Design of a Quarantine SITR Model Using the Novel Coronavirus Dynamics

Gilder Cieza Altamirano, Manuel Jesús Sánchez-Chero, Rafaél Artidoro Sandoval Núñez, Tafur Coronel Hernan, Dulio Oseda Gago, Susana Soledad Chinchay Villarreyes, Isaias Wilmer Dueñas Sayaverde, Aurelia Zavala Palacios

Abstract

This present study presents the mathematical dynamics of a new nonlinear quarantine SITR model based on the novel coronavirus (COVID-19). This study aims to investigate a mathematical model for coronavirus (COVID-19) and reveal its associated results. These studies collectively describe the social, psychological, interactive, behavioral, and mental health impacts of the novel coronavirus pandemic on people worldwide by using an efficient quarantine SITR model based on the most popular iterative scheme Runge-Kutta Method. The novelty of this attempt is that this model is defined as susceptible (S) class, infected (I) class, treatment (T)class, and recovered (R) class, i.e., quarantine SITR model. Furthermore, the class quarantine is also introducedin the model as the treatment subclass. The brief feature of each class is explained along with the explanation ofeach factor. In order to solve this new nonlinear quarantine SITR mathematical model, the famous Runge-Kuttanumerical scheme is applied. Moreover, some plots based on the new nonlinear quarantine SITR model usingdifferent parameter values indicate the existing details of this dangerous novel COVID-19. For example, the graphsof the susceptible people are decreasing, while those susceptible people who have some diseases or have old age aregetting higher up to dangerous levels. This real evidence indicates the exactness of the new nonlinear quarantineSITR model.

 


Keywords: quarantine SITR model, coronavirus, Runge-Kutta scheme, treatment, diseases.

 

https://doi.org/10.55463/issn.1674-2974.49.4.29

 


Full Text:

PDF


References


CNBC. China virus death toll rises to 41, more than 1,300 infected worldwide, 2020. https://www.cnbc.com/2020/01/24/chinas-hubei-province-confirms-15-more-deaths-due-to-coronavirus.html

KHAN M. A., & ATANGANA A. Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alexandria Engineering Journal, 2020, 59(4), 2379-2389. https://doi.org/10.1016/j.aej.2020.02.033

SABIR Z., AYUB A., GUIRAO J. L., BHATTI S., and SHAH S. Z. H. The effects of activation energy and thermophoretic diffusion of nanoparticles on steady micropolar fluid along with Brownian motion. Advances in Materials Science and Engineering, 2020: 2010568. https://doi.org/10.1155/2020/2010568

AYUB A., WAHAB H. A., SHAH S. Z., SHAH S. L., DARVESH A., HAIDER A., and SABIR Z. Interpretation of infinite shear rate viscosity and a nonuniform heat sink/source on a 3D radiative cross nanofluid with buoyancy assisting/opposing flow. Heat Transfer, 2021, 50(5), 4192-4232. https://www.researchgate.net/publication/348817969_Interpretation_of_infinite_shear_rate_viscosity_and_a_nonuniform_heat_sinksource_on_a_3D_radiative_cross_nanofluid_with_buoyancy_assistingopposing_flow

AYUB A., WAHAB H. A., SABIR Z., and ARBI A. A note on heat transport with aspect of magnetic dipole and higher order chemical process for steady micropolar fluid. In: GHAEDI K., ALHUSSENY A., NASSER A., and AL-ZURF N. (eds.) Computational Overview of Fluid Structure Interaction. IntechOpen, London, 2020, 97. https://doi.org/10.5772/intechopen.95302

SHAH S. Z. H., AYUB A., SABIR Z., ADEL W., SHAH N. A., and YOOK S. J. Insight into the dynamics of time-dependent cross nanofluid on a melting surface subject to cubic autocatalysis. Case Studies in Thermal Engineering, 2021, 27: 101227. https://doi.org/10.1016/j.csite.2021.101227

WAHAB H. A., HUSSAIN SHAH S. Z., AYUB A., SABIR Z., BILAL M., and ALTAMIRANO G. C. Multiple characteristics of three-dimensional radiative Cross fluid with velocity slip and inclined magnetic field over a stretching sheet. Heat Transfer, 2021, 50(4), 3325-3341. https://www.researchgate.net/publication/348518670_Multiple_characteristics_of_three-dimensional_radiative_Cross_fluid_with_velocity_slip_and_inclined_magnetic_field_over_a_stretching_sheet

AYUB A., SABIR Z., ALTAMIRANO G. C., SADAT R., and ALI M. R. Characteristics of melting heat transport of blood with time-dependent cross-nanofluid model using Keller–Box and BVP4C method. Engineering with Computers, 2021: 1-15. https://doi.org/10.1007/s00366-021-01406-7

AYUB A., SABIR Z., LE D. N., and ALY A. A. Nanoscale heat and mass transport of magnetized 3-D chemically radiative hybrid nanofluid with orthogonal/inclined magnetic field along rotating sheet. Case Studies in Thermal Engineering, 2021, 26: 101193. https://doi.org/10.1016/j.csite.2021.101193

SHAH S. Z., WAHAB H. A., AYUB A., SABIR Z., HAIDER A., and SHAH S. L. Higher order chemical process with heat transport of magnetized cross nanofluid over wedge geometry. Heat Transfer, 2021, 50(4), 3196-3219. https://doi.org/10.1002/htj.22024

AYUB A., DARVESH A., ALTAMIRANO G. C., and SABIR Z. Nanoscale energy transport of inclined magnetized 3D hybrid nanofluid with Lobatto IIIA scheme. Heat Transfer, 2021, 50(7): 6465-6490. https://doi.org/10.1002/htj.22188

AYUB A., WAHAB H. A., HUSSAIN SHAH S. Z., SHAH S. L., SABIR Z., and BHATTI S. On heated surface transport of heat bearing thermal radiation and MHD Cross flow with effects of nonuniform heat sink/source and buoyancy opposing/assisting flow. Heat Transfer, 2021, 50(6): 6110-6128. https://doi.org/10.1002/htj.22164

AYUB A., SABIR Z., SHAH S. Z. H., WAHAB H. A., SADAT R., and ALI M. R. Effects of homogeneous-heterogeneous and Lorentz forces on 3-D radiative magnetized cross nanofluid using two rotating disks. International Communications in Heat and Mass Transfer, 2022, 130: 105778. https://doi.org/10.1016/j.icheatmasstransfer.2021.105778

SHAH S. Z. H., FATHURROCHMAN I., AYUB A., ALTAMIRANO G. C., RIZWAN A., NÚÑEZ R. A. S., SABIR Z., and YESKINDIROVA M. Inclined magnetized and energy transportation aspect of infinite shear rate viscosity model of Carreau nanofluid with multiple features over wedge geometry. Heat Transfer, 2022, 51(2): 1622-1648. http://repository.iaincurup.ac.id/679/

AYUB A., WAHAB H. A., BALUBAID M., MAHMOUD S. R., ALI M. R., and SADAT R. Analysis of the nanoscale heat transport and Lorentz force based on the time-dependent Cross nanofluid. Engineering with Computers, 2022: 1-20. https://doi.org/10.1007/s00366-021-01579-1

HAIDER A., AYUB A., MADASSAR N., ALI R. K., SABIR Z., SHAH S. Z., and KAZMI S. H. Energy transference in time-dependent Cattaneo–Christov double diffusion of second-grade fluid with variable thermal conductivity. Heat Transfer, 2021, 50(8): 8224-8242. https://doi.org/10.1002/htj.22274

ÖGREN P., & MARTIN C. F. Vaccination strategies for epidemics in highly mobile populations. Applied mathematics and computation, 2002, 127(2-3): 261-276. https://doi.org/10.1016/S0096-3003(01)00004-2

DOUNGMO GOUFO E. F., OUKOUOMI NOUTCHIE S. C., and MUGISHA S. A fractional SEIR epidemic model for spatial and temporal spread of measles in metapopulations. Abstract and Applied Analysis, 2014: 781028. https://doi.org/10.1155/2014/781028

MICKENS R. E. A discrete-time model for the spread of periodic diseases without immunity. Biosystems, 1992, 26(3): 193-198. https://doi.org/10.1016/0303-2647(92)90079-e

FISTER K. R., LENHART S., and MCNALLY J. S. Optimizing chemotherapy in an HIV model. Electronic Journal of Differential Equations, 1998, 32: 1–12. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.2457&rep=rep1&type=pdf

JOSHI H. R. Optimal control of an HIV immunology model. Optimal control applications and methods, 2002, 23(4): 199-213. https://doi.org/10.1002/oca.710

MÜLLER J. Optimal vaccination patterns in age-structured populations. SIAM Journal on Applied Mathematics, 1998, 59(1): 222-241. https://www.jstor.org/stable/118380


Refbacks

  • There are currently no refbacks.