Antipsychotic Drugs in Autistic Children using LC/MS-MS: Better-Fixed Doses Necessary for the Middle East

Eyad Mallah, Mohammed Hamad, Luay Abu-Qatouseh, Dana Fraih, Kenza Mansoor, Mohammed Abadleh, Mona Bustami, Basel Arafat, Tawfiq Arafat, Khaled W. Omari

Abstract

This study aims to investigate the effectiveness of drug doses prescribed to autistic children in the Middle East. The uniqueness of this study relies on the fact that fewer research profiles in this study area are available in the Middle East. Specifically, this study presents recommendations based on accurate measurements in plasma compared to the prescribed doses. Plasma samples from 18 children were collected. Levels of olanzapine, risperidone, and quetiapine drugs were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This is a powerful accurate analytical tool in which the coefficient of determination (R2) was greater than 0.998. The coefficient of variation and relative error was less than 15%. Steady-state concentrations for the previously mentioned drugs were less than the determined concentration in plasma. A better-effective treatment for people affected by autism spectrum disorder (ASD) is needed to reduce/eliminate the side effects as well as increase the effectiveness to achieve the best outcome. For improvement functions, better fixed doses of the medications were necessary for better performance. In addition, increasing awareness of the importance of finding a better-effective treatment for people affected by autism spectrum disorder (ASD) is essential. This will optimize the activation/inhibition of some enzymes. More effective treatment guidelines must be developed for patients with ASD.

 

Keywords: autism spectrum disorder, olanzapine, risperidone, quetiapine, children’s health, drug dose, liquid chromatography-tandem mass spectrometry.

 

https://doi.org/10.55463/issn.1674-2974.50.4.17


Full Text:

PDF


References


GESCHWIND D H, and LEVITЕ P. Autism spectrum disorders: developmental disconnection syndromes. Current Opinion in Neurobiology, 2007, 17(1): 103-111. https://doi:10.1016/j.conb.2007.01.009

BAIO, J., WIGGINS, L., CHRISTENSEN, D. L., et al. Prevalence of Autism Spectrum Disorder among Children Aged 8 Years – Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2010. Surveillance Summaries, 2014, 63: 1-21. https://doi:10.15585/mmwr.ss6706a1

MYERS, S. M., JOHNSON, C. P., & American Academy of Pediatrics Council on Children with Disabilities. Management of Children with Autism Spectrum Disorders. Pediatrics, 2007, 120(5): 1162-1182. https://doi:10.1542/peds.2007-2362

NEWSCHAFFER C J, CROEN L A, DANIELS J, et al. The Epidemiology of Autism Spectrum Disorders. Annual Review of Public Health, 2007, 28: 235-258. https://doi:10.1146/annurev.publhealth.28.021406.144007

LYALL K, CROEN L, DANIELS J. The Changing Epidemiology of Autism Spectrum Disorders. Annual Review of Public Health, 2017, 3: 1-102. https://doi:10.1146/annurev-publhealth-031816-044318

TICK B, BOLTON P, HAPPÉ F, et al. Heritability of autism spectrum disorders: ameta-analysis of twin studies. Journal of Child Psychology and Psychiatry, 2016, 57(5): 585-595. https://doi:10.1111/jcpp.12499

CHAKRABARTI S, & FOMBONNE E. Pervasive Developmental Disorders in Preschool Children: Confirmation of High Prevalence. The American Journal of Psychiatry, 2005, 162: 1133-1141. https://doi:10.1176/appi.ajp.162.6.1133

ASHERSON P J, & CURRAN S. Approaches to gene mapping in complex disorders and their application in child psychiatry and psychology. British Journal of Psychiatry, 2001, 179: 122-128. https://doi:10.1192/bjp.179.2.122

LAWLER C P, CROEN L A, GRETHER J K, & VAN DE WATER J. Identifying environmental contributions to autism: Provocative clues and false leads. Mental Retardation and Developmental Disabilities, 2004, 10(4): 292-302. https://doi:10.1002/mrdd.20043

RICHLER J, LUYSTER R, RISI S, et al. Is There a ‘Regressive Phenotype’ of Autism Spectrum Disorder Associated with the Measles-Mumps-Rubella Vaccine? A CPEA Study. Journal of Autism and Developmental Disorders, 2006, 36: 299-316. https://doi:10.1007/s10803-005-0070-1

KATZ S L. Has the Measles-Mumps-Rubella Vaccine Been Fully Exonerated? Pediatrics, 2006, 118(4): 1744–1745. https://doi:10.1542/peds.2006-2252

BLAXILL M F, REDWOOD L, & BERNARD S. Thimerosal and autism? A plausible hypothesis that should not be dismissed. Medical Hypotheses, 2004, 62(5): 788-794. https://doi:10.1016/j.mehy.2003.11.033

GEIER D A, & GEIER M R. An assessment of downward trends in neurodevelopmental disorders in the United States following removal of Thimerosal from childhood vaccines. Medical Science Monitor, 2006, 12(6): 231-239. https://pubmed.ncbi.nlm.nih.gov/16733480/

BANDIM J M, VENTURA, L O, MILLER, M T, et al. Autism and Möbius sequence: an exploratory study of children in northeastern Brazil. Arquivos de Neuro-Psiquiatr, 2003, 61(2A): 181-185. https://doi:10.1590/S0004-282X2003000200004

BORUE X, CHEN J, & CONDRON B G. Developmental effects of SSRIs: lessons learned from animal studies. International ournal of. Devlopmental Neuroscience, 2007, 25: 341–347. https://doi:10.1016/j.ijdevneu.2007.06.003

BROMLEY R L, MAWER G E, BRIGGS M, et al. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. Journal of Neurology, Neurosurgery & Psychiatry, 2013, 84: 637–643. https://doi:10.1136/jnnp-2012-304270

CHRISTENSEN J, GRØNBORG T K, SØRENSEN M J, et al. Prenatal Valproate Exposure and Risk of Autism Spectrum Disorders and Childhood Autism. JAMA, 2013, 309(16): 1696-1703. https://doi:10.1001/jama.2013.2270

CROEN, L. A., CONNORS, S. L., MATEVIA, M., et al. Prenatal exposure to β2-adrenergic receptor agonists and risk of autism spectrum disorders. Journal of Neurodevelopmental Disorders, 2011, 3: 307–315. https://doi:10.1007/s11689-011-9093-4

GIDAYA N B, LEE B K, BURSTYN I, et al. In utero Exposure to β-2-Adrenergic Receptor Agonist Drugs and Risk for Autism Spectrum Disorders. Pediatrics, 2016, 137(2): 1-8. https://doi:10.1542/peds.2015-1316

BERCUM F M, RODGERS K M, BENISON A M, et al. Maternal Stress Combined with Terbutalin Leads to Comorbid Autistic-Like Behavior and Epilepsy in a Rat Model. The Journal of Neuroscience, 2015, 35(48): 15894–15902. https://doi:10.1523/JNEUROSCI.2803-15.2015

HYMAN S L, LEVY S E, & MYERS S M. Identification, Evaluation, and Management of Children With Autism Spectrum Disorder. Pediatrics, 2020, 145(1): 1-64. https://doi:10.1542/peds.2019-3447

HERES S, KRAEMER S, BERGSTROM R F, & DETKE H C. Pharmacokinetics of olanzapine long-acting injection. International Clinical Psychopharmacology, 2014, 29(6): 299-312. https://doi:10.1097/YIC.0000000000000040

BOTTS S, DIAZ F J, SANTORO V, et al. Estimating the effects of co-medications on plasma olanzapine concentrations by using a mixed model. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32(6): 1453-1458. https://doi:10.1016/j.pnpbp.2008.04.018

VELLA T, & MIFSUD J. Interactions between valproic acid and quetiapine/olanzapine in the treatment of bipolar disorder and the role of therapeutic drug monitoring. Journal of Pharmacy and Pharmacology, 2014, 66(6): 747–759. https://doi:10.1111/jphp.12209

DEVANE C L, and NEMEROFF C B. Clinical Pharmacokinetics of Quetiapine: an atypical antipsychotic. Clinical Pharmacokinetics, 2001, 40(7): 509-522. https://doi:10.2165/00003088-200140070-00003

URBAN A E, & CUBAŁA W J. Therapeutic drug monitoring of atypical antipsychotics. Psychiatria Polska., 2017, 51(6):1059-1077. https://doi:10.12740/PP/65307

CANNELL J J. Vitamin D and autism, what’s new? Reviews in Endocrine and Metabolic Disorders, 2017, 18: 183-193. https://doi:10.1007/s11154-017-9409-0

KOČOVSKÁ E, FERNELL E, & BILLSTEDT E. Vitamin D and autism: Clinical review. Research in Developmental Disabilities, 2012, 33(5): 1541-1550. https://doi:10.1016/j.ridd.2012.02.015

TURAL HESAPCIOGLU S, KASAK M, CITAK KURT A N, & CEYLAN M F. High monocyte level and low lymphocyte to monocyte ratio in autism spectrum disorders. International Journal of Developmental Disabilities, 2017, 65(2): 73-81. https://doi:10.1080/20473869.2017.1371369

LU S Y, & WU H C. Initial diagnosis of anemia from sore mouth and improved classification of anemias by MCV and RDW in 30 patients. Oral Surgery Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2004, 98: 679-685. https://doi:10.1016/j.tripleo.2004.01.006

DE GIACOMO, A., CRAIG, F., PALERMO, G., et al. Differential Diagnosis in Children with Autistic Symptoms and Subthreshold ADOS Total Score: An Observational Study. Neuropsychiatric Disease and Treatment, 2021, 17: 2163-2172. https://doi:10.2147/NDT.S300452

GUNES S. Modified-Release Methylphenidate-Related Trichotillomania in a Boy with Autism Spectrum Disorder. Journal of Child and Adolescent Psychopharmacology, 2017, 27(7): 675–676. https://doi:10.1089/cap.2017.0001

SIDRAK, S., YOONG, T., & WOOLFENDEN, S. Iron deficiency in children with global developmental delay and autism spectrum disorder. Journal of Paediatric and Child Health, 2014, 50(5): 356-61. https://doi:10.1111/jpc.12483. [33] JOHNSON-WIMBLEY, T. D., & GRAHAM, D. Y. Diagnosis and management of iron deficiency anemia in the 21st century. Therapeutic Advances in Gastroenterology, 2011, 4(3): 177184. https://doi:10.1177/1756283X11398736

PATIL P, & SCHWARTZ T L. Fine Tuning the Use of Second Generation Antipsychotics. Journal of Mental Health and Clinical Psychology, 2018, 2(5): 22-39. https://doi:10.29245/2578-2959/2018/5.1138

PRICE G, & PATEL DA. Drug Bioavailability. Treasure Island (FL): StatPearls Publishing, 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557852/

GRUNDMANN M, KACIROVA I, & URINOVSKA, R. Therapeutic drug monitoring of atypical antipsychotic drugs. Acta Pharmaceutica, 2014, 64: 387–401. https://doi:10.2478/acph-2014-0036

CHAUDHRY H. R., ARSHAD N., NIAZ S., SULEMAN T., and MUFTI K. A. Comparison of risperidone, olanzapine and quetiapine: effects on body weight, serum blood glucose and prolactin. International Psychiatry, 2008, 5(3): 71-73. https://doi:10.1192/S1749367600002125

DE LEON, J., DIAZ, F. J., & SPINA, E. Pharmacokinetic Drug-Drug Interactions between Olanzapine and Valproate Need to Be Better Studied. Journal Clinical Psychiatry, 2010, 71:7957-958. https://doi:10.4088/JCP.09lr05902yel

SPINA E, & SCORDO M G. Newer antipsychotics: comparative review of drug interactions. Expert Review of Neurotherapeutics, 2001, 1(2): 171-182. https://doi:10.1586/14737175.1.2.171

SPINA E, D'ARRIGO C, SANTORO V, et al. Effect of valproate on olanzapine plasma concentrations in patients with bipolar or schizoaffective disorder. Therapeutic Drug Monitoring, 2009, 31(6): 758-63. https://doi:10.1097/FTD.0b013e3181c0590e.

PRIOR T I, & BAKER G B. Interactions between the cytochrome P450 system and the second‐generation antipsychotics. Journal of Psychiatry and Neuroscience, 2003, 2: 99-112.

MACKENZIE PI, OWENS IS, BURCHELL B, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 1997, 7(4): 255-69. https://doi:10.1097/00008571-199708000-00001

LISTON H L, MARKOWITZ J S, and DEVANE C L. Drug Glucuronidation in Clinical Psychopharmacology. Journal of Clinical Psychopharmacology, 2001, 21(5): 500-515. https://doi:10.1097/00004714-200110000-00008

HIEMKE C, BERGEMANN N, CONCA A, et al. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011. Pharmacopsychiatry, 2011, 44: 195–235. https://doi:10.1055/s-0031-1286287

RAGGI MA, MANDRIOLI R, SABBIONI C, & PUCCI V. Atypical antipsychotics: pharmacokinetics, therapeutic drug monitoring and pharmacological interactions. Current Medicinal Chemistry, 2004, 11(3): 279-296. https://doi:10.2174/0929867043456089

MURRAY M. Role of CYP pharmacogenetics and drug‐drug interactions in the efficacy and safety of atypical and other antipsychotic agents. Journal of Pharmacy and Pharmacology, 2006, 58(7): 871-885. https://doi:10.1211/jpp.58.7.0001

FANG J, BOURIN M.], and BAKER G. B. Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn-Schmiedeberg’s Archives of Pharmacology, 1999, 359: 147–151. https://doi: 10.1007/pl00005334

YASUI-FURUKORI N, HIDESTRAND M, SPINA E, et al. Different Enantioselective 9-Hydroxylation of Risperidone by the Two Human CYP2D6 and CYP3A4 Enzymes. Drug Metabolism and Disposition, 2001, 29(10): 1263-1268.

CALLAGHAN J T, BERGSTROM R F, PTAK LR, et al. Olanzapine. Clinical Pharmacokinetics, 1999, 37: 177–193. https://doi.org/10.2165/00003088-199937030-00001

BERTILSSON L, DAHL M L, DALÉN P, & AL-SHURBAJI A. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. British Journal of Clinical Pharmacology, 2002, 53(2): 111–122. https://doi:10.1046/j.0306-5251.2001.01548.x

KLOOSTERBOER SM, DE WINTER BCM, REICHART CG, et al. Risperidone plasma concentrations are associated with side effects and effectiveness in children and adolescents with autism spectrum disorder. British Journal of Clinical Pharmacology, 2021, 87: 1069-1081. https://doi.org/10.1111/bcp.14465.

ARNAIZ J A, RODRIGUES-SILVA C, MEZQUIDA G., et al. The usefulness of Olanzapine plasma concentrations in monitoring treatment efficacy and metabolic disturbances in first-episode psychosis. Psychopharmacology (Berl), 2021, 238(3): 665-676. https://doi:10.1007/s00213-020-05715-5.

ARNAIZ J A., RODRIGUES-SILVA, C., MEZQUIDA, et al. Quetiapine. Treasure Island (FL): StatPearls Publishing; 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459145/


Refbacks

  • There are currently no refbacks.