Influence of Sulfur Ratio to Accelerator on the Crosslink Density, Mechanical, Dynamic, and Damping Properties of Unfilled Natural Rubber Vulcanizate
Abstract
Natural rubber (NR) is a biopolymer with low vibration damping capacity. NR requires modification of its viscoelastic properties through crosslink in NR vulcanizates molecular chains as vibration damping. This study is the first to report a correlation between crosslink density and dynamic shear properties of NR vulcanizates, including hysteresis loop area, shear stiffness, equivalent damping ratio, and effective shear modulus. This correlation is necessary to develop NR vulcanizates properties appropriate to the vibration isolator product requirement. This research also reveals the rubber compound formulation technique to achieve the optimum value of the viscoelasticity and damping properties of NR vulcanizates by setting the crosslink density. In addition, this research investigates the influence of sulfur ratio to MBTS accelerator on the crosslink density, mechanical, dynamic, and vibration damping properties of unfilled NR vulcanizates. The crosslink density of unfilled NR vulcanizates is determined by the Mooney-Rivlin method. At the same time, the dynamic properties and vibration damping were evaluated by testing the dynamic shear properties. Testing results showed that the increment of sulfur to MBTS accelerator ratio increased crosslink density value. The highest crosslink density was measured at a 7.16 x 10-5 mol/cm3 obtained by NR vulcanizates containing sulfur to MBTS accelerator ratio at 2.15. This ratio also produced optimum value for mechanical properties (tear and tensile strength), elastic properties (compression set, LUPKE rebound resilience, and elastic modulus), and the highest effective shear modulus value. The value of tear strength, tensile strength, compression set, LUPKE rebound resilience, elastic modulus, and an effective shear modulus were 28.5 N/mm; 25.2 MPa; 3.65%; 79; 3.89 MPa, and 0.169 MPa. The optimum value of vibration damping was obtained at 1.39% of an equivalent damping ratio produced by NR vulcanizates containing sulfur to MBTS accelerator ratio at 0.14.
Keywords: natural rubber, sulfur ratio to the accelerator, crosslink density, mechanical properties, dynamic properties.
https://doi.org/10.55463/issn.1674-2974.49.4.42
Full Text:
PDFReferences
LEI T., ZHANG Y.-W., KUANG D.-L., and YANG Y.-R. Preparation and Properties of Rubber Blends for High-Damping-Isolation Bearings. Polymers, 2019, 11: 1374. https://doi.org/10.3390/polym11081374
VAŠINA M., PÖSCHL M., and ZÁDRAPA P. A study of Significant Factors Affecting Viscoelastic Damping Properties of Polymer Materials. Manufacturing Technology, 2018, 18(3): 523-529. https://doi.org/10.21062/ujep/132.2018/a/1213-2489/mt/18/3/523
HALLADAY J. R., & JAGLOWSKI K. T. Sources of Hysteresis in Rubber Compound. Rubber and Plastic News, 2017, 7: 13-17. https://s3-prod.rubbernews.com/s3fs-public/RN11142784.PDF
MURNIATI R., RAHMAYANTI H. D., UTAMI F. D., CIFRIADI A., ISKANDAR F., and ABDULLAH M. Effect of Magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nano-silica compounds. Journal of Polymer Research, 2020, 27: 37. https://doi.org/10.1007/s10965-020-2013-0
KOUPAI S. A., BAKHSHI A., and TABRIZI V. V. Experimental investigation on effect of elastomer component on dynamic and mechanical properties in seismic isolator compounds. Construction and Building Materials, 2017, 135: 267-278. http://dx.doi.org/10.1016/j.conbuildmat.2016 .12.184
HENTSCHKE R. The Payne Effect Revisited. eXPRESS Polymer Letters, 2017, 11(4): 278–292. https://doi.org/10.3144/expresspolymlett.2017.28
WANG Y., LIAO L., LIN H., ZHANG F., ZHONG J., XU K., and PENG Z. Damping Properties of Natural Rubber/ Epoxidized Natural Rubber Composite with Different Filler. Advances in Engineering Research, 2017, 120: 772-775. http://dx.doi.org/10.2991/ifeesm-17.2018.145
MOHAMAD N., YAAKUB J., AB MAULOD H. E., JEEFFERIE A. R., YUHAZRI M. Y., LAU K. T., AHSAN Q., SHUEB M. I., and OTHMAN R. Vibrational damping behaviors of graphene nanoplatelets reinforced NR/EPDM nanocomposite. Journal Mechanical Engineering and Sciences, 2017, 11(4): 3274-3287. https://doi.org/10.15282/jmes.11.4.2017.28.0294
MA R., ZHANG X., LIU C., and WU W. Hindered Phenol-Mediated Damping of Polyacrylate Rubber: Effect of Hydrogen Bonding Strength on the Damping Properties. Journal of Polymer Engineering, 2019, 39(7): 642-652. https://doi.org/10.1515/polyeng-2018-0378
LI J.-C., ZHANG H.-S., ZHAO X.-Y., JIANG J.-G., WU Y.-X., LU Y.-L., ZHANG L.-Q., and NISHI T. Development of high damping natural rubber/butyl rubber composites compatibilized by isobutylene-isoprene block copolymer for isolation bearing. eXPRESS Polymer Letters, 2019, 13(8): 686-696. https://doi.org/10.3144/expresspolymlett.2019.58
WANG J., ZHAO X., WANG W., GENG X., ZHANG L., GUO B., NISHI T., and HU G.-H. Significantly improving strength and damping performance of nitrile rubber via incorporating sliding graft copolymer. Industrial and Engineering Chemistry Research, 2018, 57(49): 16692-16700. https://doi.org/10.1021/acs.iecr.8b03871
HAN S., GU B., KIM S., KIM S., MUN D., MORITA K., KIM D., and KIM W. Effect of Sulfur Variation on the Vulcanizate Structure of Silica-Filled Styrene-Butadiene Rubber Compounds with a Sulfide-Silane Coupling Agent. Polymers, 2020, 12(12): 2815. https://doi.org/10.3390/polym12122815
KIM D. Y., PARK J. W., LEE D. Y., and SEO K. H. Correlation between the Crosslink Characteristics and Mechanical Properties of Natural Rubber Compound via Accelerators and Reinforcement. Polymers, 2020, 12(9): 2020-2033. https://doi.org/10.3390/polym12092020
ALSHABATAT N., & ABOUEL-KASEM A. The Effects of Sulfur Content on the Mechanical Properties of Nitrile Butadiene Rubber with Different Aging Conditions. Jordan Journal of Mechanical and Industrial Engineering, 2021, 15(4): 387-393. https://www.researchgate.net/publication/355360526_The_Effects_of_Sulfur_Content_on_the_Mechanical_Properties_of_Nitrile_Butadiene_Rubber_with_Different_Aging_Conditions
G. SHI, W. WANG, H. LU, G. WANG, F. YANG, and RUI X. Study of Crosslink Structure and Dynamic Mechanical Properties of Magnetorheological Elastomer: Effect of Vulcanization System. Journal of Intelligent Material Systems and Structures, 2019, 30(8): 1189-1199. https://doi.org/10.1177/1045389x19835940
HAIT S., VALENTÍN J. L., JIMÉNEZ A. G., ORTEGA P. B., GHOST A. K., STÖCKELHUBER K. W., WIEßNER S., HEINRICH G., and DAS A. Poly(acrylonitrile-co-butadiene) as Polymeric Crosslinking Accelerator for Sulfur Network Formation. Journal of Heliyon, 2020, 6(8): e04659. https://doi.org/10.1016/j.heliyon.2020.e04659
LARPKASEMSUK A., RAKSAKSRI L., CHUAYJULJIT S., CHAIWUTTHINAN P., and BOONMAHITTHISUD A. Effect of Sulfur Vulcanization System on Cure Characteristics, Physical Properties and Thermal Aging of Epoxidized Natural Rubber. Journal of Metals, Materials, and Minerals, 2019, 29(1): 49-57. https://doi.org/10.14456/jmmm.2019.8
ZAREI A., & JALALI-ARANI A. The relationship of Vulcanization and Structural Characteristic-dispersion of Organoclay-Mechanical Properties in (Butadiene Rubber/Natural Rubber) Based Nanocomposite. Advances in Polymer Technology, 2018, 37: 1469-1477. https://doi.org/10.1002/adv.21805
BOONKERD K., DEEPRASERTKUL C., and BOONSOMWONG K. Effect of Sulfur to Accelerator Ratio on Crosslink Structure, Reversion, and Strength in Natural Rubber. Rubber Chemistry and Technology, 2016, 89(3): 450-464. https://doi.org/10.5254/rct.16.85963
SRICHAN S., & PRASERTSRI S. Influence of Accelerator/Sulfur Ratio on Mechanical Properties and Thermal Resistance of Natural Rubber Containing Hybrid Fillers. Key Engineering Materials, 2017, 744: 300-304. https://doi.org/10.4028/www.scientific.net/kem.744.300
TAMÁSI K., & KOLLÁR M. S. Effect of Different Sulfur Content in Natural Rubber Mixture on Their Thermo-mechanical and Surface Properties. International Journal of Engineering Research & Science, 2018, 4(2): 28-37. https://ijoer.com/assets/articles_menuscripts/file/IJOER-FEB-2018-6.pdf
MOK K. L., & ENG A. H. Characterisation of Crosslinks in Vulcanised Rubbers: from Simple to Advanced Techniques. Malaysian Journal of Chemistry, 2018, 20(1): 118-127. https://doi.org/10.55373/mjchem.v20i1.11
HIRANOBE C. T., RIBEIRO G. D., TORRES G. B., PRADO DOS REIS E. A., CABRERA F. C., ELOIZO JOB A., PAIM L. L., and JOSE DOS SANTOS R. Cross-linked Density Determination of Natural Rubber Compounds by Different Analytical Techniques. Material Research, 2021; 24(1): e20210041. https://doi.org/10.1590/1980-5373-MR-2021-0041
SETIYANA B., ISMAIL R., JAMARI J., SUGIYANTO., and HARYANTO I. Mechanical Properties Identification of Vulcanized Rubber by Using Mooney-Rivlin Method. Proceedings of the 2nd Borobudur International Symposium on Science and Technology, Magelang, 2021, pp. 99-103. https://doi.org/10.2991/aer.k.210810.016
LE CAM J.-B. Energy storage due to strain-induced crystallization in natural rubber: The physical origin of the mechanical hysteresis. Polymer, 2017, 127: 166-173. https://doi.org/10.1016/j.polymer.2017.08.059
CANDAU N., OGUZ O., FEDERICO C. E., STOCLET G., TAHON J-F., and MASPOCH M. L. Strain induced crystallization in vulcanized natural rubber containing ground tire rubber particles with reinforcement and nucleation abilities. Polymer Testing, 2021, 101: 107313. https://doi.org/10.1016/j.polymertesting.2021.107313
MASA A., HAYEEMASAE N., SOONTARANON S., MOHD PISAL M. H., and MOHAMAD RASIDI M. S. Effect of Stretching Rate on Tensile Response and Crystallization Behavior of Crosslinked Natural Rubber. Malaysian Journal of Fundamental and Applied Sciences, 2021, 17: 217-225. https://doi.org/10.11113/mjfas.v17n3.2039
SCHIAVI A., & PRATO A. Elastic and Viscoelastic Properties of Synthetic Rubber (Polychloroprene): Dynamic and Static Characterization. Proceedings of the 24th International Congress on Sound and Vibration, London, 2017, pp. 1-8. https://www.researchgate.net/publication/318816684
Refbacks
- There are currently no refbacks.