On the Stability of the van der Pol-Mathieu-Duffing Oscillator under the Effect of Fast Harmonic Excitation

Sanaullah Dehraj, Rajab A. Malookani, Muhammad Memon, Abdul Rafay Khatri, Asgher Ali Maitlo, Shah zaman Nizamani

Abstract

This paper aims to examine the nonlinear dynamics of a van der Pol-Mathieu-Duffing oscillator under the effect of fast harmonic excitation. The governing equations of motion describing the harmonically forced oscillations of the van der-Pol-Mathieu-Duffing oscillator are expressed in terms of the second-order nonhomogeneous nonlinear ordinary differential equation with suitable initial conditions. This paper uses Krylov-Bogoliubov averaging technique for the stability analysis of the system. The frequency response curves under the effect of external excitation, damping, and nonlinearity are obtained at various resonances. Additionally, the stable and unstable regions were identified. It turns out that the damping reduces the amplitude of oscillations and squeezes the instability regions, whereas the stability region grew with the increase in the amplitude of external excitation.  

 

Keywords: Krylov-Bogoliubov averaging, resonances, frequency response curve, stability.

 

https://doi.org/10.55463/issn.1674-2974.49.12.27


Full Text:

PDF


References


FAHSI A., and BELHAQ M. Effect of fast harmonic excitation on frequency-locking in a van der Pol-Mathieu Duffing oscillator. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 244-253. https://doi.org/10.1016/j.cnsns.2007.07.010

BELHAQ M., and FAHSI A. 2:1 and 1:1 frequency-locking in fast excited van der-Pol-Mathieu-Duffing Oscillator. Nonlinear Dynamics, 2007, 53: 139-152.

DOI: 10.1007/s11071-007-9302-6.

DADFAR M.B., GEER J., and ANDERSEN C.M. Perturbation analysis of the limit cycle of the free van der Pol equation. SIAM Journal on Applied Mathematics, 1984, 44(5): 881-895. https://doi.org/10.1137/0144063

LU L. and LI X. Existence of quasi-periodic solutions of fast excited van der Pol-Mathieu-Duffing equation. Journal of Mathematical Physics, 2015, 56(12): 122703-1 to 1222703-2. https://doi.org/10.1063/1.4938419

ÖZIŞ T., and YILDIRIM A. Generating the periodic solutions for forcing van der Pol oscillators by the iteration perturbation method. Nonlinear Analysis: Real World Applications, 2009, 10(4): 1984-1989. https://doi.org/10.1016/j.nonrwa.2008.03.005

ÖZIŞ T., and YILDIRIM A. A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity. Chaos, Solitons & Fractals, 2007, 34(3): 989-991. https://doi.org/10.1016/j.chaos.2006.04.013

LIU Q.X., LIU, J.K., and CHEN Y.M. Asymptotic limit cycle of fractional van der Pol oscillator by Homotopy analysis method and memory-free principle. Applied Mathematical Modelling, 2016, 40(4): 3211-3220. https://doi.org/10.1016/j.apm.2015.10.005

CHEN Y.M., and LIU J.K. A study of homotopy analysis method for limit cycle of van der Pol equation. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 1816-1821. https://doi.org/10.1016/j.cnsns.2008.07.010

BIAZAR J., and NAVIDYAN M. Implicit Runge-Kutta method for van der Pol problem. Applied and Computational Mathematics, 2015, 4(1-1): 6-11.

SHEN Y.J., WEI P., and YANG S.P. Primary resonance of fractional-order van der Pol oscillator. Nonlinear Dynamics, 2014, 77(4): 1629-1642. https://doi.org/10.1007/s11071-014-1405-2

KONURALP A., KONURALP Ç. and YILDIRIM A. Numerical solution to the van der Pol equation with fractional damping. Physica Scripta, 2009: 014034.

DOI 10.1088/0031-8949/2009/T136/014034

MORIMOTO Y. Transition phenomena of forced van der Pol oscillator observed by numerical analysis. Journal of the Physical Society of Japan, 1986, 55(5): 1407-1410. https://doi.org/10.1143/JPSJ.55.1407

KUMAR P., NARAYANAN S., and GUPTA S. Investigations on the bifurcation of a noisy Duffing–van der Pol oscillator. Probabilistic Engineering Mechanics, 2016, 45: 70-86. https://doi.org/10.1016/j.probengmech.2016.03.003

PENG M., ZHANG Z., QU Z., and BI Q. Qualitative analysis in a delayed Van der Pol oscillator. Physica A: Statistical Mechanics and its Applications, 2020, 544: 123482.

https://doi.org/10.1016/j.physa.2019.123482

SEKIKAWA M., KOUSAKA T., TSUBONE T., INABA N., and OKAZAKI H. Bifurcation analysis of mixed-mode oscillations and Farey trees in an extended Bonhoeffer–van der Pol oscillator. Physica D: Nonlinear Phenomena, 2022, 433: 133178. https://doi.org/10.1016/j.physd.2022.133178

LUO A.C., and LAKEH, A.B. Analytical solutions for period-m motions in a periodically forced van der Pol oscillator. International Journal of Dynamics and Control, 2013, 1(2): 99-115. https://doi.org/10.1007/s40435-013-0010-4

KHARRAT B.N., and TOMA G. Numerical Solution of Van Der Pol Oscillator Problem Using a New Hybrid Method. World Applied Sciences Journal, 2020. 38(4): 360-364.

DOI: 10.5829/idosi.wasj.2020.360.364

KWUIMY C.K., and BELHAQ M. Effect of a Fast harmonic Excitation on Chaotic Dynamic in a Van Der Pol-Mathieu-Duffing Oscillator. International Journal of Applied Mathematics and Mechanics, 2012, 8(10): 59-70.


Refbacks

  • There are currently no refbacks.