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Abstract: Time synchronization is a primary issue in industrial wireless sensor networks (IWSNs). It helps
to optimize the connection and preserve battery consumption, and thus increase the network lifetime. This study
aims to identify the most effective factors that decrease the battery consumption and monitor the critical targets in
wireless sensor networks (WSNSs) through addressing the coverage and connectivity aware scheduling of sensor
nodes (SNs). On the other hand, this paper aims to get a scheduling algorithm for industrial wireless sensor
networks of SNs by using classical machine learning in the proposed model like support vector machine, decision
tree, and RProp (resilient back-propagation) algorithms. In this paper, classical machine learning methods are
applied for testing the extracted features and the affected degree for network configurations. An extensive
simulation run showed high accuracy for machine learning measurements and extracted the most affected features
that play a big role in the sensor node scheduling in industrial wireless sensor networks. For testing, we used the
KNIME (KoNstanz Information MinEr ) model that gives a result with high accuracy. The SVM (Support Vector
Mashine), Decision Tree, and RProp classifiers give an accuracy of 92.489%, 97.979%, and 98.335%, respectively.
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THEEREBRBESPINEHKERBEELARE

BE BHRSEIXESERSMAEINIERNE, CEIRECEEYHEEMH
B OAMERPBEST. AMRECERRRERETHNEENEERITAERE , BE
BREBHEENSENRRLELRERELENETINEREE. 5—FHHE , AXEEER
EFFRREMER (XSO EM, REBNEEROEEEL ) PEAKAKESZTRES
EREHENITERFERBBPENAEE L, £EAXH , RENBBBEF S EZAMNAGER
BB ENRARRENTERE, BENERETETRTHSE2EIENSHBE  YRIT
EIH#BRERIERTNERBRTHAETRETTEANZIZESANES. HRAE

, ERMERATERGEEREERE  ZIBHRRLTERENRER. IBRERE. REHN
MR O EE D R ERER S BIA 92.489%, 97.979% F 98.335%,
XREW  EMROEEELE  ERERSENGE  CRMEEE,

1. Introduction possible so that the SNs actuate on the power
Since the inception of WSNs, they became the focus ~ ompartment source, such as small batteries. The short
of attention and caught the attention of such fields as  life of these batteries makes them not desirable for

industry, agriculture, health, and others [1]. Among the ~ Most applications. Therefore, researchers focused on
common uses of sensor nodes (SNs) in the field of energy-efficient methods that extend the lifetime of
industry, it seeks to monitor and disclose data that are WSN [4, 5]. ]

of utmost importance, such as the possibility of fire and One energy-saving and frequently used WSN
prior notification [2, 3]. The main objective of this  applications method is sensor node scheduling.
achievement was to extend the grid spirit as much as Through this scheduling, it is possible to extend the
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spirit of the network with high quality through SNs
usage time modeling. Therefore, when starting to
monitor and disclose a specific place, the necessary
nodes for that area will be activated at a specified time;
thus, any unnecessary node in that area will not be
operational, leading to energy saving. Therefore, while
saving energy, this process will also extend the life of
the WSN network. The most important and difficult
scheduling life cycle is establishing appropriate data
detection and connection between the SNs and the base
station (BS). Also, the sensor nodes' energy must be
considered because the near-expiring energy makes the
group perform less and forces them to start a new
schedule [6, 7]. Hence, the sensor node may fail due to
its low capacity, and due to obstacles, the network
connection may be affected [8]. Therefore, the
scheduling and connecting issue of WSNs is an NP-
hard problem [6, 9].

Coverage and connectivity are of great importance
in the life cycle of wireless sensor networks, so the
correct connection of sensor nodes positively affects
how the network functions. Consequently, it will
reduce the amount of energy used for the grids.
Because the sensor nodes have limited capacity and
communication space, it is not easy to maintain the
network's required coverage and connection flow.
Therefore, due to the failure to which the sensor nodes
are exposed, it is necessary to place enough sensor
nodes in the area to be monitored to avoid losing
coverage and contact when one or more nodes fail [10,
11]. Coverage is one of the problems that affect the
power consumption of sensor nodes and the
consumption of network life in wireless sensor
networks. Hence, the coverage problem's goal is to
efficiently monitor network quality [12, 13].

NSGA-II is called a non-controlled sorting genetic
algorithm. It is an algorithm that is classified among
the optimization algorithms. Hence, its function is to
indicate the set of solutions and address solutions
simultaneously. Therefore, every polarized solution
will be represented as a chromosome; the chromosome
comes in a series of symbols. Therefore, chromosomes
are presented based on a binary form composed of O
and 1 [14].

This study aims to schedule industrial wireless
sensor networks of sensor nodes (SNs) for monitoring
the critical targets in industrial wireless sensor
networks (WSNs), where classical machine learning
used in the proposed model like support wvector
machine, decision tree, and RProp algorithms as a
measurement for the network performance and testing
the efficiency for the dataset.

2. Literature Review

In [15] study, they proposed a model for time
synchronization in IWSNs based on the energy-
efficient reference node selection (EERS) algorithm.

The proposed method worked selected and scheduled a
minimal series of linked reference nodes responsible
for spreading timing messages. The experiment results
showed that a large sensor network of 450 nodes
demonstrates that EERS reduces the number of
transmitted messages by 52%, 30%, and 13%
compared to R-Sync, FADS, and LPSS.

While in [16] study, they proposed a sleep
scheduling scheme IWSNSs that ensures a covering
degree requirement according to the dangerous degree
of the toxic gas leakage area while keeping the minimal
awake nodes connected with the global network. The
experiment results showed that the proposed method
outperforms the CKN-based sleep scheduling scheme
with the same required coverage degree for the toxic
gas leakage area.

In [17], the authors established an Energy-Efficient
Dynamic Scheduling Hybrid MAC Protocol (EDS-
MAC) that adopting the EDS-MAC protocol in a WSN
can assist users in extending network life and reducing
overall network energy and overhead usage. This
protocol is divided into two steps: cluster formation
and data transmission. For constructing energy-aware
clusters through optimal cluster head selection, a
variable step size firefly algorithm (VSSFFA) is
proposed in the first step. The data transmission stage
reduces latency, delay, and control overhead in data
transfer.

3. Dataset and Configuration

The dataset contains the most important features of
the network that extracted from measurements for the
WSN at an industrial environment during the period
05-06/06/2014, where the extraction process for data
based on the splitting of the raw instances of the
network into windows of monitoring with length equals
500 sequential entries per node of the sensor. The
dataset contains each network monitoring for the
traffic, MAC, NWK layers, and metrics from physical
and ambient sensors readings (humidity and
temperature) and voltage threshold on each sensor
node. The traffic recorded is related to the links
established at the application layer (dataset) between
each node (id = 1, 2..10) and a sink node (Fig.1),
where the traffic is recorded at the sink node.
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The network configuration contains each sensor
node platform, network size, a transmission protocol
stack. Table 1 below shows the configuration for the
proposed network.

Table 1 Network configuration

Description

AdvanticSyS XM1000 and
CM5000-SMA (IEEE 802.15.4-
compliant devices)

Ten sensor nodes (node id =1,
2,...10) and a sink node (running
on a PandaBoard)

Transmission Period 6sec

Customized, based on Contiki
OS-version 2.6- and incorporating
the IETF Standard for Routing
over Low-Power and Lossy
Networks

Features

Sensor Nodes Platform

Network Size

Protocol Stack

The dataset contains each of the following features:

e The received signal strength value over the
multi-hop path between a node (i) and sink node (dBm);

e The value of link quality indicator over the
multi-hop path between a node (i) and the sink node;

e  The value of the noise floor over the multi-hop
path between a node (i) and sink node (dBm);

e  The transmission rate at the MAC layer (bpm)
at the 1:10 node (unicast traffic only);

e The reception rate at the MAC layer (bpm) at
the 1:10 node (unicast traffic only);

e  The value of the routing path length (number of
hops) between a node (i) and the sink node;

e The estimated Packet Reception Ratio, using
WMEWMA estimator [19];

e The value of temperature on the 1:10 node
(Celsius degrees);

e  The value of humidity on the 1:10 node (%);

e  The value of voltage level on the 1:10 node (V);

e The Recorded Packet Reception Ratio.

4. Methodology

This study addresses the coverage and connectivity-
aware scheduling of sensor nodes (SNs) for monitoring
the critical targets in industrial wireless sensor
networks (WSNs). The SNs with relatively higher
energy levels are preferred to be selected to serve full
rounds. Considering the multi-objective nature of the
problem, the proposed model used the classical
machine learning (support vector machine, decision
tree, and RProp) algorithms to calculate the network
performance and test the efficiency for the dataset. Fig.
2 depicts the general framework for the proposed
model.

Sensor Node Data (Raw Data)
(id=1,2..10)

{

Data Preprocessing

{

Selected Features and Data Analysis

{

Classical Machine Learning Algorithms

Support Vector Machine (SVM)

Decision Tree

RProp

{

Confusion Matrix

{

Accuracy

Fig. 2 General framework

The main goal of the proposed model is to extract
the most affected features (received signal, link quality
indicator, floor noise, transmission MAC, reception
MAC, routing path length, estimated packet reception,
temperature, humidity, voltage, and the recorded packet
reception). They play a big role in network scheduling
and calculating the accuracy of the dataset to improve
the scheduling in industrial wireless sensor networks.
Table 2 describes the classifier model of supervised

machine learning using the KNIME Analytics
Platform.
Table 2 Supervised machine learning model
Algorithm rlfoNdLME Description
This node trains a support vector
SVM machine on the input data (Refined
Learner Dataset). It supports several kernels
SVM (Hyper Tangent, Polynomial, and
SVM RBF), and uses an SVM model
Predictor generated by the SVM learner node
to predict the output for given
values.
RProp MLP  Implementation of the RProp
Learner. algorithm for multilayer feedforward
RProp Multi- networks. RPROP performs a local
LayerPercep  adaptation of the weight updates
tron according to the behavior of the
Predictor error function.
Decision This node induces a classification
. Tree Learner - - -
Decision Decision decision tree in the main memory.

Tree The target attribute must be nominal

Tree (classes of sensors)
Predictor )
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Fig. 3 KNIME analytics model

In this research, the main idea behind the KNIME
analytics model (Fig. 3) is to calculate a confusion
matrix (the number of matching for the attribute rows
with their classification match) containing each correct
and wrong classified accuracy and the error. Where the
accuracy measurement depends according to the
following measurements:

e  True-Positives: the value of the result where
the proposed model correctly prophesies the positive
class.

e False-Positives: the value of the result where
the proposed model incorrectly prophesies the positive
class.

e  True-Negatives: the value of the result where
the proposed model correctly prophesies the negative
class.

o False-Negatives: the value of the result where
the proposed model incorrectly prophesies the negative
class.

e Recall: the total number of relevant instances
that were retrieved.

e Precision: the relevant instances among the
retrieved instances.

e  Sensitivity: the number of actual positives that
are correctly identified.

e  Specificity: the number of actual negatives that
are correctly identified.

e F-measure: a combination of each precision
and recall into one measure.

5. Results and Analysis

In this section, we will make a full analysis of the
dataset and testing results using the proposed model in
KNIME Analytics. This section aims to extract all
features that affect the scheduling for industrial
wireless sensor networks.

Table 3 shows the convergence of results for the
temperature values for all sensors, with the significant
variation for the results for the humidity values for all
sensors (Fig. 4).

Temperature:Humidity

cl 2 3 4 5 6 7 B8 9 cl0

Temperature Humidity

Fig. 4 Temperature and humidity percentage

5.2. Recorded Packet Reception & Estimated Packet
Reception

Table 4 shows the comparison of values between
each of the recorded packet reception and the estimated
packet reception for all sensors:

Table 4 The average of recorded packet reception and the estimated
packet reception

Recorded Packet

Estimated Packet

Sensor Reception Reception
Sensor_1 0.927648543 0.929756382
Sensor_2 0.921503116 0.923267688
Sensor_3 0.9212376 0.9219941
Sensor_4 0.93571605 0.9373106
Sensor_5 0.9255054 0.92708265
Sensor_6 0.9337663 0.93630265
Sensor_7 0.9235966 0.92572625
Sensor_8 0.94135405 0.9430637
Sensor_9 0.9329652 0.9350768
Sensor_10 0.9239234 0.92584455
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We can notice the convergence of results for the
recorded packet reception and the estimated packet
reception for all sensors, which mean there is no big
impact for these features on the scheduling in industrial
wireless sensor networks (Fig. 5):

0.95
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0.93
092

091
cl 2 3 ¢4 5 o 7 8 9 10

=== Estimated Packet Reception

Recorded Packet Reception

Fig. 5 Recorded packet reception and the estimated packet
reception values

5.3. Transmission & Reception MAC Layers

Table 5 shows the difference for each transmission
MAC layer (unicast traffic only) and the reception
MAC layer (unicast traffic only):

Table 5 The average transmission & reception MAC layer

Sensor Transmission MAC Reception MAC
Sensor_1 279.1578894 150.5554874
Sensor_2 149.8915578 23.00052764
Sensor_3 416.8487 139.6315
Sensor_4 152.3443 23.095395
Sensor_5 134.21135 4.711055
Sensor_6 151.87365 22.95482
Sensor_7 264.9166 135.95115
Sensor_8 1387.34565 1221.18765
Sensor_9 697.1805 559.19513
Sensor_10  132.6446 4.64779

We can notice the big difference between each of
the transmission and the reception MAC layers that
effect directly on the scheduling in industrial wireless
sensor networks (Fig. 6):
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Fig. 6 Recorded packet reception and the estimated packet
reception values

5.4. Received Signal Strength & Noise Floor

Table 6 shows the difference for each of received
signal strength over the multi-hop path between a node
(i) and sink node (dBm), and the noise floor over the

multi-hop path between a node (i) and sink node
(dBm).

Table 6 The average received signal strength & noise floor

Sensor Received signal strength Noise floor
Sensor_1 -85.5591005 -97.47270352
Sensor_2 -85.40829648 -95.27441709
Sensor_3 -86.33442 -93.39855
Sensor_4 -86.68147 -97.56427
Sensor_5 -85.459465 -95.497715
Sensor_6 -86.63261 -95.86175
Sensor_7 -86.01895 -90.271755
Sensor_8 -87.462285 -95.726705
Sensor_9 -85.11303 -94.877075
Sensor_10 -86.796655 -98.2337

We can notice the big difference between each
received signal strengths and the noise floors that
directly affect the scheduling in industrial wireless
sensor networks (Fig. 7):
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Fig. 7 Received signal strength and the noise floor

5.5. KNIME Analytics Model

KNIME model contains three different classifiers
(support vector machine, decision tree, and RProp).
Each classifier gives a different result, represented as a
confusion matrix shown in Fig. 8.
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Fig. 8 KNIME confusion matrix

Table 7 shows the results of confusion matrices for
all classifiers (support vector machine, decision tree,
and RProp).

Table 7 Confusion matrices results

Classifier Correct Wrong Accuracy  Error
Classified  Classified
SVM 1293 105 92.489% 7.511%
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Continuation of Table 7

DT. 1370 28 97.979% 2.003%
RProp 1375 23 98.335% 1.645%

6. Conclusion

In this paper, classical machine learning methods
(SVM, RProp, and Decision Tree) are applied for
testing the extracted features to an affected degree for
network configurations. This study tried to extract the
most affected features (received signal, link quality
indicator, floor noise, transmission MAC, reception
MAC, routing path length, estimated packet reception,
temperature, humidity, voltage, and the recorded packet
reception). They play a big role in network scheduling
and calculating the accuracy of the dataset to improve
the scheduling in industrial wireless sensor networks.
The proposed dataset contains different fractures like
the sensor nodes platform, network size, transmission
period, and the protocol stack.

The experiment results showed the convergence for
the temperatures values for all sensors, with the
significant variation for the results for the humidity
values for all sensors, and the convergence of results
for the recorded packet reception and the estimated
packet reception for all sensors, which mean there is no
big impact for these features on the scheduling in
industrial wireless sensor networks. While the big
difference in results between each of the transmission
and the reception MAC layers that effect directly on the
scheduling in industrial wireless sensor networks.

The testing measurements using the KNIME model
give a high accuracy in results according to the
available dataset, where SVM classifier reached
(92.489%) with (7.511%) for error rate, while decision
tree classifier reached (97.979%) with (2.003%) for
error rate, but the RProp classifier gives a higher rate
for accuracy reached to (98.335%) with (1.645%) for
error rate.

The results are considered good during the
limitation of the lack of data and features. In the future,
we will apply another scenario with collecting a big
dataset using the Artificial Neural Networks (ANN)
that its many data characteristics can impact the
efficiency of the results.
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