A Rapid Analysis to Determine the Type of Meat using Fluorescence Spectrophotometry: Chicken Meat and Pork

Alvin Juniawan, Suprapto Suprapto, Muhammad Yudha Syahputra, Mustofa Helmi Effendi, Rurini Retnowati, Fredy Kurniawan

Abstract

A novel and rapid analysis of the type of meat using fluorescence spectrophotometry has been done. This method does not require complicated reagents and is environmentally friendly because it uses water as the solvent. The test sample was limited only to chicken meat and pork. Meat samples are taken from three chicken species, i.e., Broiler (Gallus domesticus), Domestic Chicken (Gallus gallus domesticus), Braekels Chicken (Gallus Turcicus), and Yorkshire pig (Sus scrofa Domesticus) species. Each sample was immersed in demineralized water. Then the extracted blood was analyzed using a fluorescence spectrophotometer. All types of samples exhibit a unique fluorescence spectra pattern. Furthermore, the mixed meat samples (pork and chicken) in various concentrations (0.5-30% of pork) were also analyzed. It was found that the excitation and emission peaks of mixed samples showed different spectra. This phenomenon can still be observed in a very low concentration of pork, 0.5%. The redshifted was observed, and the spectrum's intensity increased along with the concentration of pork. Scores of PCA (Principal Component Analysis) show four clusters of samples: Pork, Broiler, Domestic, and Braekels Chicken. This technique offers an efficient and accurate method to investigate meat contamination.

 

Keywords: meat contaminant, fluorescence spectroscopy, principal component analysis.

 

https://doi.org/10.55463/issn.1674-2974.49.6.19


Full Text:

PDF


References


NG P. C., AHMAD RUSLAN N. A. S, CHIN L. X., AHMAD M., ABU HANIFAH S., ABDULLAH Z., and KHOR S. M. Recent advances in halal food authentication: Challenges and strategies. Journal of Food Science, 2022, 87: 8–35. https://doi.org/10.1111/1750-3841.15998

MABOOD F., BOQUÉ R., ALKINDI ABDULAZI Y., AL-HARRASI A., AL AMRI I. S., BOUKRA S., JABEEN F., HUSSAIN J., ABBAS G., NAUREEN Z., HAQ Q. M. I., SHAH H. H., KHAN A., KHALAF S. K., and KADIM I. Fast detection and quantification of pork meat in other meats by reflectance FT-NIR spectroscopy and multivariate analysis. Meat Science, 2020, 163: 108084. https://doi.org/10.1016/j.meatsci.2020.108084

NUGRAHA W. S., CHEN D., and YANG S.-H. The effect of a Halal label and label size on purchasing intent for non-Muslim consumers. Journal of Retailing and Consumer Services, 2022, 65: 102873. https://doi.org/10.1016/j.jretconser.2021.102873

YOUSAF S., & XIUCHENG F. Halal culinary and tourism marketing strategies on government websites: A preliminary analysis. Tourism Management, 2018, 68: 423–43. https://doi.org/10.1016/j.tourman.2018.04.006

LIN-SCHILSTRA L., BACKUS G., SNOEK H., and MÖRLEIN D. Consumers’ view on pork: Consumption motives and production preferences in ten European Union and four non-European Union countries. Meat Science, 2022, 187: 108736. https://doi.org/10.1016/j.meatsci.2022.108736

MUHAMMAD A., AB TALIB M. S., HUSSEIN M. Z. S. M., and JAAFAR H. S. Motivations to Implement Halal Logistics Management Standards: A Review. In: MUHAMMAD HASHIM N., MD SHARIFF N. N., MAHAMOOD S. F., FATHULLAH HARUN H. M., SHAHRUDDIN M. S., and BHARI A. (eds.) Proceedings of the 3rd International Halal Conference (INHAC 2016). Springer Singapore, Singapore, 2018: 333–342. https://doi.org/10.1007/978-981-10-7257-4_30

LUBIS H. N., MOHD-NAIM N. F., ALIZUL N. N., and AHMED M. U. From market to food plate: Current trusted technology and innovations in halal food analysis. Trends in Food Science & Technology, 2016, 58: 55–68. https://doi.org/10.1016/j.tifs.2016.10.024

KUSWANDI B., GANI A. A., and AHMAD M. Immuno strip test for detection of pork adulteration in cooked meatballs. Food Bioscience, 2017, 19: 1–6. https://doi.org/10.1016/j.fbio.2017.05.001

BALAN B., DHAULANIYA A. S., JAMWAL R., AMIT, SODHI K. K., KELLY S., CANNAVAN A., and SINGH D. K. Application of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy coupled with chemometrics for detection and quantification of formalin in cow milk. Vibrational Spectroscopy, 2020, 107: 103033. https://doi.org/10.1016/j.vibspec.2020.103033

HE L., MA J., LI Q., WANG L., FAN S., and ZHANG Y. Determination of ingredients in livestock and poultry meat based on liquid chromatography-tandem mass spectrometry. Journal of Future Foods, 2022, 2: 53–60. https://doi.org/10.1016/j.jfutfo.2022.03.017

THIENES C. P., MASIRI J., BENOIT L. A., BARRIOS-LOPEZ B., SAMUEL S. A., MESHGI M. A., COX D. P., DOBRITSA A. P., NADALA C., and SAMADPOUR M. Quantitative Detection of Chicken and Turkey Contamination in Cooked Meat Products by ELISA. Journal of AOAC International, 2019, 102: 557–563. https://doi.org/10.5740/jaoacint.18-0136

PUSPITA I., IRAWATI N., MADURANI K. A., KURNIAWAN F., KOENTJORO S., and HATTA A. M. Graphene- and Multi-Walled Carbon Nanotubes-Coated Tapered Plastic Optical Fiber for Detection of Lard Adulteration in Olive Oil. Photonic Sensors, 2022, 12: 220411. https://doi.org/10.1007/s13320-022-0652-y

KURNIAWAN F., NUGROHO A., BASKARA R. A., CANDLE L., PRADINI D., MADURANI K. A., SUGIARSO R. D., and JUWONO H. Rapid analysis to distinguish porcine and bovine gelatin using PANI/NiO nanoparticles modified Quartz Crystal Microbalance (QCM) sensor. Heliyon, 2022, 8: e09401. https://doi.org/10.1016/j.heliyon.2022.e09401

ZULKARNAIN Z., SUPRAPTO S., ERSAM T., and KURNIAWAN F. A Novel Selective and Sensitive Electrochemical Sensor for Insulin Detection. Indonesian Journal of Electrical Engineering and Computer Science, 2016, 3: 496–502. http://doi.org/10.11591/ijeecs.v3.i3.pp496-502

CAI Y., HE Y., LV R., CHEN H., WANG Q., and PAN L. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLoS One, 2017, 12: e0181949. https://doi.org/10.1371/journal.pone.0181949

KIM M.-J., & KIM H.-Y. A fast multiplex real-time PCR assay for simultaneous detection of pork, chicken, and beef in commercial processed meat products. LWT, 2019, 114: 108390. https://doi.org/10.1016/j.lwt.2019.108390

MADURANI K. A., SUPRAPTO S., SYAHPUTRA M. Y., PUSPITA I., MASUDI A., RIZQI H. D., A. M. HATTA, J. JUNIASTUTI, M. I. LUSIDA, and KURNIAWAN F. Review—Recent Development of Detection Methods for Controlling COVID-19 Outbreak. Journal of The Electrochemical Society, 2021, 168: 037511. https://doi.org/10.1149/1945-7111/abe9cc

SÁ M., BERTINETTO C. G., FERRER-LEDO N., JANSEN J. J., WIJFFELS R., CRESPO J.G., BARBOSA M., and GALINHA C. F. Fluorescence spectroscopy and chemometrics for simultaneous monitoring of cell concentration, chlorophyll and fatty acids in Nannochloropsis oceanica. Scientific Reports, 2020, 10: 7688. https://doi.org/10.1038/s41598-020-64628-7

FARDIYAH Q., ERSAM T., SUYANTA, SLAMET A., SUPRAPTO, and KURNIAWAN F. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arabian Journal of Chemistry, 2020, 13: 8888–89897. https://doi.org/10.1016/j.arabjc.2020.10.015

MADURANI K. A., SUPRAPTO S., YUDHA SYAHPUTRA M., PUSPITA I., HADI FURQONI A., PUSPASARI L., ROSYIDAH H., HATTA A. M., JUNIASTUTI, LUSIDA M. I., TOMINAGA M., and KURNIAWANA F. Fluorescence spectrophotometry for COVID-19 determination in clinical swab samples. Arabian Journal of Chemistry, 2022, 8(15): 104020. https://doi.org/10.1016/j.arabjc.2022.104020

CASALE M., PASQUINI B., HOOSHYARI M., ORLANDINI S., MUSTORGI E., MALEGORI C., TURRINI F., ORTIZ M. C., SARABIA L. A., and FURLANETTO S. Combining excitation-emission matrix fluorescence spectroscopy, parallel factor analysis, cyclodextrin-modified micellar electrokinetic chromatography and partial least squares class-modelling for green tea characterization. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159: 311–317. https://doi.org/10.1016/j.jpba.2018.07.001

PRASAD S., MANDAL I., SINGH S., PAUL A., MANDAL B., VENKATRAMANI R., and SWAMINATHAN R. Near UV-Visible electronic absorption originating from charged amino acids in a monomeric protein. Chemical Science, 2017, 8: 5416–5433. https://doi.org/10.1039/C7SC00880E

JOLLIFFE I. T., & CADIMA J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374: 20150202. https://doi.org/10.1098/rsta.2015.0202

AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS. Assessment of pork and poultry meat and bone meal using hyperspectral fluorescence imaging. 2016 ASABE International Meeting, 2016. https://doi.org/10.13031/aim.20162462786

WU B., DAHLBERG K., GAO X., SMITH J., and BAILIN J. A Rapid Method Based on Fluorescence Spectroscopy for Meat Spoilage Detection. International Journal of High Speed Electronics and Systems, 2018, 27: 1840025. https://doi.org/10.1142/S0129156418400256

ISLAM K. Z., AHASAN M. A. A., HOSSAIN M. S., RAHMAN M. H., MOUSUMI U. S., and ASADUZZAMAN M. A Smart Fluorescent Light Spectroscope to Identify the Pork Adulteration for Halal Authentication. FNS, 2021, 12: 73–89. https://doi.org/10.4236/fns.2021.121007

SORAPUKDEE S., & NARUNATSOPANON S. Comparative Study on Compositions and Functional Properties of Porcine, Chicken and Duck Blood. Korean Journal for Food Science of Animal Resources, 2017, 37: 228–241. https://doi.org/10.5851/kosfa.2017.37.2.228

SKOOG D. A., HOLLER F. J., and CROUCH S. R. Principles of Instrumental Analysis. Brooks Cole, Belmont, 2017.

SHRIRAO A. B., SCHLOSS R. S., FRITZ Z., SHRIRAO M. V., ROSEN R., and YARMUSH M. L. Autofluorescence of blood and its application in biomedical and clinical research. Biotech & Bioengineering, 2021, 118: 4550–4576. https://doi.org/10.1002/bit.27933

LECRENIER M.-C., BAETEN V., TAIRA A., and ABBAS O. Synchronous fluorescence spectroscopy for detecting blood meal and blood products. Talanta, 2018, 189: 166–173. https://doi.org/10.1016/j.talanta.2018.06.076


Refbacks

  • There are currently no refbacks.