Unmanned Aerial Vehicles: A Literature Review

Shaaban Ali, Osama Hassan, Anand Gopalakrishnan, Aboobacker Muriyan, Sobers Francis


In recent years, Unmanned Aerial Vehicles (UAVs) have grown and increased in applications because of computational simplicity and adaptive control capacity with strong support from both civilian and military sectors. The applications of UAVs in various military, commercial and civilian areas have led to sustainable results. The application areas include but are not limited to oil & gas, cargo transport, geographic mapping, aerial photography, health care, and disaster management. The success of the UAV application missions is completely dependent on the accuracy in control provided by the flight controllers. Thus, there is a need for accurate, robust, and adaptive flight controllers. UAV dynamics modeling and identification and control of these vehicles are still major active areas of research and development. They pose severe challenges due to the vehicle's complex design, inherently nonlinear, and time-varying dynamics. The main goal of this paper is to identify the past research trends and recent improvements in UAVs. Furthermore, this paper discusses a comprehensive literature review according to the optimized objectives, solution techniques, and applications of UAVs such as Cargo Transport, Disaster Management, etc. According to the literature review, aerial photography is one of the applications of smart UAVs. The reliability of image matching across multiple camera perspectives, angles, and positions encourages computer vision approaches for UAV navigation, opening the way for future researchers to develop vision applications. This article presents a comprehensive literature review discussing the importance of UAV applications related to cost-effectiveness and versatility. Furthermore, a detailed survey of system modeling identification and control techniques is presented.


Keywords: unmanned aerial vehicles, drones, applications, identification, modeling, control.



Full Text:



BELOTI PIZETTA I. H., BRAND˜AO A. S., and SARCINELLI-FILHO M. Cooperative Load Transportation Using Three Quadrotors. Proceedings of the International Conference on Unmanned Aircraft Systems, Atlanta, 2019, pp. 644-650. https://doi.org/10.1109/ICUAS.2019.8798175

RIANANDA D. P., NUGRAHA G., PUTRA H. M., BAIDHOWI M. L., and SYAH R. A. Smart Pulley Workflow in Delivery Drone for Goods Transportation. AIP Conference, 2020, 2226: 060010-1-13 https://doi.org/10.1063/5.0006800

BISIG C., MONTEJO J. B., VERBRYKE M. R., SATHYAN A., and MA O. Genetic Fuzzy Systems for Decentralized, Multi-UAV Cargo Handling. Proceedings of the AIAA SciTech Forum, Orlando, 2020. http://dx.doi.org/10.2514/6.2020-1117

HAIDARI L. A., BROWN S. T., FERGUSON M., BANCROFT E., SPIKER M., WILCOX A., AMBIKAPATHI R., SAMPATH V., CONNOR D. L., and LEE B. Y. The economic and operational value of using drones to transport vaccines. Vaccine, 2016, 34(34): 4062-4067. https://doi.org/10.1016/j.vaccine.2016.06.022

THIELS C. A., AHO J. M., ZIETLOW S. P., and JENKINS D. H. Use of Unmanned Aerial Vehicles for Medical Product Transport. Air Medical Journal Associates, 2015, 34(2): 104-108. https://doi.org/10.1016/j.amj.2014.10.011

POUNDS P. E. I., BERSAK D. R., and DOLLAR A. M. The Yale Aerial Manipulator: Grasping in Flight. Proceedings of the IEEE International Conference on Robotics and Automation, China, 2011, pp. 2974-2975. https://doi.org/10.1109/ICRA.2011.5980477

POUNDS P. E. I., BERSAK D. R., and DOLLAR A. M. Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Autonomous Robots, 2012, 33: 129–142. https://doi.org/10.1007/s10514-012-9280-5

AMUKELE T. K., STREET J., CARROLL K., MILLER H., and ZHANG S. X. Drone Transport of Microbes in Blood and Sputum Laboratory Specimens. Journal of Clinical Microbiology, 2016, 54(10): 2622-2625. https://doi.org/10.1128/jcm.01204-16

LIERET M., KOGAN V., DOLL S., and FRANKE J. Automated in-house transportation of small load carriers with autonomous unmanned aerial vehicles. Proceedings of the IEEE 15th International Conference on Automation Science & Engineering (CASE), Vancouver, 2019, pp. 1010-1015. https://doi.org/10.1109/COASE.2019.8843183

HING J. T., SEVCIK K. W., and OH P. Y. Improving Unmanned Aerial Vehicle Pilot Training and Operation for Flying in Cluttered Environments. Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009, pp. 5641-5646. https://doi.org/10.1109/IROS.2009.5354080

KOVALEV I V., VOROSHILOVA A. A., and KARASEVA M. V. Analysis of the current situation and development trend of the international cargo UAVs market. Journal of Physics: Conference Series, 2019, 1399: 055095. https://iopscience.iop.org/article/10.1088/1742-6596/1399/5/055095/pdf

ALIAGA-AGUILAR H., and CUBAS J. UAV influence in the emissions of airborne cargo transportation. Braia Scholars’ Workshop, 2019: 1-15. https://doi.org/10.13009/EUCASS2019-306

MUALLA Y., NAJJAR A., GALLAND S., NICOLLE C., TCHAPPI I. H., YASAR A.-U.-H., and FRÄMLING K. Between the Megalopolis and the Deep Blue Sky: Challenges of Transport with UAVs in Future Smart Cities. Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, Montréal, 2019, pp. 1649-1653. https://www.ifaamas.org/Proceedings/aamas2019/pdfs/p1649.pdf

MELLINGER D., LINDSEY Q., SHOMIN M., and KUMAR V. Design, Modeling, Estimation and Control for Aerial Grasping and Manipulation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 2011, pp. 2668-2673. https://doi.org/10.1109/IROS.2011.6094871

MENOUAR H., GÜVENC I., AKKAYA K., ULUAGAC A. S., KADRI A., and TUNCER A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Communications Magazine, 2017, 55: 22-28. https://doi.org/10.1109/MCOM.2017.1600238CM

KELNER J. M., and ZIÓBKOWSKI C. Doppler Effect-Based Automatic Landing Procedure for UAV in Difficult Access Environments. Hindawi Journal of Advanced Transportation, 2017: 8092718. https://doi.org/10.1155/2017/8092718

XIAO L., LIANG Y., WENG C., YANG D., and ZHAO Q. UAV-Enabled Data Collection: Multiple Access, Trajectory Optimization, and Energy Trade-Off. Hindawi Wireless Communications and Mobile Computing, 2019: 9647539. https://doi.org/10.1155/2019/9647539

SAENGPHET W., and THUMTHAE C. Conceptual Design of Fixed Wing-VTOL UAV for AED Transport. Proceedings of the 7th TSME International Conference on Mechanical Engineering, Bangkok, 2016. https://www.researchgate.net/publication/312173247_Conceptual_Design_of_Fixed_Wing-VTOL_UAV_for_AED_transport

DANG-NGOC H., and NGUYEN-TRUNG H. Evaluation of Forest Fire Detection Model using Video captured by UAVs. Proceedings of the 19th International Symposium on Communications and Information Technologies, Ho Chi Minh City, 2019, pp. 513-518. https://doi.org/10.1109/ISCIT.2019.8905223

XING Z. W., ZHANG Y. M., SU C. Y., and QU Y. H. Measuring the Horizontal Wind for Forest Fire Monitoring Using Multiple UAVs. Proceedings of the 38th Chinese Control Conference, Guangzhou, 2019, pp. 4945-4950. https://doi.org/10.23919/ChiCC.2019.8865350

PHAM H. X., LA H. M., FEIL-SEIFER D., and DEANS M. A Distributed Control Framework for a Team of Unmanned Aerial Vehicles for Dynamic Wildfire Tracking. Proceedings of the International Conference on Intelligent Robots and Systems, Vancouver, 2017, pp. 6648-6653.

SAHA H. N., BASU S., AUDDY S., DEY R., NANDY A., PALL D., ROY N., JASU S., SAHA A., CHATTOPADHYAY S. P., and MAITY T. A low cost fully autonomous GPS (Global Positioning System) based Quadcopter for disaster management. Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference, Las Vegas, 2018, pp. 654-659. https://doi.org/10.1109/CCWC.2018.8301782

ERDELJ M., and NATALIZIO E. UAV-Assisted Disaster Management: Applications and Open Issues. Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, 2016. https://doi.org/10.1109/ICCNC.2016.7440563

KIM N. V., MOKROVA M. I., and MIKHAILOV N. A. Control of an UAV for Fire Monitoring. Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSE), 2019, pp. 60-63. https://doi.org/10.1109/DeSE.2019.00021

LEE S., HAR D., and KUM D. Drone-Assisted Disaster Management: Finding Victims via Infrared Camera and Lidar Sensor Fusion. Proceedings of the 3rd Asia-Pacific World Congress on Computer Science and Engineering, Nadi, 2016, pp. 84-89. https://doi.org/10.1109/APWC-on-CSE.2016.025

GHAMRY K. A., KAMEL M. A., and ZHANG Y. Cooperative Forest Monitoring and Fire Detection Using a Team of UAVs-UGVs. Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, 2016, pp. 1206-1211. https://doi.org/10.1109/ICUAS.2016.7502585

LIN Z., and LIU H. H. T. Enhanced Cooperative Filter for Wildfire Monitoring. Proceedings of the IEEE 54th Annual Conference on Decision and Control (CDC), Osaka, 2015, pp. 3075-3080. https://doi.org/10.1109/CDC.2015.7402681

ADAMS S. M., LEVITAN M. L., and FRIEDLAND C. J. High Resolution Imagery Collection Utilizing Unmanned Aerial Vehicles (UAVs) for Post-Disaster Studies. Proceedings of the ATC & SEI Conference on Advances in Hurricane Engineering, Miami, 2013, pp. 777-793. http://dx.doi.org/10.1061/9780784412626.067

LEE S., HAR D., and KUM D. Drone-Assisted Disaster Management: Finding Victims via Infrared Camera and Lidar Sensor Fusion. Proceedings of the 3rd Asia-Pacific World Congress on Computer Science and Engineering, Nadi, 2016, pp. 84-89. https://doi.org/10.1109/APWC-on-CSE.2016.025

SHAH S. I. A., KANNAN S., and JOHNSON E. N. Motion Estimation for Obstacle Detection and Avoidance Using a Single Camera for UAVs/Robots. Proceedings of the AIAA Guidance, Navigation and Control Conference, Toronto, 2010, pp. 1-14. https://doi.org/10.2514/6.2010-7569

ROKHMANA C. A., and ANDARU R. Utilizing UAV-Based Mapping in Post-Disaster Volcano Eruption. Proceedings of the 6th International Annual Engineering Seminar, 2016, Yogyakarta, pp. 1-4. https://doi.org/10.1109/INAES.2016.7821934

ZHAO N., LU W., SHENG M., CHEN Y., TANG J., YU F. R., and WONG K.-K. UAV-Assisted Emergency Networks in Disasters. IEEE Wireless Communications, 2019, 26(1): 45-51. https://doi.org/10.1109/MWC.2018.1800160

YIM J., PARK H., KWON E., KIM S., and LEE Y.-T. Low-Power Image Stitching Management for Reducing Power Consumption of UAVs for Disaster Management System. Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, 2018, pp. 1-3. https://doi.org/10.1109/ICCE.2018.8326248

TANZI T. J., CHANDRA M., ISNARD J., CAMARA D., SÉBASTIEN O., and HARIVELO F. Towards “drone-borne” disaster management: future application scenarios. Proceedings of the XXIII ISPRS Congress, Commission VIII, Prague, 2016, pp. 181–189. https://doi.org/10.5194/isprs-annals-III-8-181-2016

TAMPUBOLON W., and REINHARDT W. UAV Data Processing For Rapid Mapping Activities. The International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 2015, XL-3(W3): 371-377. https://doi.org/10.5194/isprsarchives-XL-3-W3-371-2015

DE D. K., OLAWOLE O. C., JOEL E. S., IKONO U. I., OYEDEPO S. O., OLAWOLE O. F., OBASEKI O., ODUNIYI I., OMEJE M., AYOOLA A. A., USIKALU M. R., OMOTOSHO T. V., BOLUJO E. O., and ILO I. P. Twenty-first century technology of combating wildfire. IOP Conference Series: Earth and Environmental Science, 2019, 331: 012015. https://iopscience.iop.org/article/10.1088/1755-1315/331/1/012015/pdf

YAHYANEJAD S., WISCHOUNIG-STRUCL D., QUARITSCH M., and RINNER B. Incremental Mosaicking of Images from Autonomous, Small-Scale UAVs. Proceedings of the Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance, 2010, pp. 329-336. https://doi.org/10.1109/AVSS16804.2010

HUA M., WANG Y., ZHANG Z., LI C., HUANG Y., and YANG L. Power-Efficient Communication in UAV-Aided Wireless Sensor Networks. IEEE Communications Letters, 2018, 22(6): 1264-1267. https://doi.org/10.1109/LCOMM.2018.2822700

SAIKIN D. A., BACA T., GURTNER M., and SASKA M. Wildfire Fighting by Unmanned Aerial System Exploiting Its Time-Varying Mass. IEEE Robotics and Automation Letters, 5(2): 2674-2681. https://doi.org/10.1109/LRA.2020.2972827

EJAZ W., AHMED A., MUSHTAQ A., and IBNKAHLA M. Energy-efficient task scheduling and physiological assessment in disaster management using UAV-assisted networks. Computer Communications, 2020, 155: 150-157. https://doi.org/10.1016/j.comcom.2020.03.019

GURTNER A., GREER D. G., GLASSOCK R., MEJIAS L., WALKER R. A., and BOLES W. W. Investigation of Fish-Eye Lenses for Small-UAV Aerial Photography. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 709-721. https://doi.org/10.1109/TGRS.2008.2009763

RODRIGUES R. C. B., and PELLEGRINO S. R. M. An Experimental Evaluation of Algorithms for Aerial Image Matching. Proceedings of the 17th International Conference on Systems, Signals and Image Processing, Rio de Janeiro, 2010, pp. 416-419. http://www2.ic.uff.br/iwssip2010/Proceedings/nav/papers/paper_130.pdf

D’OLEIRE-OLTMANNS S., MARZOLFF I., PETER K. D., and RIES J. B. Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sensing, 2012, 4(11): 3390-3416. https://doi.org/10.3390/rs4113390

LI Y.-C., YE D.-M., DING X.-B., TENG C.-S., WANG G.-H., and LI T.-H. UAV Aerial Photography Technology in Island Topographic Mapping. Proceedings of the International Symposium on Image and Data Fusion, 2011, pp. 1-4. https://ieeexplore.ieee.org/xpl/conhome/6024198/proceeding

AHMAD A. Digital Mapping Using Low Altitude UAV. Pertanika Journal of Science and Technology, 2011, 19(S): 51-58. http://www.mecinca.net/papers/DRONES_IMU/Cartografia_UAV1.pdf

BRAGA J. R. G., VELHO H. F. C., CONTE G., DOHERTY P., and SHIGUEMORI E. H. An Image Matching System for Autonomous UAV Navigation Based on Neural Network. Proceedings of the 14th International Conference on Control, Automation, Robotics & Vision, Phuket, 2016, pp. 1-6. https://doi.org/10.1109/ICARCV.2016.7838775

LI X., and YANG L. Design and Implementation of UAV Intelligent Aerial Photography System. Proceedings of the 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, 2012, pp. 200-203. https://doi.org/10.1109/IHMSC.2012.144

MA S., XU C., SHAO X., ZHANG P., LIANG X., and TIAN Y. Geometric and kinematic features of a landslide in Mabian Sichuan, China, derived from UAV photography. Landslides, 2019, 16: 373–381. https://doi.org/10.1007/s10346-018-1104-z

WIDODO N. S., and SUNARDI A. Y. Low Cost Open Source based UAV for Aerial Photography. International Journal of Innovative Research in Advanced Engineering, 2014, 1(10): 416-424. https://www.academia.edu/11131006/IJIRAE_Low_Cost_Open_Source_based_UAV_for_Aerial_Photography

KOCH T., ZHUO X., REINARTZ P., and FRAUNDORFER F. A New Paradigm For Matching UAV and Aerial Images. Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, Prague, 2016, pp. 83-90. https://doi.org/10.5194/isprsannals-III-3-83-2016

LIN Y., HYYPPÄ J., and JAAKKOLA A. Mini-UAV-Borne LIDAR for Fine-Scale Mapping. IEEE Geoscience & Remote Sensing Letters, 2011, 8(3): 426-430. https://doi.org/10.1109/LGRS.2010.2079913

NEX F., and REMONDINO F. UAV for 3D mapping applications: a review. Applied Geomatics, 2014, 6: 1–15. https://doi.org/10.1007/s12518-013-0120-x

FORNACE K. M., DRAKELEY C. J., WILLIAM T., ESPINO F., and COX J. Mapping infectious disease landscapes: unmanned aerial vehicles and epidemiology. Trends in Parasitology, 2014, 30(11): 514-519. https://doi.org/10.1016/j.pt.2014.09.001

LUCIEER A., ROBINSON S., and TURNER D. Unmanned aerial vehicle (UAV) remote sensing for hyper spatial terrain mapping of Antarctic moss beds based on structure from motion (SfM) point clouds. Proceedings of the 34th International Symposium on Remote Sensing of Environment, Sydney, 2011. https://ro.uow.edu.au/scipapers/1132/

HACKNEY C., and CLAYTON A. I. Unmanned Aerial Vehicles (UAVs) and their application in geomorphic mapping. Geomorphological Techniques. British Society for Geomorphology, London, 2015: 1-12. https://www.geomorphology.org.uk/sites/default/files/chapters/2.1.7_UAV.pdf

REMONDINO F., BARAZZETTI L., NEX F., SCAIONI M., and SARAZZI D. UAV Photogrammetry For Mapping and 3D Modeling-Current Status and Future Perspectives. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-1, Zurich, 2011, pp. 25-31. http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011

ROKHMANA C. A. The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environmental Sciences, 2015, 24: 245-253. http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011

YIN C., XIAO Z., CAO X., XI X., YANG P., and WU D. Offline and Online Search: UAV Multi-Objective Path Planning under Dynamic Urban Environment. IEEE Internet of Things Journal, 2016, 5(3): 1-13. https://doi.org/10.1109/JIOT.2017.2717078

HODGSON A., KELLY N., and PEEL D. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study. PLoS ONE, 2013, 8(11): e79556. https://doi.org/10.1371/journal.pone.0079556

MAH S. B., and CRYDERMAN C. S. Implementation of an Unmanned Aerial Vehicle System for Large Scape Mapping. Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics, Toronto, 2015, pp. 47-54. http://dx.doi.org/10.5194/isprsarchives-XL-1-W4-47-2015

ZUÑIGA D., SOUZA A., and GOES L. Flight dynamics modeling of a flexible wing unmanned aerial vehicle. Mechanical Systems and Signal Processing, 145. https://doi.org/10.1016/j.ymssp.2020.106900

HEMAKUMARA P., and SUKKARIEH S. Learning UAV Stability and Control Derivatives Using Gaussian Processes. IEEE Transactions on Robotics, 2013, 29(4): 813-824. https://doi.org/10.1109/TRO.2013.2258732

VENKATARAMAN R., and SEILER P. System Identification for a Small, Rudderless, Fixed-Wing Unmanned Aircraft. Journal of Aircraft, 2019, 56(3). https://doi.org/10.2514/1.c035141

SAAD A., and TAHAR K. N. Identification of Rut and Pothole by using Multirotor Unmanned Aerial Vehicle (UAV). Measurement, 2019, 137. https://doi.org/10.1016/j.measurement.2019.01.093

ARAAR O., MIMOUNI M. Z., FELLAH K., and OSMANI H. Identification & Control of a Multirotor UAV in the Presence of Actuator Asymmetry. Proceedings of the 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, 2017. https://doi.org/10.1109/MED.2017.7984254

HATAMLEH K. S., MA O., and PAZ R. A UAV Model Parameter Identification Method: A Simulation Study. International Journal of Information Acquisition, 2009, 6(4): 225–238. https://doi.org/10.1142/s0219878909001977

SADOVSKIS J., ABOLTINS A., and EIDAKS J. Modulation Recognition of Unmanned Aerial Vehicle Control Signals Using Software-Defined Radio. Proceedings of the 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, 2018, pp. 1-5. https://doi.org/10.1109/AIEEE.2018.8592442

BAUER P., ANASTASOPOULOS L., SENDNER F.-M., HORNUNG M., and VANEK B. Identification and Modeling of the Airbrake of an Experimental Unmanned Aircraft. Journal of Intelligent & Robotic Systems, 2020, 100: 259–287. https://doi.org/10.1007/s10846-020-01204-1

PERHINSCHI M. G., WILBURN B., WILBURN J., MONCAYO H., and KARAS O. Simulation Environment for UAV Fault Tolerant Autonomous Control Laws Development. Journal of Modeling Simulation Identification and Control, 2013. http://dx.doi.org/10.7726/jmsic.2013.1011

ZHOU B., LU X., TANG S., and ZHENG Z. Nonlinear system identification and trajectory tracking control for a flybarless unmanned helicopter: theory and experiment. Nonlinear Dynamics, 2019, 96: 2307-2326. https://doi.org/10.1007/s11071-019-04923-9

KOEHL A., RAFARALAHY H., BOUTAYEB M., and MARTINEZ B. Aerodynamic modelling and experimental identification of a coaxial-rotor UAV. Journal of Intelligent and Robotic Systems, 2012, 68: 53–68. https://doi.org/10.1007/s10846-012-9665-x

JIANG C., FANG Y., ZHAO P., and PANNEERSELVAM J. Intelligent UAV Identity Authentication and Safety Supervision Based on Behavior Modeling and Prediction. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6652-6662. https://doi.org/10.1109/TII.2020.2966758

YANG J., CAI Z., LIN Q., ZHANG D., and WANG Y. System identification of quadrotor UAV based on genetic algorithm. Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, 2014, pp. 2336-2340. https://doi.org/10.1109/CGNCC.2014.7007533

PENG L., HONGJUAN S., XUGUO Q., XIN L., and JIAQI L. Research on Unmanned Aerial Vehicle Modeling and Control Based on Intelligent Algorithms. Advances in Mechanical Engineering, 2019, 11(5): 168781401985169. http://dx.doi.org/10.1177/1687814019851693

RIMAL B. P., SHIN H., and CHOI E. Simulation of nonlinear identification and control of Unmanned Aerial Vehicle: An Artificial Neural Network approach. Proceedings of 2009 9th International Symposium on Communications and Information Technology, Icheon, 2009, pp. 442-447. https://doi.org/10.1109/ISCIT.2009.5341207

MA R., DING L., LIU K., and WU H. Dynamical Model Identification for a Small-Scale Unmanned Helicopter Using an Integrated Approach. Hindawi, International Journal of Aerospace Engineering, 2019: 8407013. https://doi.org/10.1155/2019/8407013

YUE L., WANGUO W., RONGHAO X., ZENGWEI L., and YUAN T. An Intelligent Identification and Acquisition System for UAVs Based on Edge Computing Using in the Transmission Line Inspection. Proceedings of the 2019 4th International Conference, Guangzhou, 2019, pp. 205-209. https://doi.org/10.1145/3351180.3351186

LEE H. K., LEE J., AHN E., CHO S., SHIN M., and SIM S.-H. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing. Sensors, 2017, 17: 2052. https://doi.org/10.3390/s17092052

MUSTAPA M. Altitude Controller Design for Quadcopter UAV. Jurnal Teknologi, 2015, 74(1): 181-188. https://doi.org/10.11113/jt.v74.3993

SAENGPHET W., TANTRAIRATN S., THUMTAE C., and SRISERTPOL J. Implementation of system identification and flight control system for UAV. Proceedings of the 3rd International Conference on Control, Automation and Robotics, Nagoya, 2017, pp. 678-683. https://doi.org/10.1109/ICCAR.2017.7942783

SATTAR A., WANG L., MOHAMED A., PANTA A., and FISHER A. System Identification of Fixed-wing UAV with Multi-segment Control Surfaces. Proceedings of the 2019 Australian & New Zealand Control Conference, Auckland, 2019, pp. 76-81. https://doi.org/10.1109/ANZCC47194.2019.8945775

NEAMTU D., DEAC R., DE KEYSER R., IONESCU C., and NASCU I. Identification and control of a miniature rotorcraft Unmanned Aerial Vehicle (UAV). Proceedings of the 2010 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, 2010, pp. 1-6. https://doi.org/10.1109/AQTR.2010.5520913

AI-RADAIDEH A., AI-JARRAH M. A., JHEMI A., and DHAOUADI R. ARF60 AUS-UAV Modeling, System Identification, Guidance & Control Validation through Hardware in the Loop Simulation. Proceeding of the 6th International Symposium on Mechatronics and its Applications, Sharjah, 2009: 10763235. https://doi.org/10.1109/ISMA.2009.5164799

AL-MASHHADANI M. A. Optimal control and state estimation for unmanned aerial vehicle under random vibration and uncertainty. Measurement and Control, 2019, 52: 1264-1271. https://doi.org/10.1177%2F0020294019866860

AHMED B., and POTA H. R. Compensation for Control of a Rotary wing UAV Using Positive Position Feedback. Journal of Intelligent & Robotic Systems, 2011, 61: 43–56, https://doi.org/10.1007/s10846-010-9487-7

ALKOWATLY M., BECERRA V., and HOLDERBAUM W. Body-centric modelling, identification, and acceleration tracking control of a quadrotor UAV. International Journal of Modelling, Identification and Control, 2015, 24: 29-41. https://doi.org/10.1504/IJMIC.2015.071697

GRYMIN D., and FARHOOD M. Two-Step System Identification and Trajectory Tracking Control of a Small Fixed-Wing UAV. Journal of Intelligent & Robotic Systems, 2015, 83. https://doi.org/10.1007/s10846-015-0298-8

ROSALES C., SORIA C., and ROSSOMANDO F. Identification and adaptive PID Control of a hexacopter UAV based on neural networks. International Journal of Adaptive Control and Signal Processing, 2018, 33(1): 74-91. https://doi.org/10.1002/acs.2955

ABBASPOUR A., ABOUTALEBI P., YEN K., and SARGOLZAEI A. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV. ISA transactions, 2017, 67: 317-329. https://doi.org/10.1016/j.isatra.2016.11.005

FERDAUS M. M., ANAVATTI S., GARRATT M., and PRATAMA M. Fuzzy clustering based nonlinear system identification and controller development of Pixhawk based quadcopter. Proceedings of the 2017 Ninth International Conference on Advanced Computational Intelligence, Doha, 2017, pp. 223-230. https://doi.org/10.1109/ICACI.2017.7974513

KUROKI Y., YOUNG G., and HAUPT S. UAV navigation by an expert system for contaminant mapping with a genetic algorithm. Expert Systems with Applications, 2010, 37: 4687-4697. https://doi.org/10.1016/j.eswa.2009.12.039

MULIADI J., and KUSUMOPUTRO B. Neural Network Control System of UAV Altitude Dynamics and Its Comparison with the PID Control System. Journal of Advanced Transportation, 2018: 3823201. https://doi.org/10.1155/2018/3823201

XIAO L., LIU Y., CHEN Y., and HANZO L. Trajectory Design and Power Control for Multi-UAV Assisted Wireless Networks: A Machine Learning Approach. IEEE Transactions on Vehicular Technology, 2019, 68: 7957-7969. https://doi.org/10.48550/arXiv.1812.07665

SAROTAMA A., and KUSUMOPUTRO B. Position Difference for System Identification and Control of UAV Alap-Alap Using Back Propagation Algorithm Neural Network with Kalman Filter. American Journal of Intelligent Systems, 2015, 5(1): 18-26. https://doi.org/10.5923/j.ajis.20150501.02

ABBASPOUR A., YEN K., NOEI S., and SARGOLZAEI A. Detection of Fault Data Injection Attack on UAV Using Adaptive Neural Network. Procedia Computer Science, 2016, 95: 193-200. https://doi.org/10.1016/j.procs.2016.09.312

CHEN M., SAAD W., and YIN C. Liquid State Machine Learning for Resource Allocation in a Network of Cache-Enabled LTE-U UAVs. Proceedings of the IEEE Global Communications Conference, Singapore, 2017, pp. 1-6. https://doi.org/10.1109/GLOCOM.2017.8254746

SAHINGOZ O. K. Generation of Bezier Curve-Based Flyable Trajectories for Multi-UAV Systems with Parallel Genetic Algorithm. Journal of Intelligent & Robotic Systems, 2014, 74: 499-511. https://doi.org/10.1007/s10846-013-9968-6

DIERKS T., and JAGANNATHAN S. Neural Network Control of Quadrotor UAV Formations. Proceedings of the 2009 American Control Conference, St. Louis, 2009: 10775967. https://doi.org/10.1109/ACC.2009.5160591

BYUNG-YOON L., LEE H.-I., and TAHK M. Analysis of adaptive control using online neural networks for a quadrotor UAV. Proceedings of the 13th International Conference on Control, Automation and Systems, Gwangju, 2013, pp. 1840-1844. https://doi.org/10.1109/ICCAS.2013.6704240

RAZMI H., and AFSHINFAR S. Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV. Aerospace Science and Technology, 2019, 91: 12-27. https://doi.org/10.1016/j.ast.2019.04.055


  • There are currently no refbacks.