Crystal Structure and Magnetic Properties of Fe3O4 Nanoparticles Using Iron Sand as a Raw Material for Mercury Removal

Nurhasana Siregar, Kurnia, Budhy Kurniawan, Margaretha Tabita Tuny, Joko Utomo, Bayu Achil Sadjab, Delpia Susu, Susan Adrianti Gambe

Abstract

Fe3O4 nanoparticles based iron sand from Maluku Utara have been successfully synthesized by co-precipitation methods with varying of the synthesis temperature by 50oC, 60oC and 70oC. The crystal structures and magnetic properties were characterized using X-ray Diffraction (XRD) and Vibrating Sample Magnetometer (VSM). The XRD showed that the Fe3O4 samples have a single phase invers spinel cubic structure. The Crystalization of the temperature 70oC is better than 50oC and 60oC, with the intensity peak index of 311 of 42.688 a.u, whereas at the temperature of 60oC and 50 oC are 25.731 a.u and 22.719 a.u, respectively. There’s no increase in crystallite size with increasing synthesis temperature, with each sizes 23.047 nm, 24.043 nm and 16.041 nm respectively. The VSM showed that the Fe3O4 samplesare soft-ferrimagnetic. The Mr and Mmax are higher at 70oC than 60 oC and 50oC by 3,785 emu/gr 20,288 emu/gr (70oC), 2,432 emu/gr 14,713 emu/gr (60oC), 1.473 emu/gr 12.519 emu/gr (50oC). The coercivity Hc at 70oC and 60oC relatively identical at 0.011 T, whereas at 50oC Hc is 0.012 T. The nanoparticles that are synthesized at 700C are selected for mercury removal due to their stable crystallinity and good magnetic properties. The nanoparticles were able to remove mercury with an adsorption capacity 0,45 mg/g and easy to separate it from the solution.

 

Keywords: magnetic properties, crystal structure, iron sand, mercury removal.

 

https://doi.org/10.55463/issn.1674-2974.49.12.14


Full Text:

PDF


References


AZIZI S. N., ROOZBEHANI DEHNAVI A., and JOORABDOOZHA A. Synthesis and characterization of LTA nanozeolite using barely husk silica: Mercury removal from standard and real solutions. Materials Research Bulletin, 2013, 48: 1753-1759. https://doi.org/10.1016/j.materresbull.2012.12.068

JIMENEZ-JIMENEZ J, ALGARRA M., RODRIGUEZ-CASTELLON E., JIMENEZ-LOPEZ A. and ESTEVES DA SILVA J. C. G. Hybrid porous phosphate heterostructures as adsorbents of (Hg(II) and Ni (II) from industrial sewage. Journal of Hazardous Materials, 2011, 190(1-3): 694-699. https://doi.org/10.1016/j.jhazmat.2011.03.110

ZOLFAGHARI G., ESMAILI-SARI A., ANBIA M., YOUNESI H., AMIRMAHMOODI S., and GHAFARI-NAZARI A. Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. Journal of Hazardous Materials, 2011, 192: 1046–1055. https://doi.org/10.1016/j.jhazmat.2011.06.006

ANAGNOSTOPOULOS V.A., MANARIOTIS I. D., KARAPANAGIOTI H. K., and CHRYSIKOPOULOS C. V. Removal of mercury from aqueous solutions by malt spent rootlets. Chemical Engineering Journal, 2012, 213: 135–141. https://doi.org/10.1016/j.cej.2012.09.074

CHOJNACKI A., CHOJNACKA K., HOFFMANN J., and GÓRECKI, H. The application of natural zeolites for mercury removal: from laboratory tests to industrial scale. Minerals Engineering, 2004, 17: 933–937. https://doi.org/10.1016/j.mineng.2004.03.002

HUTCHISON A., ATWOOD D., and SANTILLIANN-JIMINEZ Q. E. The removal of mercury from water by open chain ligands containing multiple sulfurs. Journal of Hazardous Materials, 2008, 156: 458–465.

LIU M., HOU L., XI B., ZHAO Y. and XIA X. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash. Applied Surface Science, 2013, 273: 706–716. https://doi.org/10.1016/j.apsusc.2013.02.116

DABROWSKI A., HUBICKI Z., PODKOSCIELNY P., and ROBENS E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 2004, 56(2): 91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006

TAWABINI B., AL-KHALDI S., ATIEH M., and KHALED M. Removal of mercury from water by multi-walled carbon nanotubes. Water Science and Technology, 2010, 61: 591–598. https://doi.org/10.2166/wst.2010.897

VUKOVIC G. D., MARINKOVIC A. D., COLIC M., RISTIC M. Ð., ALEKSIC R., PERIC-GRUJIC A. A., and USKOKOVIC P. S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Engineering Journal, 2010, 157(1): 238-248. https://doi.org/10.1016/j.cej.2009.11.026

ZHAO P., GUO X., and ZHENG C. Removal of elemental mercury by iodine-modified rice husk as sorbents. Journal of Environmental Sciences, 2010, 22: 1629–1636. https://doi.org/10.1016/S1001-0742(09)60299-0

ALIJANI H., BEYKI M. H., SHARIATINIA Z., BAYAT M., and SHEMIRANI F. A new approach for one step syntesis of magnetic carbon nanotubes/diatomite earth composite by chemical vapor deposition method: application for removal of lead ions. Chemical Engineering Journal, 2014, 253: 456–463. http://dx.doi.org/10.1016/j.cej.2014.05.021

BAYTAK S., & TÜRKER A. R. Determination of chromium, cadmium and manganese in water and fish samples after preconcentration using penicillium digitatum immobilized on pumice stone. CLEAN - Soil Air Water, 2009, 37: 314–318. http://dx.doi.org/10.1002/clen.200900037

GHODBANE I., & HAMDAOUI O. Removal of mercury(II) from aqueous media using eucalyptus bark: kinetic and equilibrium studies. Journal of Hazardous Materials, 2008, 160(2-3): 301–309. https://doi.org/10.1016/j.jhazmat.2008.02.116

MIRETZKY P., & CIRELLI A. F. Hg(II) removal from water by chitosan and chitosan derivatives: a review. Journal of Hazardous Materials, 2009, 167: 10–23. https://doi.org/10.1016/j.jhazmat.2009.01.060

ABOLFAZL A., MOHAMMAD S., and SOODABEH S. Magnetic nanoparticles: preparation, physical, properties, and application in biomedicine. Nanoscale Research Letters, 2012, 7: 144.

GUANG S. C., PEILONG W., XIN L., YUE W., GUILONG W., and JUNOING L. A sensitive nonenzymatic hydrogen peroxide sensor based on Fe3O4-Fe2O3 nanocomposites. Bulletin of Materials Science, 2014, 38: 1-5. http://dx.doi.org/10.1007/s12034-014-0803-x

RAHMAWATI R., TAUFIQ A., SUNARYONO, FUAD A., YULIARTO B., SUYATMAN S., and KURNIADI D. Synthesis of Magnetite (Fe3O4) Nanoparticles from Iron sands by Co-precipitation-Ultrasonic Irradiation Methods. Journal of Materials and Environmental Sciences, 2018, 9: 155-160.

SUK F. C., SUH C. P., CHING H. T. Green Synthesis of Magnetic Nanoparticle (via Thermal Decomposition Method) with Controllable Size and Shape. Journal of Materials and Environmental Science, 2011, 2: 299-302. https://www.jmaterenvironsci.com/Document/vol2/vol2_N3/25-JMES-85-2011-Chin.pdf

INDRAYANA I. P. T., TUNY M. T., PUTRA R. A., JUHARNI, SUHARYADI E., KAT T., and IWATA S. Synthesis, Characterization and Application of Fe3O4 Nanoparticles As A Signal Amplifier Element in Surface Plasmon Resonance Biosensing Jornal Online of Physics, 2020, 5: 65-74. https://doi.org/10.22437/jop.v5i2.8259

CHENG J. P., MA R., SHI D., and ZHANG X. B. Rapid growth of magnetite nanoplates by ultrasonic irradiation at low temperature. Ultrasonics Sonochemistry, 2011, 18: 1038-1042.

PRASETYOWATI R., ARISWAN, WARSONO, and DEWI N. Synthesis and Characterization of Magnetite Nanoparticles (Fe3O4) Based on Iron Sand from Glagah Kulon Progo Yogyakarta via Coprecipitation Method with Variations in The Dissollution Duration. Proceedings of the Science and Science Education International Seminar Proceedings on Promoting Science for Technologi & Education Advancement, Semarang, 2019, pp. 1-5.

MASCOLO M. C., PEI Y., and RING T. A. Room temperature co-precipitation synthesis of magnetite nanopartcles in a large pH window with different bases. Materials, 2013, 6: 5549-5567.

NURHASANA S., IPUTU I., EDI S., KATO T., and IWATA S. Effect of Synthesis Temperature and NaOH Concentration on Microstructural and Magnetic Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles. IoP on Materials Science and Engineering, 2017, 202: 012048.

DESKA L. P., GITA S., HARLINA A., and MOHAMAD S. A. Characteristics and Mineral Content of Lampung Tengah Iron sand. Journal of Science and Applicative Technology, 2018, 2(1): 192-196. https://doi.org/10.35472/281488

RIANNA M., SEMBIRING T., SITUMORANG M., KURNIAWAN C., SETIADI E. A., TETUKO A. P., SIMBOLON S., MASNO G., and PERDAMEAN S. Preparation and Characterization of Natural Iron Sand from Kata Beach, Sumatera Barat Indonesia with High Energy Milling (HEM). Jurnal Natural, 2018, 18: 97-100. http://dx.doi.org/10.24815/jn.v18i2.11163

DARVINA Y., RIFAI D., and RAMLI. Synthesis of Magnetite Nanoparticle from Iron Sand by ball-milling. Journal of Physics: Conference Series, 2019, 1185: 1-5.

SADJAB, B. A., INDRAYANA, I. P. T., LIWAMONY, S., and UMAM, R. Investigation of The Distribution and Fe Content of Iron Sand at Wari Ino Beach Tobelo Using Resistivity Method with Werner-Schlumberger Configuration. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 2020, 9(1): 141–160. https://doi.org/10.24042/jipfalbiruni.v9i1.5394

KURNIA K., KASESIDE M., and IWAMONY S. Study Microstructure of Fe3O4 Modification Using PEG 4000 form Iron Sand at Wari Ino Beach As A Biosensor Application. Indonesian Journal of Chemical Research, 2021, 8(3): 168–171. https://doi.org/10.30598//ijcr.2021.8-kur

ZHANG L., WU H. B., and LOU X. W. Iron-Oxide-Based Advanced Anode Materials for Lithium-Ion. Advanced Energy Materials, 2014, 4: 1300958. https://doi.org/10.1002/aenm.201300958

EDI S, HERMAWAN, and PUSPITARUM. Crystal Structure and Magnetic Properties of Magnesium Ferrite Nanoparticles Synthesized by Coprecipitation Method Journal of Physics: Conference Series, 2018, 1091: 012003.

WIDANARTO W., SAAHAR M. R., GHOSHAL S. K., ARIFIN R., ROHANI M. S., and HAMZAH K. Effect of Natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass. Journal of Magnetism and Magnetic Materials, 2013, 326: 123-128.

INDRAYANA I. P. T., TJUANA L. A., TUNY M. T., and KURNIA. Nanostructure and Optical Properties of Fe3O4: Effect of Calcination Temperature and Dwelling Time. Journal of Physics: Conference Series, 2019, 1341: 1-9.

EL GHANDOOR H., ZIDAN H. M., KHALIL M. M. H., and ISMAIL M. I. M. Synthesis and some physical properties of magnetite (Fe3O4) Nanoparticles. International Journal of Electhrochemical Sience, 2012, 7: 5734-5745. http://www.electrochemsci.org/papers/vol7/7065734.pdf

WIATROWSKI, H. A., DAS, S., KUKKADAPU, R., ILTON, E. S., BARKAY, T., and YEE, N. Reduction of Hg(II) to Hg(0) by magnetite. Environmental Science & Technology, 2009, 43: 5307–5313. https://doi.org/10.1021/es9003608

PASAKARNIS, T. S., BOYANOV, M. I., KEMNER, K. M., MISHRA, B., O’LOUGHLIN, E. J., PARKIN, G., and SCHERER, M. M. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite. Environmental Science & Technology, 2013, 47: 6987–6994. https://doi.org/10.1021/es304761u

GANGULY, M., DIB, S., and ARIYA A. Fast, Cost-effective and Energy Efficient Mercury Removal-Recycling Technology. Scientific Reports, 2018, 8: 16255. https://doi.org/10.1038/s41598-018-34172-6

MATHZW D. S., & JUANG R. S. An overview of the Structure and Magnetism of Spinel Ferrite Nanoparticle and Their Synthesis in Microemulsions. Chemical Engineering Journal, 2007, 129: 51-65. https://doi.org/10.1016/j.cej.2006.11.001

HASANY S. F., ABDURRAHMAN N. H., SUNARTI A. R., and JOSE R. Magnetic Iron Oxide Nanoparticles: Chemical Synthesis and Applications Review. Current Nanoscience, 2013, 9: 561-575. http://dx.doi.org/10.2174/15734137113099990085

AHMED M. A., ALI S. M., EL-DEK S. I., and GALAL A. Magnetite-hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Materials Science and Engineering: B, 2013, 178(10): 744-751. https://doi.org/10.1016/j.mseb.2013.03.011

WANG X., SUN R., and WANG C. Ph dependence and thermodynamics of Hg (II) adsorption onto chitosan-poly(vinyl alcohol) hydrogen adsoerbent. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2014, 441: 51-58. http://dx.doi.org/10.1016/j.colsurfa.2013.08.068

GHAZEMI Z., SEIF A., AHMADI T. S., ZARGAR B., RASHIDI F. and ROUZBAHANI G. M. Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution. Advanced Powder Technology, 2012, 23(2): 148-156. https://doi.org/10.1016/j.apt.2011.01.004

RAJI F., & PAKIZEH M. Kinetic and thermodynamic studies of Hg(II)adsorption onto MCM-41 modified by ZnCl2. Applied Surface Science, 2014, 301: 568-575. https://doi.org/10.1016/j.apsusc.2014.02.136

CUI L., WANG Y., GAO L., HU L., YAN L., WEI Q., and DU B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal, 2015, 281: 1–10. https://doi.org/10.1016/j.cej.2015.06.043

SHAN C., MA Z., TONG M., and NI J. Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles. Water Research, 2015, 69: 252–260. https://doi.org/10.1016/j.watres.2014.11.030

LÓPEZ-MUÑOZ M.-J., ARENCIBIA A., CERRO L., PASCUAL R., and MELGAR Á. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents. Applied Surface Science, 2016, 367: 91–100. https://doi.org/10.1016/j.apsusc.2016.01.109

WANG Z., XU J., HU Y., ZHAOU J., LIU Y., LOU Z., and XU X. Functional nanomaterials: Study on aqueous Hg(II) adsorption by magnetic Fe3O4@SiO2-SH nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 394-402.


Refbacks

  • There are currently no refbacks.