Optical Properties of Chalcogenide Thin Films for Solar Cells

Yordanka Trifonova, Vanya Lilova, Vladislava Ivanova, Teodora Stoyanova Lyubenova, Plamen Petkov

Abstract

The aim of this paper is to study the optical properties of thin films with composition Cu0.9(In0.7Ga0.3)Se2 (CIGS) for a photovoltaic solar cell absorber. Samples with different film thicknesses were prepared using the doctor blade technique of previously co-precipitated aqueous precursors. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the first time, the optical properties of the thin layers with this composition, obtained using the doctor blade technique, were investigated. The optical properties were studied by transmittance and reflectance measurements in the infrared region and are correlated with film thickness. The dependence of the absorption coefficient on wavelength and the energy gap was found to be affected by the layer depth. The greater absorption coefficient is related to thinner CIGS layer. The refractive index results in an abnormal dispersion. The optical band gap was also determined in accordance with the sample chemical composition.

 

Keywords: chalcogenide films, optical properties, optical band gap, refractive index, absorption coefficient.

 

https://doi.org/10.55463/issn.1674-2974.50.6.2


Full Text:

PDF


References


FERNÁNDEZ A. M. & BHATTACHARYA R. Electrodeposition of CuIn1−xGaxSe2 precursor films: optimization of film composition and morphology. Thin Solid Films, 2005, 474(1-2): 10-13. https://doi.org/10.1016/j.tsf.2004.02.104

BHATTACHARYA R. N., BATCHELOR W., GRANATA J. E., HASOON F., WIESNER H., RAMANATHAN K., KEANE J., and NOUFI R. N. CuIn1−xGaxSe2-based photovoltaic cells from electrodeposited and chemical bath deposited precursors. Solar Energy Materials and Solar Cells, 1998, 55(1-2): 83-94. https://doi.org/10.1016/S0927-0248(98)00049-X

BOUABID K., IHLAL A., MANAR A., OUTZOURHIT A., and AMEZIANE E. L. Еffect of deposition and annealing parameters on the properties of CuIn1−xGaxSe2 thin films. Thin Solid Films, 2005, 488(1-2): 62-67. https://doi.org/10.1016/j.tsf.2005.04.111

WADA T., HASHIMOTO Y., NISHIWAKI S., SATOH T., HAYASHI S., NEGAMI T., and MIYAKE H. High-efficiency CIGS solar cells with modified CIGS surface. Solar Energy Materials and Solar Cells, 2001, 67(1-4): 305-310. https://doi.org/10.1016/S0927-0248(00)00296-8

CONTRERAS M. A., EGGAS B., RAMANATHAN K., HILTNER J., SWARTZLANDER A., HASOON F., and NOUFI R. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells. Progress in Photovoltaics, 1999, 7: 311-316. https://doi.org/10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G

RAMANATHAN K., TEETER G., KEANE J. C., and NOUFI R. Properties of high-efficiency CuInGaSe2 thin film solar cells. Thin Solid Films, 2005, 480-481: 499-502. https://doi.org/10.1016/j.tsf.2004.11.050

KATO T., WU J.-L., HIRAI Y., SUGIMOTO H., and BERMUDEZ V. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In,Ga)(Se,S)2. IEEE Journal of Photovoltaics, 2019, 9(1): 325-330. https://doi.org/10.1109/JPHOTOV.2018.2882206

MARTÍ R., OLIVEIRA L., STOYANOVA LYUBENOVA T., TODOROV T., CHASSAING E., LINCOT D., and CARDAV J. B. Preparation of Cu(In,Ga)Se2 photovoltaic absorbers by an aqueous metal selenite co-precipitation route. Journal of Alloys and Compounds, 2015, 650: 907-911. https://doi.org/10.1016/j.jallcom.2015.08.014

NADENAU V., BRAUNGER D., HARISKOS D., KAISER M., KÖBLE Ch., OBERACKER A., RUCKH M., RÜHLE U., SCHÄFFLER R., SCHMID D., WALTER T., ZWEIGART S., and SCHOCK H. W. Solar cells based on CuInSe2 and related compounds: material and device properties and processing. Progress in Photovoltaics, 1995, 3: 363-382. https://doi.org/10.1002/pip.4670030602

TUTTLE J. R., CONTRERAS M. A., GABOR A. M., RAMANATHAN K. R., TENNAT A. L., ALBIN D. S., KEANE J., and NOUFI R. Perspective on high‐efficiency Cu(In,Ga)Se2-based thin‐film solar cells fabricated by simple, scalable processes. Progress in Photovoltaics, 1995, 3: 383-391. https://doi.org/10.1002/pip.4670030603

CONTRERAS M., TUTTLE J., GABOR A., TENNAT A., RAMANATHAN K., ASHER S., FRANZ A., KEANE J., WANG L., and NOUFI R. High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga)Se2-based solar cells. Solar Energy Materials and Solar Cells, 1996, 41-42: 231-246. https://doi.org/10.1016/0927-0248(95)00145-X

LIU J., ZHUANG D., LUAN H., CAO M., XIE M., and LI X. Preparation of Cu(In,Ga)Se2 thin film by sputtering from Cu(In,Ga)Se2 quaternary target. Progress in Natural Science: Materials International, 2013, 23(2): 133-138. https://doi.org/10.1016/j.pnsc.2013.02.006

NIE M. & ELLMER K. Growth and morphology of thin Cu(In,Ga)S2 films during reactive magnetron co-sputtering. Thin Solid Films, 2013, 536: 172-178. https://doi.org/10.1016/j.tsf.2013.03.118

LEE D.-Y., PARK S., and KIM J. H. Structural analysis of CIGS film prepared by chemical spray deposition. Current Applied Physics, 2011, 11(1): S88-S92. https://doi.org/10.1016/j.cap.2010.11.089

MAHENDRAN C. & SURIYANARAYANAN N. Effect of Bi incorporation and temperature on the properties of sprayed CuInS2 thin films. Physica B: Condensed Matter, 2013, 408: 62-67. https://doi.org/10.1016/j.physb.2012.08.045

KAMPMANN A., SITTNGER V., RECHID J., and REINEKE-KOCH R. Large area electrodeposition of Cu(In,Ga)Se2. Thin Solid Films, 2000, 361-362: 309-313. https://doi.org/10.1016/S0040-6090(99)00863-9

KAPUR V. K., BANSAL A., LE P., and ASENSIO O. I. Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid Films, 2003, 431-432: 53-57. https://doi.org/10.1016/S0040-6090(03)00253-0

FARAJ M. G., IBRAHIM K., and SALHIN A. Effects of Ga concentration on structural and electrical properties of screen printed-CIGS absorber layers on polyethylene terephthalate. Materials Science in Semiconductor Processing, 2012, 15(2): 206-213. https://doi.org/10.1016/j.mssp.2012.03.002

CHIHI A., BOUJMIL M. F., and BESSAIS B. Optical and electrical characterization of CIGS thin films grown by electrodeposition route. Optik, 2016, 127(8): 4118-4122. https://doi.org/10.1016/j.ijleo.2016.01.115

LUO P., ZHU C., and JIANG G. Preparation of CuInSe2 thin films by pulsed laser deposition the Cu–In alloy precursor and vacuum selenization. Solid State Communications, 2008, 146(1-2): 57-60. https://doi.org/10.1016/j.ssc.2008.01.020

GUILLÉN C. & HERRERO J. Semiconductor CuInSe2 formation by close-spaced selenization processes in vacuum. Vacuum, 2002, 67(3-4): 659-664. https://doi.org/10.1016/S0042-207X(02)00258-0

CALIXTO M. E., DOBSON K. D., MCCANDLESS B. E., and BIRKMIRE R. W. Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga)Se2 thin films for photovoltaic application. Journal of the Electrochemical Society, 2006, 153: G521-G528. https://doi.org/10.1149/1.2186764

CHEN C., QI X., CHANG W., TSAI M., CHEN I., LIN C., WU P., and CHANG K. The effects of pulse repetition rate on the structural, optical, and electrical properties of CIGS films grown by pulsed laser deposition. Applied Surface Science, 2015, 351: 772-778. https://doi.org/10.1016/j.apsusc.2015.06.002

CHANDRAMOHAN M., VELUMANI S., and VENKATACHALAM T. Experimental and theoretical investigations of structural and optical properties of CIGS thin films. Materials Science and Engineering: B, 2010, 174(1-3): 205-208. https://doi.org/10.1016/j.mseb.2010.03.041

OLIVEIRA L., LYUBENOVA T., MARTÍ R., FRAGA D., REY A., KOZHUKHAROV V., and CARDA J. In-situ sol-gel synthesis and thin film deposition of Cu(In,Ga)(S,Se)2 solar cells. Journal of Chemical Technology and Metallurgy, 2013, 48(6): 559-566. https://journal.uctm.edu/node/j2013-6/3-Oliveira_559-566.pdf

TODOROV T. & MITZI D. B. Direct liquid coating of chalcopyrite light‐absorbing layers for photovoltaic devices. European Journal Inorganic Chemistry, 2010, 2010(1): 17-28. https://doi.org/10.1002/ejic.200900837

BERNI A., MENNING M., and SCHMIDT H. Doctor Blade. In: AEGERTER M. A. & MENING M. (eds.) Sol-Gel Technologies for Glass Producers and Users. Springer, Boston, Massachusetts, 2004: 89-92. https://doi.org/10.1007/978-0-387-88953-5_10

REPINS I., CONTRERAS M. A., EGAAS B., DEHART C., SCHARF J., PERKINS C. L., TO B., and NOUFI R. 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Progress in Photovoltaics, 2008, 16(3): 235-239. https://doi.org/10.1002/pip.822

TAUC J. Optical Properties of Solids. North-Holland, Amsterdam, 1972.

BASOL B. M., KAPUR V. K., HALANI A. T., LEIDHOLM C. R., and ROE R. A. Method of making compound semiconductor films and making related electronic devices. 1999. https://patents.google.com/patent/US5985691A/en

CURTIN T., O’REGAN F., DECONINCK C., KNÜTTLE N., and HODNETT B. K. The catalytic oxidation of ammonia: influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts. Catalysis Today, 2000, 55(1-2): 189-195. https://doi.org/10.1016/S0920-5861(99)00238-2

DRESSEL M. & GRÜNER G. Electrodynamics of Solids: Optical Properties of Electrons in Matter. Cambridge University Press, Cambridge, 2002.

LILOV E., LILOVA V., and NEDEV S. Optical band gap dependence on the oxalic acid concentration of antimony anodic oxide films. Bulgarian Chemical Communications, 2016, 48(Special Issue G): 17-20. http://bcc.bas.bg/BCC_Volumes/Volume_48_Special_G_2016/BCC-48-G-2016-17-20-s3-PA3.pdf

MOTT N. F. and DAVIS E. A. Electronic processes in non-crystalline materials. Clarendon Press, Oxford, 1979.


Refbacks

  • There are currently no refbacks.