Antiplasmodial and Antioxidant Activity of Garcinia Bancana Extract

Rifaldi, Arif Fadlan, Taslim Ersam, Adi Setyo Purnomo, Sri Fatmawati

Abstract

Malaria caused by Plasmodium parasites is a significant public health issue, particularly in tropical and subtropical regions. There is also resistance to chloroquine-based therapy, which highlights the need for novel therapeutic agents. Therefore, our project in exploring antiplasmodial agents from Garcinia Indonesia continues. This study evaluates the phytochemical content of G. bancana by the total phenolic content (TPC) and total flavonoid content (TFC) and its in vitro antioxidant and antiplasmodial activities. The TPC and TFC values were determined using a UV-VIS spectrophotometer, while the antioxidant activity was determined using the DPPH, ABTS, and FRAP assays. Antiplasmodial activity against a chloroquine-sensitive strain 3D7 was evaluated using the Giemsa staining method. The highest TPC value of 195.75 ± 1.24 mg GAE/g was obtained from methanolic extract, while a TFC value of 82.79 ± 0.34 mg QE/g extract was found from dichloromethane extract. The methanolic extract exhibited the most potent antioxidant activity in the DPPH and FRAP assays with IC50 values of 6.07 ± 0.06 μg/ml and 74.35 ± 3.77 μM Fe2+/g, respectively. The n-hexane extract was found to be the most potent on ABTS antioxidant and antiplasmodial assays with IC50 values of 1.22 ± 0.02 μg/ml and 0.23 ± 0.01 μg/ml, respectively. Furthermore, the DPPH antioxidant was negatively correlated with antiplasmodial significantly at 0.05. These findings suggest that the n-hexane extract of G. bancana has great potential as a source of antioxidant and antiplasmodial compounds. To the best of our knowledge, this study provides microscopic evidence in addition to the strongest antiplasmodial efficacy of Garcinia extract.

 

Keywords: Garcinia bancana, extract, antioxidant activity, antiplasmodial activity.

 

https://doi.org/10.55463/issn.1674-2974.50.1.28


Full Text:

PDF


References


WORLD HEALTH ORGANIZATION. Malaria, 2022. https://www.who.int/news-room/fact-sheets/detail/malaria

SIDJUI L. S., SOH D., HERBETTE G., TOGHUEO R. M. K., FOLEFOC G. N., MAHIOU-LEDDET V., BAGHDIKIAN B., and ALI M. S. Antiplasmodial and cytotoxic activity of lanostane type triterpenoids isolated from Leplaea mayombensis. Phytochemistry Letters, 2022, 51: 50–56. https://doi.org/10.1016/j.phytol.2022.06.010

TALI M. B. T., DIZE D., NJONTÉ WOUAMBA S. C., TSOUH FOKOU P. V., KEUMOE R., NGANSOP C. N., NGUEMBOU NJIONHOU M. S., JIATSA MBOUNA C. D., YAMTHE TCHOKOUAHA L. R., MAHARAJ V. J., KHOROMMBI N. K., NAIDOO-MAHARAJ D., TCHOUANKEU J. C., and BOYOM F. F. In vitro antiplasmodial activity-directed investigation and UPLC–MS fingerprint of promising extracts and fractions from Terminalia ivorensis A. Chev. and Terminalia brownii Fresen. Journal of Ethnopharmacology, 2022, 296: 115512. https://doi.org/10.1016/j.jep.2022.115512

PAUL A. and ZAMAN M. K. A comprehensive review on ethnobotany, nutritional values, phytochemistry and pharmacological attributes of ten Garcinia species of South-east Asia. South African Journal of Botany, 2022, 148: 39–59. https://doi.org/10.1016/j.sajb.2022.03.032

FUENTES R. G., PEARCE K. C., DU Y., RAKOTONDRAFARA A., VALENCIANO A. L., CASSERA M. B., RASAMISON V. E., CRAWFORD T. D., and KINGSTON D. G. I. Phloroglucinols from the Roots of Garcinia Dauphinensis and Their Antiproliferative and Antiplasmodial Activities. Journal of Natural Products, 2019, 82: 431–439. https://doi.org/10.1021/acs.jnatprod.8b00379

ABDULAH R., SURADJI E. W., SUBARNAS A., SUPRATMAN U., SUGIJANTO M., DIANTINI A., LESTARI K., BARLIANA M. I., KAWAZU S., and KOYAMA H. Catechin isolated from Garcinia celebica leaves inhibit Plasmodium falciparum growth through the induction of oxidative stress. Pharmacognosy Magazine, 2017, 13(50s): s301-s305. https://doi.org/10.4103/pm.pm_571_16

PASARIBU Y. P., FADLAN A., FATMAWATI S., and ERSAM T. Biological Activity Evaluation and In Silico Studies of Polyprenylated Benzophenones from Garcinia celebica. Biomedicines, 2021, 9(11): 1654. https://doi.org/10.3390/biomedicines9111654

WAIRATA J., SUKANDAR E. R., FADLAN A., PURNOMO A. S., TAHER M., and ERSAM T. Evaluation of the Antioxidant, Antidiabetic, and Antiplasmodial Activities of Xanthones Isolated from Garcinia forbesii and Their In Silico Studies. Biomedicines, 2021, 9(10): 1380. https://doi.org/10.3390/biomedicines9101380

WAIRATA J., FADLAN A., PURNOMO A. S., TAHER M., and ERSAM T. Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garcinia forbesii King: A correlation study. Arabian Journal of Chemistry, 2022, 15: 103541. https://doi.org/10.1016/j.arabjc.2021.103541

KAINAMA H., FATMAWATI S., SANTOSO M., KAKISINA P., and ERSAM T. In vitro and In vivo Antiplasmodial of Stem Bark Extract of Garcinia husor. HAYATI Journal of Biosciences, 2019, 26(2): 81. https://doi.org/10.4308/hjb.26.2.81

YAPWATTANAPHUN C, SUBHADRABANDHU S, SUGIURA A, YONEMORI K., and UTSUNOMIYA N. Utilization of Some Garcinia Species in Thailand. Acta Horticulturae, 2002, 575: 563–570. https://doi.org/10.17660/ActaHortic.2002.575.66

JABIT M. L., WAHYUNI F S, KHALID R, ISRAF D. A., SHAARI K., LAJIS N. H., and STANSLAS J. Cytotoxic and nitric oxide inhibitory activities of methanol extracts of Garcinia species. Pharmaceutical Biology, 2009, 47: 1019–1026. https://doi.org/10.3109/13880200902973787

BRUGUIÈRE A., DERBRÉ S., COSTE C., LE BOT M., SIEGLER B., LEONG S. T., SULAIMAN S. N., AWANG K., and RICHOMME P. 13C-NMR dereplication of Garcinia extracts: Predicted chemical shifts as reliable databases. Fitoterapia, 2018, 131: 59–64. https://doi.org/10.1016/j.fitote.2018.10.003

RUKACHAISIRIKUL V., NAKLUE W., SUKPONDMA Y., and PHONGPAICHIT S. An Antibacterial Biphenyl Derivative from Garcinia bancana MIQ. Chemical and Pharmaceutical Bulletin, 2005, 53(3): 342-343. https://doi.org/10.1248/cpb.53.342

COSTE C., GÉRARD N., DINH C. P., BRUGUIÈRE A., ROUGER C., LEONG S. T., AWANG K., RICHOMME P., DERBRÉ S., and CHARREAU B. Targeting MHC Regulation Using Polycyclic Polyprenylated Acylphloroglucinols Isolated from Garcinia bancana. Biomolecules, 2020, 10(9): 1266. https://doi.org/10.3390/biom10091266

HOSSAIN M. A., DEY P., and JOY R. I. Effect of osmotic pretreatment and drying temperature on drying kinetics, antioxidant activity, and overall quality of taikor (Garcinia pedunculata Roxb.) slices. Saudi Journal of Biological Sciences, 2021, 28: 7269–7280. https://doi.org/10.1016/j.sjbs.2021.08.038

CHEN T. H., FU Y. S., CHEN S. P., FUH Y. M., CHANG C., and WENG C. F. Garcinia linii extracts exert the mediation of anti-diabetic molecular targets on anti-hyperglycemia. Biomedicine & Pharmacotherapy, 2021, 134: 111151. https://doi.org/10.1016/j.biopha.2020.111151

BEN JALLOUL A., CHAAR H., TOUNSI M. S., and ABDERRABBA M. Variations in phenolic composition and antioxidant activities of Scabiosa maritima (Scabiosa atropurpurea sub. maritima L.) crude extracts and fractions according to growth stage and plant part. South African Journal of Botany, 2022, 146: 703–714. https://doi.org/10.1016/j.sajb.2021.12.004

LULAN T. Y. K., FATMAWATI S., SANTOSO M., and ERSAM T. α-VINIFERIN as a potential antidiabetic and antiplasmodial extracted from Dipterocarpus littoralis. Heliyon, 2020, 6: e04102. https://doi.org/10.1016/j.heliyon.2020.e04102

BENZIE I. F. F. and DEVAKI M. The Ferric Reducing/Antioxidant Power (FRAP) Assay for Non-Enzymatic Antioxidant Capacity: Concepts, Procedures, Limitations and Applications. In: APAK R., CAPANOGLU E., and SHAHIDI F. (eds.) Measurement of Antioxidant Activity & Capacity. 1st ed. John Wiley & Sons, Chichester, 2017: 77–106. https://doi.org/10.1002/9781119135388.ch5

SITI AZIMA A. M., NORIHAM A., and MANSHOOR N. Phenolics, antioxidants and color properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea, Garcinia mangostana and Syzygium cumini. Journal of Functional Foods, 2017, 38: 232–241. https://doi.org/10.1016/j.jff.2017.09.018

RAMIREZ C, GIL J H, MARÍN-LOAIZA J. C., ROJANO B., and DURANGO D. Chemical constituents and antioxidant activity of Garcinia madruno (Kunth) Hammel. Journal of King Saud University – Science, 2019, 31: 1283–1289. https://doi.org/10.1016/j.jksus.2018.07.017

IDRIS M., SUKANDAR E. R., PURNOMO A. S., MARTAK F., and FATMAWATI S. Antidiabetic, cytotoxic and antioxidant activities of Rhodomyrtus tomentosa leaf extracts. RSC Advances, 2022, 12: 25697–25710. https://doi.org/10.1039/D2RA03944C

ATANU F. O., IKEOJUKWU A., OWOLABI P. A., and AVWIOROKO O. J. Evaluation of chemical composition, in vitro antioxidant, and antidiabetic activities of solvent extracts of Irvingia gabonensis leaves. Heliyon, 2022, 8: e09922. https://doi.org/10.1016/j.heliyon.2022.e09922

HAMLAOUI I., BENCHERAIET R., BENSEGUENI R., and BENCHARIF M. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives. Journal of Molecular Structure, 2018, 1156: 385–389. https://doi.org/10.1016/j.molstruc.2017.11.118

IDRIS M., PURNOMO A. S., MARTAK F., and FATMAWATI S. Antioxidant and Antidiabetic Activities of Melastoma Malabathricum Leaves Extracts. Journal of Hunan University Natural Sciences, 2022, 49(7): 144–153. https://doi.org/10.55463/issn.1674-2974.49.7.16

YEO Y.-H., HSU F.-L., CHEN Y.-L., and CHANG T.-C. Evaluation of the extracts from the renewable parts in Garcinia subelliptica as natural sunscreen additives. Industrial Crops and Products, 2022, 186: 115214. https://doi.org/10.1016/j.indcrop.2022.115214

POURSHOAIB S. J., RAJABZADEH GHATRAMI E., and SHAMEKHI M. A. Comparing ultrasonic- and microwave-assisted methods for extraction of phenolic compounds from Kabkab date seed (Phoenix dactylifera L.) and stepwise regression analysis of extracts antioxidant activity. Sustainable Chemistry and Pharmacy, 2022, 30: 100871. https://doi.org/10.1016/j.scp.2022.100871

KAHARUDIN F. A., ZOHDI R. M., MUKHTAR S. M., SIDEK H. M., BIHUD N. V., RASOL N. E., AHMAD F. B., and ISMAIL N. H. In vitro antiplasmodial and cytotoxicity activities of crude extracts and major compounds from Goniothalamus lanceolatus. Journal of Ethnopharmacology, 2020, 254: 112657. https://doi.org/10.1016/j.jep.2020.112657

MARTI G., EPARVIER V., MORETTI C., SUSPLUGAS S., PRADO S., GRELLIER P., RETAILLEAU P., GUÉRITTE F., and LITAUDON M. Antiplasmodial benzophenones from the trunk latex of Moronobea coccinea (Clusiaceae). Phytochemistry, 2009, 70: 75–85. https://doi.org/10.1016/j.phytochem.2008.10.005

KPOTIN G. A., BÉDÉ A. L., HOUNGUE-KPOTA A., ANATOVI W., KUEVI U. A., ATOHOUN G. S., MENSAH J.-B., GÓMEZ-JERIA J. S., and BADAWI M. Relationship between electronic structures and antiplasmodial activities of xanthone derivatives: a 2D-QSAR approach. Structural Chemistry, 2019, 30: 2301–2310. https://doi.org/10.1007/s11224-019-01333-w

TJAHJANI S. Antimalarial activity of Garcinia mangostana L rind and its synergistic effect with artemisinin in vitro. BMC Complementary Medicine and Therapies, 2017, 17: 131. https://doi.org/10.1186/s12906-017-1649-8

HALIM M. A., KANAN K. A., NAHAR T., RAHMAN M. J., AHMED K. S., HOSSAIN H., MOZUMDER N. H. M. R., and AHMED M. Metabolic profiling of phenolics of the extracts from the various parts of blackberry plant (Syzygium cumini L.) and their antioxidant activities. LWT, 2022, 167: 113813. https://doi.org/10.1016/j.lwt.2022.113813


Refbacks

  • There are currently no refbacks.