Investigation of Microbial Community Structure and Diversity in the Rhizosphere of Date Palm (Phoenix Dactylifera L.), Sukkari Cultivar
Abstract
The rhizosphere microbial community of a plant plays a pivotal role in mediating plant and soil health. This study was conducted to unravel the rhizosphere microbial structure and community of Sukkari date palm trees. The soil collected from the rhizosphere was subjected to metagenomic analysis. The results revealed that most of the sequences (62%) were identified as bacteria: 48% were unknown bacteria, 5% were Actinobacteria, and 9% were Proteobacteria. Microorganisms belonging to eukaryotes were 25% of the microbial community, represented by 21% Streptophyta and 4% Ciliopora and 5% of the sequences were Archaea. These analyses were followed by functional enzyme analysis, which identified microbial metabolism in diverse environments related to nine carbohydrate and energy pathways; seven pathways were associated with degradation, and nine metabolic pathways were associated with amino acid metabolism. The comparison of community analysis with our previous study provided distinct differences even in the same plants with various cultivars.
Keywords: microorganism, bacteria, metabolites, Sukkari, DNA, rhizosphere, interaction, Phoenix dactylifera.
Full Text:
PDFReferences
TENGHBERG M. Beginning and early history of date palm garden cultivation in the Middle East. Journal of Arid Environments, 2012, 86: 139–147. https://doi.org/10.1016/j.jaridenv.2011.11.022
SHEN L. D., OUYANG L., ZHU Y., and TRIMMER M. Active pathways of anaerobic methane oxidation across contrasting riverbeds. The ISME Journal, 2019, 13(3): 752-766. https://doi.org/10.1038/s41396-018-0302-y
PIOMBO E., ABDELFATTAH A., DANINO Y., SALIM S., FEYGENBERG O., SPADARO D., WISNIEWSKI M., and DROBY S. Characterizing the fungal microbiome in date (Phoenix dactylifera) fruit pulp and peel from early development to harvest. Microorganisms, 2020, 8(5): 641. https://doi.org/10.3390/microorganisms8050641
FERJANI R., MARASCO R., ROLLI E., CHERIF H., CHERIF A., GTARI M., BOUDABOUS A., DAFFONCHIO D., and OUZARI H. I. The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. BioMed Research International, 2015, 2015: 153851. https://doi.org/10.1155/2015/153851
YAISH M. W., AL-HARRASI I., ALANSARI A. S., AL-YAHYAI R., and GLICK B. R. The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. International Microbiology, 2016, 19(3): 143-155. https://doi.org/10.2436/20.1501.01.272
EDWARDS J., JOHNSON C., SANTOS-MEDELLÍN C., LURIE E., PODISHETTY N. K., BHATNAGAR S., EISEN J. A., and SUNDARESAN V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, 2015, 112(8): E911-E920. https://doi.org/10.1073/pnas.1414592112
KÖBERL M., ERLACHER A., RAMADAN E. M., EL-ARABI T. F., MÜLLER H., BRAGINA A., and BERG G. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity. FEMS Microbiology Ecology, 2016, 92(2): fiv166. https://doi.org/10.1093/femsec/fiv166
MAKHALANYANE T. P., VALVERDE A., GUNNIGLE E., FROSSARD A., RAMOND J. B., and COWAN D. A. Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 2015, 39(2): 203-221. https://doi.org/10.1093/femsre/fuu011
HANNA A. L., YOUSSEF H. H., AMER W. M., MONIB M., FAYEZ M., and HEGAZI N. A. Diversity of bacteria nesting the plant cover of north Sinai deserts, Egypt. Journal of Advanced Research, 2013, 4(1): 13-26. https://doi.org/10.1016/j.jare.2011.11.003
JANSSON J. K., & HOFMOCKEL K. S. The soil microbiome—from metagenomics to metaphenomics. Current Opinion in Microbiology, 2018, 43: 162-168. https://doi.org/10.1016/j.mib.2018.01.013
DHAWI F., & ALSANIE S. I. So it is above, so it is below: microbial pathways associated with date palm trees. Annals of the Romanian Society for Cell Biology, 2021, 25(6): 2725-2740.
AL-WABEL M. I., SALLAM A. E., USMAN A. R., AHMAD M., EL-NAGGAR A. H., EL-SAEID M. H., AL-FARAJ A., EL-ENAZI K., and AL-ROMIAN F. A. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia. Environmental Monitoring and Assessment, 2017, 189(6): 252. https://doi.org/10.1007/s10661-017-5919-1
URITSKIY G. V., DIRUGGIERO J., and TAYLOR J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 2018, 6: 1–13. https://doi.org/10.1186/s40168-018-0541-1
MARCELINO V. R., CLAUSEN P. T., BUCHMANN J. P., WILLE M., IREDELL J. R., MEYER W., LUND O., SORRELL T. C., and HOLMES E. C. CCMetagen: Comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biology, 2020, 21: 1–15. https://doi.org/10.1186/s13059-020-02014-2
CLAUSEN P. T., AARESTRUP F. M., and LUND O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics, 2018, 19: 307. https://doi.org/10.1186/s12859-018-2336-6
ONDOV B. D., BERGMAN N. H., and PHILLIPPY A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 2011, 12: 385. https://doi.org/10.1186/1471-2105-12-385
LI D., LIU C.-M., LUO R., SADAKANE K., and LAM T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31: 1674–1676. https://doi.org/10.1093/bioinformatics/btv033
GUREVICH A., SAVELIEV V., VYAHHI N., and TESLER G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 2013, 29: 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
ALNEBERG J., BJARNASON B. S., DE BRUIJN I., SCHIRMER M., QUICK J., IJAZ U. Z., LAHTI L., LOMAN N. J., ANDERSSON A. F., and QUINCE C. Binning metagenomic contigs by coverage and composition. Nature Methods, 2014, 11: 1144–1146. https://doi.org/10.1038/nmeth.3103
KANG D. D., LI F., KIRTON E., THOMAS A., EGAN R., AN H., and WANG Z. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 2019, 7: e7359. https://doi.org/10.7717/peerj.7359
WU Y.-W., SIMMONS B. A., and SINGER S. W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 2016, 32: 605–607. https://doi.org/10.1093/bioinformatics/btv638
PARKS D. H., IMELFORT M., SKENNERTON C. T., HUGENHOLTZ P., and TYSON G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 2015, 25: 1043–1055. https://doi.org/10.1101/gr.186072.114
KUMAR S., JONES M., KOUTSOVOULOS G., CLARKE M., and BLAXTER M. Blobology: Exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots. Frontiers in Genetics, 2013, 4: 237. https://doi.org/10.3389/fgene.2013.00237
MORGULIS A., COULOURIS G., RAYTSELIS Y., MADDEN T. L., AGARWALA R., and SCHÄFFER A. A. Database indexing for production MegaBLAST searches. Bioinformatics, 2008, 24: 1757–1764. https://doi.org/10.1093/bioinformatics/btn322
PATRO R., DUGGAL G., LOVE M. I., IRIZARRY R. A., and KINGSFORD C. Salmon provides fast and bias-aware quantification of transcript expression. Nature Methods, 2017, 14: 417–419. https://doi.org/10.1038/nmeth.4197
NURK S., MELESHKO D., KOROBEYNIKOV A., and PEVZNER P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Research, 2017, 27: 824–834. https://doi.org/10.1101/gr.213959.116
SEEMANN T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 2014, 30: 2068–2069. https://doi.org/10.1093/bioinformatics/btu153
BOUTET E., LIEBERHERR D., TOGNOLLI M., SCHNEIDER M., and BAIROCH A. UniProtKB/Swiss-Prot. In: EDWARDS D. (eds.) Plant Bioinformatics. Methods in Molecular Biology™, Vol. 406. Humana Press, 2007: 89–112. https://doi.org/10.1007/978-1-59745-535-0_4
CASIMIRO-SORIGUER C. S., MUÑOZ-MÉRIDA A., and PÉREZ-PULIDO A. J. Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes. Proteomics, 2017, 17: 1700071. https://doi.org/10.1002/pmic.201700071
DARZI Y., LETUNIC I., BORK P., and YAMADA T. IPath3.0: Interactive pathways explorer v3. Nucleic Acids Research, 2018, 46: W510–W513. https://doi.org/10.1093/nar/gky299
ZHANG J., ZHOU X., CHEN L., CHEN Z., CHU J., and LI Y. Comparison of the abundance and community structure of ammonia oxidizing prokaryotes in rice rhizosphere under three different irrigation cultivation modes. World Journal of Microbiology and Biotechnology, 2016, 32: 85. https://doi.org/10.1007/s11274-016-2042-3
YARWOOD S. A., BALDWIN A. H., MATEU M. G., and BUYER J. S. Archaeal rhizosphere communities differ between the native and invasive lineages of the wetland plant Phragmites australis (common reed) in a Chesapeake Bay subestuary. Biological Invasions, 2016, 18: 2717–2728. https://doi.org/10.1007/s10530-016-1144-z
VAN GOETHEM M. W., MAKHALANYANE T. P., COWAN D. A., and VALVERDE A. Cyanobacteria and Alphaproteobacteria may facilitate cooperative interactions in niche communities. Frontiers in Microbiology, 2017, 8: 2099. https://doi.org/10.3389/fmicb.2017.02099
WICAKSONO W. A., JONES E. E., CASONATO S., MONK J., and RIDGWAY H. J. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biological Control, 2018, 116: 103-112. https://doi.org/10.1016/j.biocontrol.2017.03.003
AMOO A. E., & BABALOLA O. O. Ammonia-oxidizing microorganisms: key players in the promotion of plant growth. Journal of Soil Science and Plant Nutrition, 2017, 17(4): 935-947. https://doi.org/10.4067/S0718-95162017000400008
FU S. F., WEI J. Y., CHEN H. W., LIU Y. Y., LU H. Y., and CHOU J. Y. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling & Behavior, 2015, 10(8): e1048052. https://doi.org/10.1080/15592324.2015.1048052
ALVES R. J. E., MINH B. Q., URICH T., VON HAESELER A., and SCHLEPER C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nature Communications, 2018, 9(1): 1517. https://doi.org/10.1038/s41467-018-03861-1
SEGATA N., WALDRON L., BALLARINI A., NARASIMHAN V., JOUSSON O., and HUTTENHOWER C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nature Methods, 2012, 9: 811–814. https://doi.org/10.1038/nmeth.2066
GOODFELLOW M., KÄMPFER P., BUSSE H.-J., TRUJILLO M. E., SUZUKI K.-I., LUDWIG W., and WHITMAN W. B. (eds.) Bergey's Manual of Systematic Bacteriology. Volume 5: The Actinobacteria, Part A and B. Springer Science & Business Media, 2012.
NIU G., CHATER K. F., TIAN Y., ZHANG J., and TAN H. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiology Reviews, 2016, 40(4): 554-573. https://doi.org/10.1093/femsre/fuw012
ABDELGAWAD H., SALEH A. M., AL JAOUNI S., SELIM S., HASSAN M. O., WADAAN M. A. M., SHUIKAN A. M., MOHAMED H. S., and HOZZEIN W. N. Utilization of actinobacteria to enhance the production and quality of date palm (Phoenix dactylifera L.) fruits in a semi-arid environment. Science of the Total Environment, 2019, 665: 690-697. https://doi.org/10.1016/j.scitotenv.2019.02.140
KRAMER J., ÖZKAYA Ö., and KÜMMERLI R. Bacterial siderophores in community and host interactions. Nature Reviews Microbiology, 2020, 18(3): 152-163. https://doi.org/10.1038/s41579-019-0284-4
VAN BERGEIJK D. A., TERLOUW B. R., MEDEMA M. H., and VAN WEZEL G. P. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 2020, 18(10): 546-558. https://doi.org/10.1038/s41579-020-0379-y
MCBRIDE M. J. The Family Flavobacteriaceae. In: ROSENBERG E., DELONG E. F., LORY S., STACKEBRANDT E., and THOMPSON F. (eds.) The Prokaryotes. Springer, Berlin, Heidelberg, 2014: 643–676. https://doi.org/10.1007/978-3-642-38954-2_130
MUÑOZ-GÓMEZ S. A., HESS S., BURGER G., LANG B. F., SUSKO E., SLAMOVITS C. H., and ROGER A. J. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife, 2019, 8: e42535. https://doi.org/10.7554/eLife.42535
YABUUCHI E., YANO I., OYAIZU H., HASHIMOTO Y., EZAKI T., and YAMAMOTO H. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiology and Immunology, 1990, 34(2): 99-119. https://doi.org/10.1111/j.1348-0421.1990.tb00996.x
YABUUCHI E., & KOSAKO Y. Order IV. Sphingomonadales ord. nov. In: BRENNER D. J., KRIEG N. R., STALEY J. T., and GARRITY G. M. (eds.) Bergey’s manual of systematic bacteriology. Vol. 2: The Proteobacteria, Part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). 2nd ed. Springer, New York, 2005: 230–286.
SPAIN A. M., KRUMHOLZ L. R., and ELSHAHED M. S. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal, 2009, 3(8): 992-1000. https://doi.org/10.1038/ismej.2009.43
SHARMA M., KHURANA H., SINGH D. N., and NEGI R. K. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential - A review. Journal of Environmental Management, 2021, 280: 111744. https://doi.org/10.1016/j.jenvman.2020.111744
MOSQUEIRA M. J., MARASCO R., FUSI M., MICHOUD G., MERLINO G., CHERIF A., and DAFFONCHIO D. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Scientific Reports, 2019, 9(1): 4033. https://doi.org/10.1038/s41598-019-40551-4
LELIAERT F. Green Algae: Chlorophyta and Streptophyta. In: SCHMIDT T. M. (ed.) Encyclopedia of Microbiology. 4th ed. Academic Press, 2019: 457-468. https://doi.org/10.1016/B978-0-12-809633-8.20890-X
FUJISHIMA M., KAWAI M., and YAMAMOTO R. Paramecium caudatum acquires heat-shock resistance in ciliary movement by infection with the endonuclear symbiotic bacterium Holospora obtusa. FEMS Microbiology Letters, 2005, 243(1): 101-105. https://doi.org/10.1016/j.femsle.2004.11.053
OFFRE P., SPANG A., and SCHLEPER C. Archaea in biogeochemical cycles. Annual Review of Microbiology, 2013, 67: 437-457. https://doi.org/10.1146/annurev-micro-092412-155614
BAKER B. J., DE ANDA V., SEITZ K. W., DOMBROWSKI N., SANTORO A. E., and LLOYD K. G. Diversity, ecology and evolution of Archaea. Nature Microbiology, 2020, 5(7): 887-900. https://doi.org/10.1038/s41564-020-0715-z
TIMONEN S., & BOMBERG M. Archaea in dry soil environments. Phytochemistry Reviews, 2009, 8(3): 505-518. https://doi.org/10.1007/s11101-009-9137-5
TANG K. H., TANG Y. J., and BLANKENSHIP R. E. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Frontiers in Microbiology, 2011, 2: 165. https://doi.org/10.3389/fmicb.2011.00165
DHAWI F. Plant Growth Promoting Rhizobacteria (PGPR) Regulated Phyto and Microbial Beneficial Protein Interactions. Open Life Sciences, 2020, 15(1): 68-78. https://doi.org/10.1515/biol-2020-0008
WANG H., BIER R., ZGLESZEWSKI L., PEIPOCH M., OMONDI E., MUKHERJEE A., CHEN F., ZHANG C., and KAN J. Distinct distribution of Archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Frontiers in Microbiology, 2020, 11: 576661. https://doi.org/10.3389/fmicb.2020.576661
Refbacks
- There are currently no refbacks.