.
AGRAWAL S G, & METHEKAR R N. Mathematical model for heat and mass transfer during convective drying of pumpkin. Food and Bioproducts Processing, 2017, 101: 68-73. https://doi.org/10.1016/j.fbp.2016.10.005.
ROJAS M L, & AUGUSTO P E D. Microstructure elements affect the mass transfer in foods: The case of convective drying and rehydration of pumpkin. LWT - Food Science and Technology, 2018, 93: 102-108. https://doi.org/10.1016/j.lwt.2018.03.031.
KASHANINEJAD M, & TABIL L G. Drying characteristics of purslane (Portulaca oleraceae L.). Drying Technology, 2004, 22(9): 2183-2200. https://doi.org/10.1081/DRT-200034268.
DAS I, & ARORA A. Alternate microwave and convective hot air application for rapid mushroom drying. Journal of Food Engineering, 2018, 223: 208-219. https://doi.org/10.1016/j.jfoodeng.2017.10.018.
ZHAO P, GE S, MA D, et al. Effect of hydrothermal pretreatment on convective drying characteristics of paper sludge. ACS Sustainable Chemistry & Engineering, 2014, 2: 665-671.
https://doi.org/10.1021/sc4003505.
SRIKANTH K S, SHARANAGAT V S, KUMAR Y, et al. Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius). LWT - Food Science and Technology, 2019, 99: 8-16. https://doi.org/10.1016/j.lwt.2018.09.049.
OCAMPO, A. Modelo cinético del secado de la pulpa de mango. Revista EIA, 2006, 3(5): 119-128.
Refbacks
- There are currently no refbacks.