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Abstract: Over the last two decades, medical imaging examinations, and technologies together have been 

exponentially increased. With the increased demand for medical examinations, the demand for medical imaging 

experts is also increased. Manual identification and annotation of biomedical concepts tend to be rigorous and error-

prone due to the varied knowledge of imaging experts. There is a critical need for automated Medical Concept 

Detection methods. Finding the relevant biomedical concepts present in a medical image holds the key to solve 

many automated clinical diagnosis problems, a machine learning pipeline for medical information retrieval, and 

other related issues, like creating and managing legacy or cloud-based descriptive digital repository. Appropriate 

mapping from biomedical image concepts into precise textual summary highly depends on the efficiency of Medical 

Concept Detection techniques. A novel clustering technique is presented as a complementary data preconditioning 

step to reach high concept detection results. The authors grouped 8767 Concept unique Identifiers (CUIs) into 970 

clusters (label size decreased by 26% approximately using 97.7% images from the dataset). The main objective of 

this research is to examine the state-of-the-art convolution-based deep learning pre-trained and full-scale training 

models for the task of multi-label classification of medical concepts using medical image input. The research work 

evaluates the performance of transfer learning networks: InceptionV3, Xception, Dense Convolution Network 

(DenseNet) 121, VGG-16, and MobileNet. This work also presents one full-scale learning CNN architecture for the 

identification of relevant biomedical concepts that exist in medical images. Transfer learning technique using 

Xception model has achieved the highest F1 score of 36.29. The shallow VGG-like full-scale training architecture 

also has shown a promising result with an F1 score of 20.018. The obtained results reflect the significant 

improvement from previous experiments, offering state-of-the-art performance, with new data preconditioning 

precedence for highly variable and complex datasets. 

Keywords: concept detection, concept annotation, deep learning, medical image processing, neural 

networks, machine learning. 

使用全尺寸 VGG 类浅层和迁移学习网络进行医学图像概念检测 

摘要：在过去的二十年里，医学影像检查和技术一起呈指数级增长。随着医学检查需求

的增加，对医学影像专家的需求也随之增加。由于成像专家的知识多种多样，对生物医学概

念的手动识别和注释往往是严格且容易出错的。迫切需要自动化的医学概念检测方法。找到

医学图像中存在的相关生物医学概念是解决许多自动化临床诊断问题、用于医学信息检索的

机器学习管道以及其他相关问题的关键，例如创建和管理遗留或基于云的描述性数字存储

库。从生物医学图像概念到精确的文本摘要的适当映射高度依赖于医学概念检测技术的效

率。提出了一种新颖的聚类技术作为补充数据预处理步骤，以达到高概念检测结果。作者将 

8767 个概念唯一标识符 (CUI) 分组为 970 个集群（使用数据集中 97.7% 的图像，标签

大小减少了大约 26%）。本研究的主要目的是检查最先进的基于卷积的深度学习预训练和全

面训练模型，用于使用医学图像输入进行医学概念的多标签分类任务。研究工作评估了迁移

学习网络的性能：盗梦空间五 3、异常、密集卷积网络 (致密) 121、VGG-16 和移动网络。
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这项工作还提出了一种全面的学习美国有线电视新闻网架构，用于识别医学图像中存在的相

关生物医学概念。使用异常模型的迁移学习技术取得了 36.29 的最高 F1 分数。类似 VGG 

的浅层全尺寸训练架构也显示出令人鼓舞的结果，F1 得分为 20.018。获得的结果反映了先

前实验的显着改进，提供了最先进的性能，并为高度可变和复杂的数据集提供了新的数据预

处理优先级。 

关键词：概念检测、概念注释、深度学习、医学图像处理、神经网络、机器学习. 

 
 

1. Introduction 

Analyzing medical images for extraction of 

semantic concepts and interpreting the unique medical 

image content in a natural language is a special long 

unsolved problem of Image annotation. Systems to 

automatically find the relevant, meaningful concepts 

from meagerly an image input (Figure 1) may help 

implement machine learning pipelines to solve many 

image and vision-related problems.  

 
Fig. 1 A medical image with relevant concept unique identifiers 

(CUIs) 

 

For example, detecting semantic concepts present in 

the medical image and further combining this 

comprehension to generate a descriptive summary in a 

natural language serve as a basis to solve the problem 

of automatic clinical diagnosis. This will be very useful 

since diagnosing is a prolonging task even for highly 

skilled professionals. In another perspective, designing 

a robust computerized concept detection framework 

and implementing it on an appropriated legacy or 

cloud-based environment may extend and overhaul the 

functions to create, host, and manage modality-based 

descriptive digital repositories. This research proposes 

a novel deep learning-based concept detection 

framework based on the above premises. The proposed 

concept detection framework also utilizes a novel 

clustering technique [1] as a complementary data 

preprocessing, discussed in detail in section 3.2 (Data 

Cleansing). The key contributions can be summarized 

as follows: 

 This research proposes a convolutional neural 

network-based concept detection framework for 

mapping biomedical image concepts. 

 This research also utilizes the novel clustering 

technique as a preconditioning step to enhance the 

classification results. 

 Finally, this research presents an experimental 

comparison between deep learning transfer learning 

and full-scale training on medical image concept 

detection tasks. 

The rest of the paper is organized as follows: 

Section 2 describes the relevant research. Section 3 

discusses the comprehensive data and experimental 

preparations. Section 4 explains the proposed concept 

detection method, which covers the methodology for 

concept detection using transfer learning and full-scale 

training from scratch. Finally, in section 5, results are 

discussed. Section 6, in the end, draws the conclusion 

and recommends some future scope of the proposed 

research. 
 

2. Literature Review 

Since the evolution of deep learning methods and 

their huge success over image data, automatic medical 

image concept detection, and annotation were studied 

intensively. Various campaigns and challenges [2]-[6] 

were also organized to attract researchers worldwide to 

solve the related problems. The automatic Medical 

Concept Detection problem was poised to provide 

medical image interpretation by extracting medical 

semantics. Once the semantic concept vocabulary is 

detected during the concept detection step, other 

participating systems can operate together for different 

system-specific needs. Medical Concept Detection may 

serve as a preliminary step for all those systems. 

Several approaches were used for the medical image 

concept detection task, covering traditional retrieval 

systems and modern deep learning techniques. The 

discussion will be based on research groups that 

implemented their models using various deep learning 

techniques. The research publications [7]-[15] included 

RNNs, deep CNNs, and GANs to represent visual 
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information.  

AUEB NLP Group [16] has secured the top 1st, 

2nd, 3rd, and 5th positions for their four different 

nominations with the best run F1 score of 28.2%, at 

ImageCLEFmed 2019 Concept Detection Task [2]. 

Their first ranked system is a recreation work of 

CheXNet [17] with an extension of handling larger 

label sets (5528 labels instead of 14) of the data. They 

used DenseNet-121 [18] for encoding images and 

added an FFNN to assign one or more of the 5528 

output labels (classes) to each image using sigmoid 

activations to produce a probability per label. Their 

second-best system was a combination of the 

CheXNet-based and k-NN image retrieval-based 

techniques. In the k-NN retrieval phase, k most similar 

training images are retrieved with their gold concepts. 

Then cosine similarity between test and k-retrieved 

images are obtained to assign a score. 

DAMO [19], ranked second top according to the 

best-run entries, has used residual network ResNet-101 

for the multilabel classification approach. To handle the 

problem of data imbalance, they have applied several 

data filtering methods to get a balanced reduced 

dataset. They have achieved a 27% F1 score for their 

best entry. Their filtering methods emphasize the 

necessity of handling data imbalance problems to 

achieve higher accuracy.  

ImageSem [7], [20], a second-time participant in the 

challenge, has designed the concept detection pipeline 

in two stages. In the first stage, which they called the 

pre-classification stage, they have divided images into 

four clusters according to the body parts and fine-tuned 

their multilabel classifier for the highest frequency 

concepts subset. They have achieved 22% of F1 score, 

secured the third position, and ranked the 8th best run. 

Their previous research for the same task had relied on 

heavy data preconditioning, and they have applied 

image retrieval and transfer learning. Their approach is 

based on the Lucene Image Retrieval Engine (LIRE) 

used in combination with Latent Dirichlet Allocation 

(LDA) for grouping concepts of similar images. A fine-

tuned CNN, pre-trained with ImageNet weights, was 

also utilized to predict a selected subset of concepts by 

ImageSem.   

UA.PT Bioinformatics [14], [21], which 

participated in 2018 ImageCLEF, has secured the 

fourth-best team position that year and was ranked 16th 

with their best F1-score of 21%. From their eight-run 

submissions, the best score resulted in SimpleNet 

configuration. In the past year's challenges, they have 

achieved remarkable results by using an adversarial 

auto-encoder and performing unsupervised feature 

learning. Experiments by UA.PT also included the 

BoVW (bag of visual words) algorithm, using OFAST 

and rotated BRIEF (ORB) keypoint descriptors. Two 

classification algorithms, namely a logistic regression 

and a k-nearest neighbor (k-NN) variant, have also 

been used for concept detection over the learned 

feature spaces. Using the adversarial auto-encoder 

technique features, they achieved the best results of a 

mean F1 score of 11% for a generalized linear 

classifier. 

The CS MS group [13] and the AILAB used 

multimodal Recurrent Neural Networks (RNNs) as an 

encoder-decoder model. AILAB used a partial dataset 

with only 4000 images for visual feature extraction by 

a pre-trained CNN, and using word embedding, they 

obtained the text features. They used LSTM to merge 

two modalities and processed at dense layer to generate 

concept prediction. CS MS group [13] have encoded 

captions and are used as input to the RNN, whereas 

image features extracted from the deep network were 

encoded using a pre-trained CNN like AILAB. 

Combined encoded inputs were used to generate 

concepts finally. 

NLM [22] has used Convolution Neural Networks 

(CNNs) and Binary Relevance using Decision Trees 

(BR-DT) for concept detection. PRNA [23] used an 

encoder-decoder-based framework that utilized an 

attention-based mechanism in CNN-based architecture 

to map the visual feature representation into relevant 

captions. BMET [24] group extended the NICv2 model 

[25], which consists of two varieties of neural networks 

combined to form an encoder-decoder for the image to 

language mapping.  

AAI [26], MAMI [27], and MUPB [28] used a very 

deep neural network, but they were not effective as 

compared to shallower CNNs. Traditional bag-of-

visual-words representations [29]-[30] or a mix of both 

have also been used in the challenge. However, deep 

convolution models are likely to deliver more robust 

results, whereas some of the best results are also based 

on the traditional features. Few researchers used 

retrieval-based mechanisms to identify highly visually 

related images on the ImageClef dataset [29]-[30]. 

Such related image captions are then searched for 

biomedical concepts assigned to the candidate image. 

This unique approach is proven to be good as it also 

has shown very promising results for the concept 

detection problem. 

With four consecutive annual evaluation challenges, 

the trend is clear that the deep learning techniques will 

dominate sooner. Conclusively, where CNN-based 

models seem to deliver robust results on average, the 

traditional feature-based mechanisms were so far good. 

However, the deep learning methods may surpass 

traditional representations in terms of descriptive 

power. Other techniques are improving every year and 

also got satisfactory results, but still, even the highest 

score is far from the strong baseline to compare with. 

Our research focuses on dealing with two related 

underlying problems. The deep neural network 

architectures are successful under the basic constraint 

that data should be largely homogeneous. These 
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limitations restrict the efficient usage of complex deep 

neural architectures for data with greater complexity 

and variance. Hence the proposed novel clustering 

method helps reduce the complexity and variance of 

the task data. Second, this research exposes the 

limitations of such architectures, and eventually, a line 

of rigorous experiments is performed to test and 

recommend the suitable CNN architecture using 

transfer learning and full-scale training methods for 

data with such complexity and variance.  

The research work is organized in a way that it 

should present a comprehensive comparative analysis 

from SOTA deep learning models and techniques. This 

paper also presents the customized shallow 

convolutional network implemented for medical image 

concept detection using a full-scale network training 

method. Section 2 explains the data characteristics and 

related preparations using the novel clustering method. 

Section 3 describes the methodology, while in section 

4, experimental and comparison results are discussed. 

Finally, in section 5, the research conclusions and 

future direction of the work are presented. 

 

3. Data and Experimental Setup 
 

3.1. Data Overview 
The dataset includes 222,305 training and 10,000 

biomedical testing images. The images are released 

from scholarly articles in PubMed Central (PMC) 

(http://www.ncbi.nlm.nih.ov/pmc/). Each training 

image is provided with a set of UMLS CUIs for 

concept learning. A total of 111,156 unique UMLS 

concepts are extracted from the training set with the 

help of the QuickUMLS library [31]. Biomedical 

Concepts referred to a set of clinical concepts relevant 

to the medical image and provided by the US National 

Library of Medicine (NLM) and are called Concept 

Unique Identifiers (CUIs). In the Unified Medical 

Language System (UMLS) of the National Library of 

Medicine (NLM), the Concept Unique Identifier (CUI) 

is an 8-character identifier beginning with the letter C 

and followed by seven digits. Each medical concept is 

assigned such a CUI. An example medical image with 

its relevant concepts (CUIs) is shown in Figure 1. 

Similarly, different types of (multimodal) medical 

images may lie under the same concept label, as shown 

in Figure 2, making the classification very challenging, 

and data preprocessing for good homogeneous training 

input becomes evidently necessary. 

 
Fig. 2 Challenge: Multiple types of (multimodal) medical images 

under the concept (CUI) label, e.g., C0150305 () 

 

3.2. Data Cleansing 

Data analysis was performed to understand and get 

better insight from the data [20]. Data preconditioning 

was helpful and necessary for this kind of high data 

diversity to achieve high performance from the concept 

detection models. Additional data processing was 

performed for better understanding of the data nature as 

a complementary step before inputting our model. We 

also considered the data analysis performed by 

ImageSem [20]. ImageSem analyzed the annotated 

concept frequency distribution for multilabel training 

object selection and similar image measurement. Their 

data analysis reflected that the most frequently used 

concepts are very few in numbers, including the 

redundant ones. 
 

Table 1 Frequency distribution of medical concept labels (CUIs) in 

medical image training data  
Frequency Number Ratio 

0-100 102480 92.19% 

100+ 8676 7.81% 

Total 111156 100% 

 

Concepts with a frequency less than 100 are very 

high (92.19%). This fact shows the uneven distribution 

of CUIs over training data. To increase the concept 

coverage, we performed some additional processing. 

We considered the concepts in the list, which have a 

frequency of more than 1000 (7.81% CUIs) as 

suggested by ImageSem [20]. Further, we modified the 

similarity score calculation method (equation 1) and 

increased the concept coverage using the modified 

similarity score renamed membership _score (equation 

2). ImageSem [20] selected the grouping candidate 

CUIs from only the concepts having a frequency of 

more than 1000. We did the same in our experiments 

and found that 1312 CUIs have above 1000 

frequencies. These 1312 CUIs are selected as the label 



217 

 

 

representing CUIs for multilabel classification. 

ImageSem [20] also reflected one important insight: the 

co-occurrence of CUIs in the same cluster of images. 

They devised a formula for clustering the images based 

on co-occurrence of CUI, which they called similarity 

score. 

  (1) 

The groups with a similarity score above 80% are 

combined in one group. As a result, 1312 CUIs with 

co-occurrence were reduced into 459 class 

representations containing 208595 medical images.  

During the statistical analysis of the data, it was 

observed that many CUI labels have a large number of 

similar images. However, the similarity score is low 

due to the big difference in numbers. For example, CUI 

‘C0000726’ has 3783 images, whereas the matching 

CUI ‘C0153662’ has 1566 images, out of which 1564 

images match the CUI ‘C0000726’, but those groups 

were ignored as their similarity score was below 80% 

due to the formula by ImageSem. Table 3 presents 

more similar matching statistics. It can be observed 

from table 3 that due to high variation in image count 

causes the poor similarity score, eventually disallowing 

many good candidate CUIs to be a part of the cluster 

representation group. To increase and improve the 

coverage of the concepts and make richer CUIs group 

representation to be part of the training, the similarity 

score was reformulated to reduce the chances of 

ignoring good candidate CUIs. The reformulation was 

given a new name called Membership score. The 

reformulated equation is as follows: 

      (2) 

where images_A and images_B are the images from the 

groups CUI-A and CUI-B, respectively. M_SCORE(A, 

B) calculates and obtains the degree of each group 

membership in addition to the similarity score so that 

even if the similarity score is below 80%, and the 

membership score is above 85%, the CUI will be 

selected to be combined to the bigger cluster. This 

work is already published as independent research [32]. 

Table 2 presents the S_Score and M_Score to the 

present reformulated score gap and impact. 

 
Table 2 High number of matches but similarity score is below 

threshold (%) 
CUI Images (No) Matching CUI Images (No) Match S_Score(%) 

C0000726 3783 C0153662 1566 1564 41.32 

C0001613 1043 C0007776 1596 989 59.94 

C0003893 1758 C0177601 2075 1662 76.55 

C0004763 4753 C1704653 17527 4712 26.82 

 

Now, for creating the cluster group, either of the 

conditions is checked, which means that if the 

similarity score is at par, the group will be considered 

merged to be a part of a larger cluster group. 

Alternatively, if M_Score is above 85%, the group will 

be merged in the representing cluster. The new data 

analysis has resulted in 217209 images, mapped with 

970 cluster groups to be used finally as input to the 

model designed for multilabel classification (Table 3). 
 

Table 3 A high number of matches but similarity score is not at par 

(%) 

CUI 
Images 

(No) 
Matching 

CUI 
Images 

(No) 
Match S_Score(%) M_Score 

C0000726 3783 C0153662 1566 1564 41.32 99.87% 

C0001613 1043 C0007776 1596 989 59.94 94.82% 
C0003893 1758 C0177601 2075 1662 76.55 94.54% 
C0004763 4753 C1704653 17527 4712 26.82 99.14% 

 
Table 4 Overall frequency dispersion of medical concept labels 

(CUIs) in medical image training data 
CUI Code Concept Name No of Images 

C1550557 Relationship Conjunction-and 77,003 

C1706368 And - dosing instruction fragment 77,003 

C1704254 Medical Image 20,165 

… ... ... 

C0202823 Chest CT 7,917 

… ... ... 

C0400569 Closed fracture of neck of femur 1 

 

Table 4 shows that there are CUIs that have 

occurred in the highest number of images (C1550557 

occurred in 77,003 images). There are chances that 

some of the concept groups may have many images in 

the set, and some may have very little. To standardize 

the concept distribution over training images and avoid 

over-fitting later, we will under-sample or over-sample 

the clusters after preprocessing step concerning the 

average number of images per cluster. 

 

3.3. Experimental Setup 

For the implementation of our deep learning model, 

we used Keras (version 2.1.5) library in a Python 3 

(version 3.6.9) SciPy environment on top of the 

TensorFlow (version 1.12.0) backend. Keras facilitates 

a clean and convenient way to create various deep 

learning models TensorFlow stack, executed on 

GeForce GTX 1070 GPU given the underlying 

frameworks. Other necessary libraries, such as SciKit-

Learn, OpenCV, Pandas, NumPy, Pickle, and 

Matplotlib, are also installed and used to support visual 

and text feature extraction for model inputs, generation, 

saving, and plotting. We planned our research work in 

two different ways to achieve higher chances of correct 

predictions. We have fine-tuned our training for 

transfer learning with DenseNet121, ResNet50, 

InceptionV3, Xception, and MobileNet CNN models. 

We have designed a VGG-like shallow convolutional 

neural network model for full training.  

 

4. Concept Detection Method 

Medical image concept detection is a special image 

classification problem where multimodal medical 

images are provided with their CUI (Concept Unique 

Identifiers) labels. Systems are being developed to 

identify complex image features to learn and further 
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identify the concepts (labels) (Figure 3). 

Fig. 3 Concept detection using deep learning 

 

There was a great shift in the methods being used 

for image classification, and deep learning has taken a 

big leap in this. Our research focuses on the deep 

learning methods used for medical image conception 

detection tasks. The concept detection experiments 

were designed to use five representations from transfer 

learning and one full-scale training technique. One 

shallow full-scale training network method is also 

utilized (Figure 4). 

 
Fig. 4 Concept detection methods 

 

4.1. Transfer Learning 
Lately, deep neural structures, especially 

convolutional neural networks (CNNs), demonstrated 

excellent results and surpassed the human-level 

performance on object identification and image 

classification problems. Convolution networks can 

discriminate the complex visual indicators for image, 

vision, and object recognition tasks, achieving 

comparatively superior performance from the classical 

techniques by convolving with tens of convolution 

filters and training multiple depths of layers. Since 

deep neural networks such as Convolution Neural 

Networks (CNNs) were introduced for image-related 

solutions, their successful applications have shown 

wide applicability in other specialized domains like 

medical image concept detection and annotation. 

Moreover, using pre-trained networks even from a 

different application domain could be a better starting 

point. Pre-trained networks are already designed for a 

different task, but the layers and their training weights 

can be utilized as a starting point for some other new 

tasks. The medical image concept detection is treated 

as a multilabel classification task. In the multilabel 

classification method, Convolution Neural Network 

(CNN) is applied to assign one or more CUIs from the 

predefined CUIs label set. Here, we have used the 

ImageNet pre-trained model for transfer learning, and 

then our preprocessed biomedical image dataset is 

trained for domain adaptation. 

This was a multilabel classification problem, and we 

limited our experiment to the top 20 frequent labels. 

Input images were resized according to the allowed 

minimum pixels for each CNN with no cropping. We 

used a randomly shuffled batch with the size of 32 and 

0.0001 initial learning rate. The binary cross-entropy 

loss function is used with Adam optimizer with default 

beta values. Rescaling, zooming, rotation, shearing, and 

horizontal augmentation techniques are performed 

using Keras Image Data Generator. Data is split into 

85% training set and 15% validation set. 

Table 5 summarizes the hyper-parameters of the 

experiments, and Table 6 summarizes the utilized 

network characteristics. The performance result of each 

CNN is being discussed in the result section. Figure 5 

presents the transfer learning network pre-trained with 

ImageNet weights. 

 
Table 5 Hyper-parameters setting for the experiments 

Hyper-Parameters Value 

Optimization 

technique 
Adam 

Initial learning rate 0.0001 

Epochs 75 

Batch size 32 

 
Table 6 Summary of the utilized transfer learning networks 

Model 
Parameters 

(Millions) 

Accuracy (%) 

on Imagenet 
Depth Input Size 

Inception V3 23.9 78.2 48 299x299 

Xception 22.8 79 72 299x299 

DenseNet121 0.8 74.98 121 224x224 

MobileNet 4.2 70.6 28 224x224 

VGG16 134 71.5 16 224x224 

 

  
Fig. 5 Domain adaptation for concept detection 

 

We have studied several transfer learning techniques 

[18], [33-38] proven to be very successful in ImageNet 

and other task datasets and deemed fit for medical 

image concept detection tasks. 
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4.2. Full Training – Proposed Shallow CNN for 

Training from Scratch 

Context-specific descriptors were deemed 

unsuccessful because the training and validation dataset 

included a wide variety. There were images with large 

numbers covering radiology X-ray, tissue cell 

structures, and even the charts and graphs are in the 

same group (Figure 2).  

Training and predicting a neural network with large 

enough depth seems to be a more suitable choice for 

managing this variety and complexity. However, 

considering the complexity of the data, it was realized 

that the performance of the state-of-the-art deep neural 

structures in this context is limited because the transfer 

learning networks are trained in a different context. The 

task data is used only for model adaptation. Hence, it 

has emerged as a need to testify the performance of a 

deep neural network fully trained on task data. In our 

model, we have proposed a VGG-like shallow [39] and 

a compact variant of VGGNet network architecture to 

perform training from scratch. VGGNet [36], 

developed and trained by Oxford renowned Visual 

Geometry Group (VGG), refers to a 16-layer deep 

CNN for object recognition, which achieved a position 

amongst the top performances on the ImageNet dataset. 

During the complimentary data preprocessing step 

(Figure 6), the standardized clusters are fed as training 

data to our custom convolution neural network. 

 
Fig. 6 Proposed Mini VGGNet like CNN for multi-label 

classification using full-scale training technique 

 

The proposed custom CNN architecture 

characteristics could be summarized as follows (Figure 

7): 

An arrangement of 3x3 convolution layers stacked 

in increasing depth with a 25 % dropout rate and max-

pooling is used to reduce volume. Dense layers are 

used at the end of the network, just before the sigmoid 

classifier. The activation function RELU is followed by 

batch normalization. Dropout is utilized by randomly 

deactivating neural units in respective layers. During 

training, this random disconnection process helps 

control overfitting in the model and introduces 

redundancy. Eventually, no single node in the layer is 

responsible for predicting a certain class, shape, or 

object. This combined arrangement of multiple 

CONV+RELU layers before pooling helps the model 

learn a rich abstraction of features that suits inputs like 

medical images. 

 
Fig. 7 Proposed convolution neural network layer stack 

 

4.3. Cross-Entropy Loss 
The Binary Cross-Entropy or log loss is used for 

loss minimization and backpropagation. The CE Loss 

is defined as: 

                    (3) 

where xi is the ground truth and Yi is the prediction 

score for every class I in class C. Activation function 

sigmoid is applied to the scores to compute the Cross-

Entropy Loss; f(Yi) refers to the activations. 

 

4.3.1. Binary Cross-Entropy Loss for Multilabel 

Classification 

Binary Cross-Entropy Loss or Sigmoid Cross-

Entropy loss is a Sigmoid activation with a Cross-

Entropy loss. It differs from Softmax loss in that the 

calculated loss is not affected by the other neural 

network output vector component because each vector 

output component is treated independently. 

By using the sigmoid activation function with 

binary cross-entropy loss function, each label will be 

treated as an individual binary label. The relatedness 

degree of each component belonging to a certain class 

will not affect the degree of belongingness of the other 

class. That is how it is suitable for multilabel 

classification. It functions as a binary classification 

problem among two classes and for each class in class 

C. It is called Binary Cross-Entropy Loss, as discussed 

above. The following formulation of Cross-Entropy 

Loss for binary problems is often used: 

  (4) 

Setting up C disjoint binary classification problems 

(C=20 top frequent cluster labels.) and then adding up 

the loss over the different independent binary problems 

is the way to obtain gradients of every binary problem, 

which adds to backward propagation, and the losses to 

analyze the overall loss. 
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5. Results 
 

5.1. Transfer Learning 
The main idea behind using transfer learning is to 

take a model which is already successfully used and 

repurpose it for domain adaptation. We have used 

several successful CNN models for verification and 

validation purposes and fine-tuned them for our task 

dataset. We have also presented the activation maps in 

five intermediate layers of convolutional outputs for 

each transfer learning model used. 

The model includes InceptionV3, Xception, 

VGG16, MobileNet, and DenseNet121 network 

architectures. The purpose of the experiment with these 

models is to investigate a detailed hyperparameter 

setting and its impact, particularly on the biomedical 

dataset used. 
 

5.1.1. Inception V3 

With 42 layers, introducing the idea of factorizing 

convolutions has helped reduce the number of 

parameters without compromising the network 

efficiency. The lower error rate is obtained to make 

InceptionV3 [35] the Runner Up in ILSVRC 

(ImageNet Large Scale Visual Recognition 

Competition) 2015. When using InceptionV3 for 

transfer learning or domain adaptation of the medical 

image dataset, we obtained the best F1 score of 16.75 

(Figure 8) with training accuracy of 92.98, validation 

accuracy of 92.92 training loss 20.21, and validation 

loss of 20.80 in max pooling. 

 
Fig. 8 (a) Performance graph of InceptionV3 for concept detection 

with average pooling 

 

 
Fig. 8 (b) Performance graph of InceptionV3 for concept detection 

with max pooling 

 

While, with the average pooling method, the F1 

score is obtained at 18.96 with a training accuracy of 

93.79, validation accuracy of 92.74, training loss 15.55, 

and validation loss of 20.19. ImageNet weights were 

used for transfer learning. Figure 9 presents the 

qualitative result of the same. 

 
Fig. 9 Feature maps for InceptionV3 learning 

 

5.1.2. Xception 

Xception [37] by Google, stands for Extreme 

version of Inception, it is even better than InceptionV3 

(also by Google, 1st Runner Up in ILSVRC 2015) for 

both ImageNet ILSVRC and JFT datasets. The power 

comes in Xception because there is no intermediate 

activation. Eventually, the highest accuracy was 

obtained compared to those models which used ReLU 

or ELU. When it was tested for biomedical image 

dataset and used for transfer learning or domain 

adaptation of medical image dataset, has obtained the 

best F1 score 35.21 (Figure 10) with training accuracy 

of 95.87, validation accuracy of 91.72, training loss of 

09.29, and validation loss of 33.37 in max pooling. 

While, with the average pooling method, the F1 score 

obtained is 36.26 with a training accuracy of 95.86, 

validation accuracy of 91.90, training loss of 09.21, and 

validation loss of 31.06. ImageNet weights were used 

for transfer learning. 
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Fig. 10 Performance graph of Xception for concept detection with 

max pooling 

 

Figure 11 presents the qualitative output from the 

Xception transfer learning. 

 
Fig. 11 Feature maps for InceptionV3 learning 

 

5.1.3. VGG 16 

VGG-16 has 21 layers altogether, but only 16 layers 

are weight layers, and that is why it is named VGG-16. 

It was successful because it uses a small filter (3x3) in 

the first and second convolution layers instead of 11x11 

or 5x5, enabling local features to be captured. 

 
Fig. 12 (a) Performance graph of VGG16 for concept detection with 

average pooling 

 

 
Fig. 12 (b) Performance graph of VGG16 for concept detection 

with max pooling 

 

Small filter size also results in a few parameters to 

be learned, which is eventually good for faster 

convergence and reduced overfitting problems. When it 

was tested for biomedical image dataset and used for 

transfer learning or domain adaptation of medical 

image dataset, the best F1 score 21.28 was obtained 

(Figure 12) with training accuracy of 95.21, validation 

accuracy of 92.03, training loss of 11.50, and validation 

loss of 27.25 in average pooling. While, with the max-

pooling method, the F1 score obtained is 19.33 with a 

training accuracy of 94.49, validation accuracy of 

92.46, training loss of 13.91, and validation loss of 

23.22. Imagenet weights were used for transfer 

learning. 

 

5.1.4. DenseNet121 

The CNNs with a deeper path like ResNet (100 to 

1000 layers deep) have issues that information from the 

input layer and the output layer may vanish before 

reaching the other side (and gradient in the direction of 

output to input). 

 
Fig. 13 Feature maps for VGG16 learning 

 

DenseNet uses the network potential through feature 

reuse instead of exploiting the representation power of 

wider and deeper networks. Eventually, DenseNet 

requires fewer parameters and drops redundant feature 

maps.  
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Fig. 14 (a) Performance graph of DenseNet121 for concept 

detection with average pooling 

 

 
Fig. 14 (b) Performance graph of DenseNet121 for concept 

detection with max pooling 

 

When it was tested for biomedical image dataset 

and used for transfer learning or domain adaptation of 

medical image dataset, the best F1 score 21.13 was 

obtained (Figure 14) with training accuracy of 94.14, 

validation accuracy of 92.39, training loss of 14.19, and 

validation loss of 27.32 in average pooling. 
While, with the max-pooling method, the F1 score 

obtained is 23.76 with a training accuracy of 95.49, 

validation accuracy of 92.03, training loss of 10.66, and 

validation loss of 27.20. ImageNet weights were used 

for transfer learning. 

 
Fig. 15 Feature maps for DenseNet121 learning 

 

5.1.5. MobileNet 

In pursuit of finding the better network architecture 

for the special problem, we also looked for architecture 

out of the general trend of deeper and complicated 

CNN architectures. MobileNet is mainly introduced in 

view of solving embedded vision and mobile 

application problems. It has reduced the complexity 

and size of the model to make use of deep neural 

networks in mobile devices.  

 
Fig. 16 (a) Performance graph of MobileNet for concept detection 

with average pooling 

 

When it was tested for biomedical image dataset 

and used for transfer learning or domain adaptation of 

medical image dataset, the best F1 score 24.99 was 

obtained (Figure 16) with training accuracy of 95.67, 

validation accuracy of 92.25, training loss of 10.23, and 

validation loss of 25.71 in average pooling. While, with 

the max-pooling method, the F1 score obtained is 24.65 

with a training accuracy of 95.64, validation accuracy 

of 921.98, training loss of 10.52, and validation loss of 

26.89. ImageNet weights were used for transfer 

learning.  

 
Fig. 16 (b) Performance graph of MobileNet for concept detection 

with max pooling 

 

  
Fig. 17 Feature maps for MobileNet learning 

 

5.2. Full Training - Proposed Shallow CNN for 

Training from Scratch 

Several tests were performed with full-scale training 
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of deep neural networks to present the impact of 

training from scratch on task data for the experimental 

support extension. Although training a deep neural 

network for full-scale training is not encouraged unless 

a large amount of labeled training data is available. In 

our case, our preprocessing methods have allowed 

performing the experiments because the training data 

was resampled for sufficient training samples. 

When tested for target biomedical image dataset and 

used for full-scale training, the best F1 score of 20.018 

was obtained (Figures 18 and 19) with training 

accuracy of 95.33, validation accuracy of 92.16, 

training loss of 11.20, and validation loss of 28.25. 

 
Fig. 18 Performance graph of full-scale training using shallow-

CNN 

 

  
Fig. 19 Feature maps for full-scale shallow network learning 

 

6. Discussion 
To better understand the nature of data and achieve 

higher performances, various statistical tests are 

performed, and medical images are organized in 

clusters based on a proposed statistical arrangement 

called Membership_score of the concept groups. These 

clusters are labeled by the representing concept. The 

images in the representation concept group are given as 

input to the multilabel classification model. 

Deep learning Networks, particularly convolution 

networks (CNNs) for generic image and object 

classification, is a recent success in image and vision 

technologies. Our proposed model intends to build a 

simple yet efficient concept detection design using 

CNN, which works on concept selection strategy using 

transfer learning or full-scale training techniques. 

Several traditional CNN transfer learning methods and 

techniques from a different set of deep learning 

network groups were tested. Full-scale training using 

Shallower VGGNet convolutional neural network 

variant is also used for multilabel classification of 

concepts. 

This research aims to assess the transfer learning 

and full-scale training models for the multilabel 

classification of medical concepts (CUIs) using 

medical image input. The performance of both 

techniques is significantly improved due to the rigorous 

data preprocessing. Data preprocessing seems to be a 

crucial and necessary step as the medical image dataset 

was immensely diverse. The dataset was divided into 

75% training and 25% testing. Therefore, five pre-

trained (on ImageNet) CNN models, namely 

InceptionV3, Xception, DenseNet-121, VGG16, and 

MobileNet, were trained by the transfer learning 

technique. In addition, a full-scale custom VGG-like 

shallow network also was developed and trained to 

understand the performance under the concept of 

training from scratch (Table 7). 
 

Table 7 Comparison of top 6 previous results with the proposed 

research result 

Previous Results (F1 

Score) 
Our Results (F1 Score) 

Name Score Method Name Score 

DAMO [19] 26.55 Xception 36.26 

ImageSem [7, 

20] 
22.35 MobileNet 24.99 

UAPT [14,21] 20.58 DenseNet121 23.76 

Richard  19.52 VGG16 21.28 

Sam 17.49 Inception V3 20.80 

MS-CSIRO 14.35 MiniVGG 20.01 

 

These training models were evaluated by accuracy, 

loss, and F-score metrics using the same hyper-

parameter settings. Table 7, complemented with a 

performance graph (Figure 20), presents a general 

performance. Xception under the concept of transfer 

learning technique achieved the highest result than 

other CNN architectures. Figure 21 maps the table 7 

performance and presents a visual comparison of 

baselines considered with our current results.  

 
Fig. 20 Performance graph for CNN methods 
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Fig. 21 Performance comparison of the proposed research with top 

SIX CNN-based state-of-the-art results 

 

Figure 10 shows the training loss and accuracy in 

max and average pooling conditions for Xception, 

achieving a 36.06 best F1 scores with training accuracy 

of 95.86, validation accuracy of 91.90, training loss 

09.21, and validation loss of 31.06. Figures 22 and 23 

represent the multi-labeled ROC curve and ROC curve 

for each label, respectively. 

 
Fig. 22 Multilabel ROC curve 

 

 
Fig. 23 ROC curve for each label 

 

The results implicate that the success of the models 

is improved but limited. Still, they are not at a 

satisfactory level to be claimed as a benchmark 

performance for the task. The recent release of the 

ROCO multimodal image dataset [40] has taken care of 

the wide variety and reduced it to only Radiology 

containing over 81k radiology images. All compound 

and non-radiology images are now removed. Data 

quality is improved and homogenized to a certain 

extent but still has complexity and variance even within 

limited classes. There is still a need for developing 

methods to amalgamate techniques further to learn the 

nature of the data at first and flexible deep neural 

networks to automatically adjust the learning network 

and settings according to the complexity of the data. 

New dynamic deep learning methods are developed 

that learn automatically from the complexity of the data 

while training incrementally [41]-[42]. However, their 

application to concept detection is still a concern. 
 

7. Conclusion and Future Scope 

This research thoroughly investigated the end-to-

end reason and impact-based potential CNN models 

both in full-scale training and fine-tuning methods. Our 

analysis is based on the dataset prepared during the 

preprocessing step, which helped to make a 

homogeneous dataset. We kept our dataset size 

identical for both methods, and results clearly indicate 

that transfer learning is always at the lead. We have 

compared the performance of CNNs with different 

depths, and Xception turns out to be the best for 

preconditioned medical image data.  

Several other research findings were observed. The 

data is highly diverse and complex in nature, and our 

research establishes a premise that data has to be 

preconditioned to be homogenized for higher training 

performance and accuracy. We also observed that the 

full-scale training or transfer learning methods have 

limitations in learning the complex and diverse variety 

of data. We need to look beyond the classical methods 

of deep neural networks. We need to seek an end-to-

end amalgamation of methods for observing the 

complexity of data to adapt and learn complex features 

and flexible neural architectures to fit accordingly 

better. 
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