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Abstract: Over the last two decades, medical imaging examinations, and technologies together have been
exponentially increased. With the increased demand for medical examinations, the demand for medical imaging
experts is also increased. Manual identification and annotation of biomedical concepts tend to be rigorous and error-
prone due to the varied knowledge of imaging experts. There is a critical need for automated Medical Concept
Detection methods. Finding the relevant biomedical concepts present in a medical image holds the key to solve
many automated clinical diagnosis problems, a machine learning pipeline for medical information retrieval, and
other related issues, like creating and managing legacy or cloud-based descriptive digital repository. Appropriate
mapping from biomedical image concepts into precise textual summary highly depends on the efficiency of Medical
Concept Detection techniques. A novel clustering technique is presented as a complementary data preconditioning
step to reach high concept detection results. The authors grouped 8767 Concept unique Identifiers (CUIs) into 970
clusters (label size decreased by 26% approximately using 97.7% images from the dataset). The main objective of
this research is to examine the state-of-the-art convolution-based deep learning pre-trained and full-scale training
models for the task of multi-label classification of medical concepts using medical image input. The research work
evaluates the performance of transfer learning networks: InceptionVV3, Xception, Dense Convolution Network
(DenseNet) 121, VGG-16, and MobileNet. This work also presents one full-scale learning CNN architecture for the
identification of relevant biomedical concepts that exist in medical images. Transfer learning technigue using
Xception model has achieved the highest F1 score of 36.29. The shallow VGG-like full-scale training architecture
also has shown a promising result with an F1 score of 20.018. The obtained results reflect the significant
improvement from previous experiments, offering state-of-the-art performance, with new data preconditioning
precedence for highly variable and complex datasets.

Keywords: concept detection, concept annotation, deep learning, medical image processing, neural
networks, machine learning.
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1. Introduction

Analyzing medical images for extraction of
semantic concepts and interpreting the unique medical
image content in a natural language is a special long
unsolved problem of Image annotation. Systems to
automatically find the relevant, meaningful concepts
from meagerly an image input (Figure 1) may help
implement machine learning pipelines to solve many
image and vision-related problems.

Concepts (CUIs):

— C0016911: Gadolinium

— C0021485: Injection or therapeutic agent

— C0024485: Magnetic Resonance Imaging

— CO0577559: Mass of hody structure

— C1533685: Injection Procedure

Fig. 1 Amedical image with relevant concept unique identifiers

(CUls)

For example, detecting semantic concepts present in
the medical image and further combining this
comprehension to generate a descriptive summary in a
natural language serve as a basis to solve the problem
of automatic clinical diagnosis. This will be very useful
since diagnosing is a prolonging task even for highly
skilled professionals. In another perspective, designing
a robust computerized concept detection framework
and implementing it on an appropriated legacy or
cloud-based environment may extend and overhaul the
functions to create, host, and manage modality-based
descriptive digital repositories. This research proposes
a novel deep learning-based concept detection
framework based on the above premises. The proposed
concept detection framework also utilizes a novel
clustering technique [1] as a complementary data

preprocessing, discussed in detail in section 3.2 (Data
Cleansing). The key contributions can be summarized
as follows:

e This research proposes a convolutional neural
network-based concept detection framework for
mapping biomedical image concepts.

e This research also utilizes the novel clustering
technique as a preconditioning step to enhance the
classification results.

e Finally, this research presents an experimental
comparison between deep learning transfer learning
and full-scale training on medical image concept
detection tasks.

The rest of the paper is organized as follows:
Section 2 describes the relevant research. Section 3
discusses the comprehensive data and experimental
preparations. Section 4 explains the proposed concept
detection method, which covers the methodology for
concept detection using transfer learning and full-scale
training from scratch. Finally, in section 5, results are
discussed. Section 6, in the end, draws the conclusion
and recommends some future scope of the proposed
research.

2. Literature Review

Since the evolution of deep learning methods and
their huge success over image data, automatic medical
image concept detection, and annotation were studied
intensively. Various campaigns and challenges [2]-[6]
were also organized to attract researchers worldwide to
solve the related problems. The automatic Medical
Concept Detection problem was poised to provide
medical image interpretation by extracting medical
semantics. Once the semantic concept vocabulary is
detected during the concept detection step, other
participating systems can operate together for different
system-specific needs. Medical Concept Detection may
serve as a preliminary step for all those systems.
Several approaches were used for the medical image
concept detection task, covering traditional retrieval
systems and modern deep learning techniques. The
discussion will be based on research groups that
implemented their models using various deep learning
techniques. The research publications [7]-[15] included
RNNs, deep CNNs, and GANs to represent visual
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information.

AUEB NLP Group [16] has secured the top 1st,
2nd, 3rd, and 5th positions for their four different
nominations with the best run F1 score of 28.2%, at
ImageCLEFmed 2019 Concept Detection Task [2].
Their first ranked system is a recreation work of
CheXNet [17] with an extension of handling larger
label sets (5528 labels instead of 14) of the data. They
used DenseNet-121 [18] for encoding images and
added an FFNN to assign one or more of the 5528
output labels (classes) to each image using sigmoid
activations to produce a probability per label. Their
second-best system was a combination of the
CheXNet-based and k-NN image retrieval-based
techniques. In the k-NN retrieval phase, k most similar
training images are retrieved with their gold concepts.
Then cosine similarity between test and k-retrieved
images are obtained to assign a score.

DAMO [19], ranked second top according to the
best-run entries, has used residual network ResNet-101
for the multilabel classification approach. To handle the
problem of data imbalance, they have applied several
data filtering methods to get a balanced reduced
dataset. They have achieved a 27% F1 score for their
best entry. Their filtering methods emphasize the
necessity of handling data imbalance problems to
achieve higher accuracy.

ImageSem [7], [20], a second-time participant in the
challenge, has designed the concept detection pipeline
in two stages. In the first stage, which they called the
pre-classification stage, they have divided images into
four clusters according to the body parts and fine-tuned
their multilabel classifier for the highest frequency
concepts subset. They have achieved 22% of F1 score,
secured the third position, and ranked the 8th best run.
Their previous research for the same task had relied on
heavy data preconditioning, and they have applied
image retrieval and transfer learning. Their approach is
based on the Lucene Image Retrieval Engine (LIRE)
used in combination with Latent Dirichlet Allocation
(LDA) for grouping concepts of similar images. A fine-
tuned CNN, pre-trained with ImageNet weights, was
also utilized to predict a selected subset of concepts by
ImageSem.

UA.PT Bioinformatics [14], [21], which
participated in 2018 ImageCLEF, has secured the
fourth-best team position that year and was ranked 16th
with their best F1-score of 21%. From their eight-run
submissions, the best score resulted in SimpleNet
configuration. In the past year's challenges, they have
achieved remarkable results by using an adversarial
auto-encoder and performing unsupervised feature
learning. Experiments by UA.PT also included the
BoVW (bag of visual words) algorithm, using OFAST
and rotated BRIEF (ORB) keypoint descriptors. Two
classification algorithms, namely a logistic regression
and a k-nearest neighbor (k-NN) variant, have also

been used for concept detection over the learned
feature spaces. Using the adversarial auto-encoder
technique features, they achieved the best results of a
mean F1 score of 11% for a generalized linear
classifier.

The CS MS group [13] and the AILAB used
multimodal Recurrent Neural Networks (RNNSs) as an
encoder-decoder model. AILAB used a partial dataset
with only 4000 images for visual feature extraction by
a pre-trained CNN, and using word embedding, they
obtained the text features. They used LSTM to merge
two modalities and processed at dense layer to generate
concept prediction. CS MS group [13] have encoded
captions and are used as input to the RNN, whereas
image features extracted from the deep network were
encoded using a pre-trained CNN like AILAB.
Combined encoded inputs were used to generate
concepts finally.

NLM [22] has used Convolution Neural Networks
(CNNs) and Binary Relevance using Decision Trees
(BR-DT) for concept detection. PRNA [23] used an
encoder-decoder-based framework that utilized an
attention-based mechanism in CNN-based architecture
to map the visual feature representation into relevant
captions. BMET [24] group extended the NICv2 model
[25], which consists of two varieties of neural networks
combined to form an encoder-decoder for the image to
language mapping.

AAIl [26], MAMI [27], and MUPB [28] used a very
deep neural network, but they were not effective as
compared to shallower CNNs. Traditional bag-of-
visual-words representations [29]-[30] or a mix of both
have also been used in the challenge. However, deep
convolution models are likely to deliver more robust
results, whereas some of the best results are also based
on the traditional features. Few researchers used
retrieval-based mechanisms to identify highly visually
related images on the ImageClef dataset [29]-[30].
Such related image captions are then searched for
biomedical concepts assigned to the candidate image.
This unique approach is proven to be good as it also
has shown very promising results for the concept
detection problem.

With four consecutive annual evaluation challenges,
the trend is clear that the deep learning techniques will
dominate sooner. Conclusively, where CNN-based
models seem to deliver robust results on average, the
traditional feature-based mechanisms were so far good.
However, the deep learning methods may surpass
traditional representations in terms of descriptive
power. Other techniques are improving every year and
also got satisfactory results, but still, even the highest
score is far from the strong baseline to compare with.

Our research focuses on dealing with two related
underlying problems. The deep neural network
architectures are successful under the basic constraint
that data should be largely homogeneous. These
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limitations restrict the efficient usage of complex deep
neural architectures for data with greater complexity
and variance. Hence the proposed novel clustering
method helps reduce the complexity and variance of
the task data. Second, this research exposes the
limitations of such architectures, and eventually, a line
of rigorous experiments is performed to test and
recommend the suitable CNN architecture using
transfer learning and full-scale training methods for
data with such complexity and variance.

The research work is organized in a way that it
should present a comprehensive comparative analysis
from SOTA deep learning models and techniques. This
paper also presents the customized shallow
convolutional network implemented for medical image
concept detection using a full-scale network training
method. Section 2 explains the data characteristics and
related preparations using the novel clustering method.
Section 3 describes the methodology, while in section
4, experimental and comparison results are discussed.
Finally, in section 5, the research conclusions and
future direction of the work are presented.

3. Data and Experimental Setup

3.1. Data Overview

The dataset includes 222,305 training and 10,000
biomedical testing images. The images are released
from scholarly articles in PubMed Central (PMC)
(http://www.ncbi.nlm.nih.ov/pmc/).  Each  training
image is provided with a set of UMLS CUIs for
concept learning. A total of 111,156 unique UMLS
concepts are extracted from the training set with the
help of the QuickUMLS library [31]. Biomedical
Concepts referred to a set of clinical concepts relevant
to the medical image and provided by the US National
Library of Medicine (NLM) and are called Concept
Unique Identifiers (CUIs). In the Unified Medical
Language System (UMLS) of the National Library of
Medicine (NLM), the Concept Unique Identifier (CUI)
is an 8-character identifier beginning with the letter C
and followed by seven digits. Each medical concept is
assigned such a CUIL. An example medical image with
its relevant concepts (CUIs) is shown in Figure 1.
Similarly, different types of (multimodal) medical
images may lie under the same concept label, as shown
in Figure 2, making the classification very challenging,
and data preprocessing for good homogeneous training
input becomes evidently necessary.
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Fig. 2 Challenge: Multiple types of (multimodal) medical images
under the concept (CUI) label, e.g., C0150305 ()

3.2. Data Cleansing

Data analysis was performed to understand and get
better insight from the data [20]. Data preconditioning
was helpful and necessary for this kind of high data
diversity to achieve high performance from the concept
detection models. Additional data processing was
performed for better understanding of the data nature as
a complementary step before inputting our model. We
also considered the data analysis performed by
ImageSem [20]. ImageSem analyzed the annotated
concept frequency distribution for multilabel training
object selection and similar image measurement. Their
data analysis reflected that the most frequently used
concepts are very few in numbers, including the
redundant ones.

Table 1 Frequency distribution of medical concept labels (CUIs) in
medical image training data
Frequency Number Ratio

0-100 102480 92.19%
100+ 8676 7.81%
Total 111156 100%

Concepts with a frequency less than 100 are very
high (92.19%). This fact shows the uneven distribution
of CUIs over training data. To increase the concept
coverage, we performed some additional processing.
We considered the concepts in the list, which have a
frequency of more than 1000 (7.81% CUIs) as
suggested by ImageSem [20]. Further, we modified the
similarity score calculation method (equation 1) and
increased the concept coverage using the modified
similarity score renamed membership _score (equation
2). ImageSem [20] selected the grouping candidate
CUIs from only the concepts having a frequency of
more than 1000. We did the same in our experiments
and found that 1312 CUIs have above 1000
frequencies. These 1312 CUIs are selected as the label
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representing CUIs for multilabel classification.
ImageSem [20] also reflected one important insight: the
co-occurrence of CUIs in the same cluster of images.
They devised a formula for clustering the images based
on co-occurrence of CUI, which they called similarity
score.

- __ images_ANimages B
SIMILAR_SCORE ( A,B ) — images_AUimages_B) (1)

The groups with a similarity score above 80% are
combined in one group. As a result, 1312 CUIs with
co-occurrence  were reduced into 459 class
representations containing 208595 medical images.

During the statistical analysis of the data, it was
observed that many CUI labels have a large number of
similar images. However, the similarity score is low
due to the big difference in numbers. For example, CUI
‘C0000726° has 3783 images, whereas the matching
CUI “C0153662° has 1566 images, out of which 1564
images match the CUI ‘C0000726°, but those groups
were ignored as their similarity score was below 80%
due to the formula by ImageSem. Table 3 presents
more similar matching statistics. It can be observed
from table 3 that due to high variation in image count
causes the poor similarity score, eventually disallowing
many good candidate CUIs to be a part of the cluster
representation group. To increase and improve the
coverage of the concepts and make richer CUIs group
representation to be part of the training, the similarity
score was reformulated to reduce the chances of

ignoring good candidate CUIs. The reformulation was
given a new name called Membership score. The
reformulated equation is as follows:

__ images_AnNimages_B
M_SCORE(A,B) = Min(images_A|images_B) (2)

where images_A and images_B are the images from the
groups CUI-A and CUI-B, respectively. M_SCORE(A,
B) calculates and obtains the degree of each group
membership in addition to the similarity score so that
even if the similarity score is below 80%, and the
membership score is above 85%, the CUI will be
selected to be combined to the bigger cluster. This
work is already published as independent research [32].
Table 2 presents the S_Score and M_Score to the
present reformulated score gap and impact.

Table 2 High number of matches but similarity score is below
threshold (%)

CUI Images (No) Matching CUI Images (No) Match S_Score(%)
C0000726 3783 C0153662 1566 1564  41.32
C0001613 1043 C0007776 1596 989 59.94
0003893 1758 C0177601 2075 1662  76.55
C0004763 4753 C1704653 17527 4712 26.82

Now, for creating the cluster group, either of the
conditions is checked, which means that if the
similarity score is at par, the group will be considered
merged to be a part of a larger cluster group.
Alternatively, if M_Score is above 85%, the group will
be merged in the representing cluster. The new data

analysis has resulted in 217209 images, mapped with
970 cluster groups to be used finally as input to the
model designed for multilabel classification (Table 3).

Table 3 A high number of matches but similarity score is not at par

(%)
Images Matching Images o
CUI (No) Cul (No) Match S_Score(%) M_Score
C0000726 3783 C0153662 1566 1564 41.32 99.87%
C0001613 1043 C0007776 1596 989 59.94 94.82%
C0003893 1758 C0177601 2075 1662 76.55 94.54%
C0004763 4753 C1704653 17527 4712 26.82 99.14%

Table 4 Overall frequency dispersion of medical concept labels
(CUISs) in medical image training data

CUI Code Concept Name No of Images
C1550557 Relationship Conjunction-and 77,003
C1706368 And - dosing instruction fragment 77,003
C1704254 Medical Image 20,165
0202823 Chest CT 7,917
C0400569 Closed fracture of neck of femur 1

Table 4 shows that there are CUIs that have
occurred in the highest number of images (C1550557
occurred in 77,003 images). There are chances that
some of the concept groups may have many images in
the set, and some may have very little. To standardize
the concept distribution over training images and avoid
over-fitting later, we will under-sample or over-sample
the clusters after preprocessing step concerning the
average number of images per cluster.

3.3. Experimental Setup

For the implementation of our deep learning model,
we used Keras (version 2.1.5) library in a Python 3
(version 3.6.9) SciPy environment on top of the
TensorFlow (version 1.12.0) backend. Keras facilitates
a clean and convenient way to create various deep
learning models TensorFlow stack, executed on
GeForce GTX 1070 GPU given the underlying
frameworks. Other necessary libraries, such as SciKit-
Learn, OpenCV, Pandas, NumPy, Pickle, and
Matplotlib, are also installed and used to support visual
and text feature extraction for model inputs, generation,
saving, and plotting. We planned our research work in
two different ways to achieve higher chances of correct
predictions. We have fine-tuned our training for
transfer learning with DenseNet121, ResNet50,
InceptionV3, Xception, and MobileNet CNN models.
We have designed a VGG-like shallow convolutional
neural network model for full training.

4. Concept Detection Method

Medical image concept detection is a special image
classification problem where multimodal medical
images are provided with their CUI (Concept Unique
Identifiers) labels. Systems are being developed to
identify complex image features to learn and further
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identify the concepts (labels) (Figure 3).

e C 0040942

", C0087136

i C0150325
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Fig. 3 Concept detection using deep learning

There was a great shift in the methods being used
for image classification, and deep learning has taken a
big leap in this. Our research focuses on the deep
learning methods used for medical image conception
detection tasks. The concept detection experiments
were designed to use five representations from transfer
learning and one full-scale training technique. One
shallow full-scale training network method is also
utilized (Figure 4).

T{ Concept Detection Methods
[ Transfer learning ] [ Transfer learning ]

[
Inception V3 |
[

[

| Xception |
|

| DenseNet121 |

[

[

| Shallow CNN |

I
MobileNet |

I
VGG16 |

L[ Results |-

Fig. 4 Concept detection methods

4.1. Transfer Learning

Lately, deep neural structures, especially
convolutional neural networks (CNNs), demonstrated
excellent results and surpassed the human-level
performance on object identification and image
classification problems. Convolution networks can
discriminate the complex visual indicators for image,
vision, and object recognition tasks, achieving
comparatively superior performance from the classical
techniques by convolving with tens of convolution
filters and training multiple depths of layers. Since
deep neural networks such as Convolution Neural
Networks (CNNs) were introduced for image-related
solutions, their successful applications have shown
wide applicability in other specialized domains like
medical image concept detection and annotation.
Moreover, using pre-trained networks even from a
different application domain could be a better starting
point. Pre-trained networks are already designed for a
different task, but the layers and their training weights
can be utilized as a starting point for some other new
tasks. The medical image concept detection is treated
as a multilabel classification task. In the multilabel
classification method, Convolution Neural Network
(CNN) is applied to assign one or more CUIs from the
predefined CUIs label set. Here, we have used the

ImageNet pre-trained model for transfer learning, and
then our preprocessed biomedical image dataset is
trained for domain adaptation.

This was a multilabel classification problem, and we
limited our experiment to the top 20 frequent labels.
Input images were resized according to the allowed
minimum pixels for each CNN with no cropping. We
used a randomly shuffled batch with the size of 32 and
0.0001 initial learning rate. The binary cross-entropy
loss function is used with Adam optimizer with default
beta values. Rescaling, zooming, rotation, shearing, and
horizontal augmentation techniques are performed
using Keras Image Data Generator. Data is split into
85% training set and 15% validation set.

Table 5 summarizes the hyper-parameters of the
experiments, and Table 6 summarizes the utilized
network characteristics. The performance result of each
CNN is being discussed in the result section. Figure 5
presents the transfer learning network pre-trained with
ImageNet weights.

Table 5 Hyper-parameters setting for the experiments

Hyper-Parameters Value
Optlmlzatlon Adam
technique

Initial learning rate  0.0001
Epochs 75
Batch size 32

Table 6 Summary of the utilized transfer learning networks

ParametersAccuracy (%)

Model (Millions) on Imagenet Depth Input Size
Inception V3 23.9 78.2 48 299x299
Xception 22.8 79 72 299x299
DenseNet121 0.8 74.98 121 224x224
MobileNet 4.2 70.6 28 224x224
VGG16 134 715 16 224x224
.
Multi-label Sigmoid
classification——"-

fcl fel

N Conv...n

\
eee TRANSFER®> coo
Conv3 g Conv3

Conv2
Convl

t

‘ Data and labels (ImageNet) |— | Task Data and labels |
Fig. 5 Domain adaptation for concept detection

We have studied several transfer learning techniques
[18], [33-38] proven to be very successful in ImageNet
and other task datasets and deemed fit for medical
image concept detection tasks.
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4.2. Full Training — Proposed Shallow CNN for
Training from Scratch

Context-specific ~ descriptors ~ were  deemed
unsuccessful because the training and validation dataset
included a wide variety. There were images with large
numbers covering radiology X-ray, tissue cell
structures, and even the charts and graphs are in the
same group (Figure 2).

Training and predicting a neural network with large
enough depth seems to be a more suitable choice for
managing this variety and complexity. However,
considering the complexity of the data, it was realized
that the performance of the state-of-the-art deep neural
structures in this context is limited because the transfer
learning networks are trained in a different context. The
task data is used only for model adaptation. Hence, it
has emerged as a need to testify the performance of a
deep neural network fully trained on task data. In our
model, we have proposed a VGG-like shallow [39] and
a compact variant of VGGNet network architecture to
perform training from scratch. VGGNet [36],
developed and trained by Oxford renowned Visual
Geometry Group (VGG), refers to a 16-layer deep
CNN for object recognition, which achieved a position
amongst the top performances on the ImageNet dataset.
During the complimentary data preprocessing step
(Figure 6), the standardized clusters are fed as training
data to our custom convolution neural network.

rL| Representing Concept

.Image 1
. Image 2
.Image 3
.Image 4
.Image 5

- .Image N

Fig. 6 Proposed Miﬁi VGGNet like CNN for multi-label
classification using full-scale training technique

The proposed custom CNN architecture
characteristics could be summarized as follows (Figure
7):

An arrangement of 3x3 convolution layers stacked
in increasing depth with a 25 % dropout rate and max-
pooling is used to reduce volume. Dense layers are
used at the end of the network, just before the sigmoid
classifier. The activation function RELU is followed by
batch normalization. Dropout is utilized by randomly
deactivating neural units in respective layers. During
training, this random disconnection process helps
control overfitting in the model and introduces
redundancy. Eventually, no single node in the layer is
responsible for predicting a certain class, shape, or
object. This combined arrangement of multiple
CONV+RELU layers before pooling helps the model
learn a rich abstraction of features that suits inputs like
medical images.

VGGNet-7 Configurations:

EPOCHS =75
(1024) INIT_LR = 1e-3
| Pool BS =32
IMAGE_DIMS = (96, 96, 3)
Conv3-2|  3x3 Conv, 128
Conv3-1 3x3 CO"V, 128 Training Loss and Accuracy
— lrain_logs —
-
Conv2-2| 3x3 Conv, 64
Conv2-1 3x3 Conv, 64 * 5
| Pool i,
vl- 3x3 Conv, 32
Convl-1 x3 Cony, l“'\wmi_ VVVVVV

Fig. 7 Proposed convolution neural network layer stack

4.3. Cross-Entropy Loss

The Binary Cross-Entropy or log loss is used for
loss minimization and backpropagation. The CE Loss
is defined as:

CE = -Y{ xilog(Y;) -
where Xx; is the ground truth and Y; is the prediction
score for every class | in class C. Activation function
sigmoid is applied to the scores to compute the Cross-
Entropy Loss; f(Y;) refers to the activations.

4.3.1. Binary Cross-Entropy Loss for Multilabel
Classification

Binary Cross-Entropy Loss or Sigmoid Cross-
Entropy loss is a Sigmoid activation with a Cross-
Entropy loss. It differs from Softmax loss in that the
calculated loss is not affected by the other neural
network output vector component because each vector
output component is treated independently.

By using the sigmoid activation function with
binary cross-entropy loss function, each label will be
treated as an individual binary label. The relatedness
degree of each component belonging to a certain class
will not affect the degree of belongingness of the other
class. That is how it is suitable for multilabel
classification. It functions as a binary classification
problem among two classes and for each class in class
C. It is called Binary Cross-Entropy Loss, as discussed
above. The following formulation of Cross-Entropy
Loss for binary problems is often used:

CE = - L7 xilog(f(¥))
=~ L [rlog(f() + (1= x)log (1= F(¥)

Setting up C disjoint binary classification problems
(C=20 top frequent cluster labels.) and then adding up
the loss over the different independent binary problems
is the way to obtain gradients of every binary problem,
which adds to backward propagation, and the losses to
analyze the overall loss.



Khan et al. Medical Image Concept Detection Using Full Scale VGG-like Shallow and Transfer Learning Networks, Vol. 48 No. 12 December

220

2021

5. Results

5.1. Transfer Learning

The main idea behind using transfer learning is to
take a model which is already successfully used and
repurpose it for domain adaptation. We have used
several successful CNN models for verification and
validation purposes and fine-tuned them for our task
dataset. We have also presented the activation maps in
five intermediate layers of convolutional outputs for
each transfer learning model used.

The model includes InceptionV3, Xception,
VGG16, MobileNet, and DenseNet121 network
architectures. The purpose of the experiment with these
models is to investigate a detailed hyperparameter
setting and its impact, particularly on the biomedical
dataset used.

5.1.1. Inception V3

With 42 layers, introducing the idea of factorizing
convolutions has helped reduce the number of
parameters without compromising the network
efficiency. The lower error rate is obtained to make
InceptionvV3 [35] the Runner Up in ILSVRC
(ImageNet  Large Scale Visual Recognition
Competition) 2015. When using InceptionV3 for
transfer learning or domain adaptation of the medical
image dataset, we obtained the best F1 score of 16.75
(Figure 8) with training accuracy of 92.98, validation
accuracy of 92.92 training loss 20.21, and validation
loss of 20.80 in max pooling.
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Fig. 8 (a) Performance graph of Inception\/3 for concept detection
with average pooling
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Fig. 8 (b) Performance graph of InceptionV3 for concept detection
with max pooling

While, with the average pooling method, the F1
score is obtained at 18.96 with a training accuracy of
93.79, validation accuracy of 92.74, training loss 15.55,
and validation loss of 20.19. ImageNet weights were
used for transfer learning. Figure 9 presents the
qualitative result of the same.
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Fig. 9 Feature maps for InceptionV3 learning

5.1.2. Xception

Xception [37] by Google, stands for Extreme
version of Inception, it is even better than InceptionV3
(also by Google, 1st Runner Up in ILSVRC 2015) for
both ImageNet ILSVRC and JFT datasets. The power
comes in Xception because there is no intermediate
activation. Eventually, the highest accuracy was
obtained compared to those models which used ReLU
or ELU. When it was tested for biomedical image
dataset and used for transfer learning or domain
adaptation of medical image dataset, has obtained the
best F1 score 35.21 (Figure 10) with training accuracy
of 95.87, validation accuracy of 91.72, training loss of
09.29, and validation loss of 33.37 in max pooling.
While, with the average pooling method, the F1 score
obtained is 36.26 with a training accuracy of 95.86,
validation accuracy of 91.90, training loss of 09.21, and
validation loss of 31.06. ImageNet weights were used
for transfer learning.
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Fig. 10 Performance graph of Xception for concept detection with
max pooling

Figure 11 presents the qualitative output from the
Xception transfer learning.
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5.1.3. VGG 16

VGG-16 has 21 layers altogether, but only 16 layers
are weight layers, and that is why it is named VGG-16.
It was successful because it uses a small filter (3x3) in
the first and second convolution layers instead of 11x11
or 5x5, enabling local features to be captured.
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Fig. 12 (a) Performance graph of VGG16 for concept detection with

average pooling
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Fig. 12 (b) Performance graph of VGG16 for concept detection
with max pooling

Small filter size also results in a few parameters to
be learned, which is eventually good for faster
convergence and reduced overfitting problems. When it
was tested for biomedical image dataset and used for
transfer learning or domain adaptation of medical
image dataset, the best F1 score 21.28 was obtained
(Figure 12) with training accuracy of 95.21, validation
accuracy of 92.03, training loss of 11.50, and validation
loss of 27.25 in average pooling. While, with the max-
pooling method, the F1 score obtained is 19.33 with a
training accuracy of 94.49, validation accuracy of
92.46, training loss of 13.91, and validation loss of
23.22. Imagenet weights were used for transfer
learning.

5.1.4. DenseNet121

The CNNs with a deeper path like ResNet (100 to
1000 layers deep) have issues that information from the
input layer and the output layer may vanish before
reaching the other side (and gradient in the direction of
output to input).

DenseNet uses the network potential through feature
reuse instead of exploiting the representation power of
wider and deeper networks. Eventually, DenseNet
requires fewer parameters and drops redundant feature
maps.
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Fig. 14 (a) Performance graph of DenseNet121 for concept
detection with average pooling
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Fig. 14 (b) Performance graph of DenseNet121 for concept
detection with max pooling

When it was tested for biomedical image dataset
and used for transfer learning or domain adaptation of
medical image dataset, the best F1 score 21.13 was
obtained (Figure 14) with training accuracy of 94.14,
validation accuracy of 92.39, training loss of 14.19, and
validation loss of 27.32 in average pooling.

While, with the max-pooling method, the F1 score
obtained is 23.76 with a training accuracy of 95.49,
validation accuracy of 92.03, training loss of 10.66, and
validation loss of 27.20. ImageNet weights were used
for transfer learning.
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5.1.5. MobileNet

In pursuit of finding the better network architecture
for the special problem, we also looked for architecture
out of the general trend of deeper and complicated
CNN architectures. MobileNet is mainly introduced in
view of solving embedded vision and mobile
application problems. It has reduced the complexity

and size of the model to make use of deep neural

networks in mobile devices.
Training Loss and Accuracy

= frain_loss

— val_loss

= frain_acc
0.8 - —— wval_acc

o
o
i

LossfAccuracy
o
o

0 10 20 30 40 50 60 70
Epoch #

Fig. 16 (a) Performance graph of MobileNet for concept detection
with average pooling

When it was tested for biomedical image dataset
and used for transfer learning or domain adaptation of
medical image dataset, the best F1 score 24.99 was
obtained (Figure 16) with training accuracy of 95.67,
validation accuracy of 92.25, training loss of 10.23, and
validation loss of 25.71 in average pooling. While, with
the max-pooling method, the F1 score obtained is 24.65
with a training accuracy of 95.64, validation accuracy
of 921.98, training loss of 10.52, and validation loss of

26.89. ImageNet weights were used for transfer
learning.
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Fig. 16 (b) Performance graph of MobileNet for concept detection
with max pooling
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Fig. 17 Feature maps for MobileNet learning

5.2. Full Training - Proposed Shallow CNN for

Training from Scratch
Several tests were performed with full-scale training
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of deep neural networks to present the impact of
training from scratch on task data for the experimental
support extension. Although training a deep neural
network for full-scale training is not encouraged unless
a large amount of labeled training data is available. In
our case, our preprocessing methods have allowed
performing the experiments because the training data
was resampled for sufficient training samples.

When tested for target biomedical image dataset and
used for full-scale training, the best F1 score of 20.018
was obtained (Figures 18 and 19) with training
accuracy of 95.33, validation accuracy of 92.16,
training loss of 11.20, and validation loss of 28.25.
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Fig. 18 Performance graph of full-scale training using shallow-
CNN

6. Discussion

To better understand the nature of data and achieve
higher performances, various statistical tests are
performed, and medical images are organized in
clusters based on a proposed statistical arrangement
called Membership_score of the concept groups. These
clusters are labeled by the representing concept. The
images in the representation concept group are given as
input to the multilabel classification model.

Deep learning Networks, particularly convolution
networks (CNNs) for generic image and object
classification, is a recent success in image and vision
technologies. Our proposed model intends to build a
simple yet efficient concept detection design using
CNN, which works on concept selection strategy using
transfer learning or full-scale training techniques.
Several traditional CNN transfer learning methods and
techniques from a different set of deep learning
network groups were tested. Full-scale training using

Shallower VGGNet convolutional neural network
variant is also used for multilabel classification of
concepts.

This research aims to assess the transfer learning
and full-scale training models for the multilabel
classification of medical concepts (CUIs) using
medical image input. The performance of both
techniques is significantly improved due to the rigorous
data preprocessing. Data preprocessing seems to be a
crucial and necessary step as the medical image dataset
was immensely diverse. The dataset was divided into
75% training and 25% testing. Therefore, five pre-
trained (on ImageNet) CNN models, namely
InceptionVV3, Xception, DenseNet-121, VGG16, and
MobileNet, were trained by the transfer learning
technique. In addition, a full-scale custom VGG-like
shallow network also was developed and trained to
understand the performance under the concept of
training from scratch (Table 7).

Table 7 Comparison of top 6 previous results with the proposed
research result

Previous Results (F1 Our Results (F1 Score)

Score)

Name Score Method Name Score
DAMO [19] 26.55 Xception 36.26
'ng]agesem [7. 2235 MobileNet ~ 24.99
UAPT [14,21] 20.58 DenseNet121  23.76
Richard 19.52 VGG16 21.28
Sam 17.49 Inception V3 20.80
MS-CSIRO 14.35 MiniVGG 20.01

These training models were evaluated by accuracy,
loss, and F-score metrics using the same hyper-
parameter settings. Table 7, complemented with a
performance graph (Figure 20), presents a general
performance. Xception under the concept of transfer
learning technique achieved the highest result than
other CNN architectures. Figure 21 maps the table 7
performance and presents a visual comparison of
baselines considered with our current results.

Current Results

40
36.26

35
® F1 Score

30

s 24.99 2375

21.28 20.01 20.8

20

15

10

Xception VGG16 Mini VGG  Inception V3 DenseNet-121

Fig. 20 Performance graph for CNN methods

MobileNet
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Top-6 Result comparison

Current Research Results Vs Previous Results

F1 Score

—f@i— Current Result F1 /Score
Previous Research F1 Score

Xception VGG16 MobileNet Mini VGG Inception V3 DenseNet-121

CNN Methods

Fig. 21 Performance comparison of the proposed research with top
SIX CNN-based state-of-the-art results

Figure 10 shows the training loss and accuracy in
max and average pooling conditions for Xception,
achieving a 36.06 best F1 scores with training accuracy
of 95.86, validation accuracy of 91.90, training loss
09.21, and validation loss of 31.06. Figures 22 and 23
represent the multi-labeled ROC curve and ROC curve
for each label, respectively.
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Fig. 22 Multilabel ROC curve
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Fig. 23 ROC curve for each label

The results implicate that the success of the models
is improved but limited. Still, they are not at a
satisfactory level to be claimed as a benchmark
performance for the task. The recent release of the
ROCO multimodal image dataset [40] has taken care of
the wide variety and reduced it to only Radiology
containing over 81k radiology images. All compound

and non-radiology images are now removed. Data
quality is improved and homogenized to a certain
extent but still has complexity and variance even within
limited classes. There is still a need for developing
methods to amalgamate techniques further to learn the
nature of the data at first and flexible deep neural
networks to automatically adjust the learning network
and settings according to the complexity of the data.
New dynamic deep learning methods are developed
that learn automatically from the complexity of the data
while training incrementally [41]-[42]. However, their
application to concept detection is still a concern.

7. Conclusion and Future Scope

This research thoroughly investigated the end-to-
end reason and impact-based potential CNN models
both in full-scale training and fine-tuning methods. Our
analysis is based on the dataset prepared during the
preprocessing step, which helped to make a
homogeneous dataset. We kept our dataset size
identical for both methods, and results clearly indicate
that transfer learning is always at the lead. We have
compared the performance of CNNs with different
depths, and Xception turns out to be the best for
preconditioned medical image data.

Several other research findings were observed. The
data is highly diverse and complex in nature, and our
research establishes a premise that data has to be
preconditioned to be homogenized for higher training
performance and accuracy. We also observed that the
full-scale training or transfer learning methods have
limitations in learning the complex and diverse variety
of data. We need to look beyond the classical methods
of deep neural networks. We need to seek an end-to-
end amalgamation of methods for observing the
complexity of data to adapt and learn complex features
and flexible neural architectures to fit accordingly
better.
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