Anticancer and Antivirus Activities of two Biflavonoids from Indonesian Araucaria hunsteinii K Schum Leaves

Dhea Demitri Agusta, Hanhan Dianhar, Dyah Utami Cahyaning Rahayu, Irma Herawati Suparto, Purwantiningsih Sugita


Araucaria genera consist of 19 species, and three of them are grown in Botanical Garden, Bogor, Indonesia. These plants were reported to contain biflavonoids and are primarily found in leaves. Biflavonoids display an extensive range of biological properties such as anti-inflammatory, anti-oxidant, anti-tumor, antivirus, anti-microbial, anti-fungal, etc. However, no studies reported secondary metabolites, especially biflavonoids, from Indonesian A. hunsteinii leaves. Therefore, this research aims to isolate biflavonoid from A. Hunsteinii leaves and evaluate their anticancer and antivirus activities. First, A. hunsteinii leaves were macerated in acetone to give brownish-black crude extract (14.66%, w/w). Then, the natural extract was fractionated and purified using chromatographic techniques with silica gel and Sephadex LH-20 as a stationary phase to afford two isolated compounds. The acetone extract and two isolated compounds were examined for their cytotoxic activity against breast cancer MCF-7 cells and human immunodeficiency virus (HIV) SRV-2 viruses based on an assay of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). According to spectroscopic data, including IR, UV-Vis, LC-MS/MS, and NMR (1H, 13C, NOESY, HSQC, and HMBC), two compounds were successfully elucidated as 4',7,7''-tri-O-methylcupressuflavone (1) and 4''',7,7''-tri-O-methylagathisflavone (2). Both compounds were first isolated from A. hunsteinii leaves. The preliminary MTT assay of compounds 1 and 2 against MCF-7 cells showed IC50 of 91.74 and 314.44 µg/mL, respectively. They had a larger IC50 than an acetone extract of A. hunsteinii leaves (IC50 of 62.16 g/mL), indicating that all samples had lower activity than the positive control, epirubicin HCl (IC50 of 0.52 g/mL). Furthermore, both compounds were ineffective as antivirus agents against SRV-2 viruses.


Keywords: A549 cell, Araucaria hunsteinii, biflavonoids, MCF-7 cell, SRV-2 viruses.


Full Text:



FREZZA C., VENDITTI A., De VITA D., TONIOLO C., FRANCESCHIN M., VENTRONE A., TOMASSINI L., FODDAI S., GUISO M., NICOLETTI M., BIANCO A., and SERAFINI M. Phytochemistry, chemotaxonomy, and biological activities of the Araucariaceae family — a review. Plants, 2020, 9(888): 1–73.

ADEM F. A., MBAVENG A. T., KUETE V., HEYDENREICH M., NDAKALA A., IRUNGU B., YENESEW A., and EFFERTH T. Cytotoxicity of isoflavones and biflavonoids from Ormocarpum kirkii towards multi-factorial drug resistant cancer. Phytomedicine, 2019, 58: 152853.

YU S., YAN H., ZHANG L., SHAN M., CHEN P., DING A., and LI S. F. Y. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules, 2017, 22: 299.

BRANCO C. S., RODRIGUES T. S., LIMA E. D., CALLONI C., SCOLA G., and SALVADOR M. Chemical Constituents and Biological Activities of Araucaria angustifolia (Bertol.) O. Kuntze: A Review. Journal of Organic & Inorganic Chemistry, 2016, 2(1): 1-10.

GOOSSENS J. F., GOOSSENS L., and BAILLY C. Hinokiflavone and Related C–O–C Type Biflavonoids as Anticancer Compounds: Properties and Mechanism of Action. Natural Products and Bioprospecting, 2021, 11: 365–377.

XIE Y., ZHOU X., LI J., YAO X.-C., LIU W.-L., KANG F.-H., ZOU Z.-X., XU K.-P., XU P.-S., and TAN G.-S. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorganic Chemistry, 2020, 109: 104744.

MENEZES J. C. J. M. D. S., & CAMPOS V. R. Natural biflavonoids as potential therapeutic agents against microbial diseases. Science of The Total Environment, 2021, 769: 145168.

ANDRADE A. W. L., KEYLLA C. M., KATIA C. M., FIGUEIREDO D. S. R., DAVID J. M., ISLAM M. T., UDDIN S. J., SHILPI J. A., and COSTA J. P. In vitro anti-oxidant properties of the biflavonoid agathisflavone. Chemistry Central Journal, 2018, 12: 75.

MATSABISA M. G., CHUKWUMA C. I., IBEJI C. U., and CHAUDHARY S. K. Stem bark exudate (resin) of Araucaria cunninghamii Aiton ex D. Don (hoop pine) abates glycation, α-glucosidase and DPP-IV activity and modulates glucose utilization in Chang liver cells and 3T3-L1 adipocytes. South African Journal of Botany, 2019, 121, 193-199.

HE X., YANG F., and HUANG X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules, 2021, 26: 6088.

TIAN Y., LIIMATAINEN J., PUGANEN A., ALAKOMI H. L., SINKKONEN J., and YANG B. Sephadex LH-20 fractionation and bioactivities of phenolic compounds from extracts of Finnish berry plants. Food Research International, 2018, 113: 115-130.

SASIKALA M., SUNDARAGANAPATHY R., and MOHAN S. MTT assay on anticancer properties of phytoconstituents from Ipomoea aquatica forsskal using MCF–7 cell lines for breast cancer in women. Research Journal of Pharmacy and Technology, 2020, 13(3): 1356–1360.

RAZAK N. A., ABU N., HO W. Y., ZAMBERI N. R., TAN S. W., ALITHEEN N. B., LONG K., and YEAP S. K. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Scientific Reports, 2019, 9:1514.

SAEPULOH U., ISKANDRIATI D., PAMUNGKAS J., SOLIHIN D. D., MARIYA S. S., and SAJUTHI D. Construction of A Preliminary Three-Dimensional Structure Simian betaretrovirus Serotype-2 (SRV-2) Reverse Transcriptase Isolated from Indonesian Cynomolgus Monkey. Tropical Life Sciences Research, 2020, 31(3): 47-61.

EBADA S. S., TALAAT A. N., LABIB R. M., MÁNDI A., KURTÁN T., MÜLLER W. E. G., SINGAB A., and PROKSCH P. Cytotoxic labdane diterpenes and bioflavonoid atropisomers from leaves of Araucaria bidwillii. Tetrahedron, 2017, 73(21): 3048-3055.

TALAAT A. N., EBADA S. S., LABIB R. M., ESMAT A., YOUSSEF F. S., and SINGAB A. N. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. Using phytohae-magglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. Journal of Ethnopharmacology, 2018, 226: 44–47.

UNGERLEIDER N. A., RAO S. G., SHAHBANDI A., YEE D., NIU T., FREY W. D. and JACKSON J. G. Breast cancer survival predicted by TP53 mutation status differs markedly depending on treatment. Breast Cancer Research, 2018, 20: 115.

AL GROSHI A., JASIM H. A., EVANS A. R., ISMAIL F. M. D., DEMPSTER N. M., NAHAR L., and SARKER S. D. Growth inhibitory activity of biflavonoids and diterpenoids from the leaves of the Libyan Juniperus phoenicea against human cancer cells. Phytotherapy Research, 2019, 33(8): 2075–2082.

ISLAM M. T., ZIHAD S. M. N. K., RAHMAN S., SIFAT N., KHAN R., UDDIN S. J., and ROUF R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB Life, 2019, 71(9): 1192–1200.

GONTIJO V. S., DOS SANTOS M. H., and VIEGAS J. C. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review. Mini-Reviews in Medicinal Chemistry, 2017, 17(10): 834–862.

DE FREITAS C. S., ROCHA M. E. N., SACRAMENTO C. Q., MARTTORELLI A., FERREIRA A. C., ROCHA N., DE OLIVEIRA A. C., DE OLIVEIRA G. A. M., DOS SANTOS P. S., DA SILVA E. O., DA COSTA J. P., DE LIMA MOREIRA D., BOZZA P. T., SILVA J. L., BARROSO S. P. C., and SOUZA T. M. L. Agathisflavone, a Biflavonoid from Anacardium occidentale L., Inhibits Influenza Virus Neuraminidase. Current Topics in Medicinal Chemistry, 20, 2019: 1-10.


  • There are currently no refbacks.