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Abstract: The classification of tuberculosis (TB) based on chest X-Ray (CXR) remains a time-consuming
activity that requires an expert’s interpretation. An automated TB classification on the CXR can be a significant clinical
utility to overcome this issue as the disruptive technology is concerned. Most recent research focused on deep learning
solutions but identifying the suitable network architecture remains a challenge as it depends on the image features. One
of the network architectures is at the classification layer. This paper highlighted a proposed hybrid CNN and enhanced
Particle Swarm Optimization (CNN-ePSO) to find an optimal architecture of a connected layer at the classification
network layer. We proposed a discrete and real value representation of the particle and a dynamic update strategy of the
particle. A series of experiments are performed using Montgomery and Shenzhen CXR for the image classification
performance. Formulation of a suitable particle representation has shown a workable particle representation and
successfully achieved its aim. The outcome assesses that the hybrid CNN-ePSO with image enhancement is superior to
the CNN-PSO without image enhancement and other single CNN models with a remarkable improvement. Thus, a
novel ePSO algorithm embedded with CNN captures significant attention on the classification result, mainly for CXR
images. In the future, additional work on deep feature layer optimization would be possible for a better result and
application of the most recent algorithm like cuckoo search and firefly algorithm.

Keywords: image classification, convolution neural network, deep learning, X-ray Images, particle swarm
optimization.
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ePSO BEEESRLER LS TIRANKT , TEHN CXR B, Rk , ERERLEEMLILS
HNFATERETRREEFNERNNARHINEE , A RSRRAMEXREE,
XEA  BBoX. BRALNE, REFS. XHLER, HFHLL.

1. Introduction

Tuberculosis (TB) is an acute infectious disease in the
world. Quick and precise TB classification is necessary
for ensuring disease prevention. Nonetheless, TB
diagnosis disparities continue to exist in many high-
burden countries [1]. TB ranks among the top in
worldwide fatality causes [2]. Every year millions of
people tend to fall ill with TB. In 2018, ten million
individuals were approximately infected with TB, and a
million and a half have reported the death. The disease
implication ranges greatly from fewer than 5 to over 500
new patients per 100 000 citizens every year [3]. The
fundamental cause of this high death rate is the gap in TB
detection: over one portion of approximately ten million
TB incidents is not registered and detected [4]. Many
solutions were established. One of them is Chest X-Ray
(CXR).

CXR is restricted through its moderate accuracy,
overprice equipment, and low reliability. Moreover,
some countries with the largest burden share suffer from
skilled radiologists’ shortage in analyzing the CXR
images [1]. An automated CXR TB screening system
should be viable for low-income countries with low
accessibility to healthcare providers [5]. Deep learning
techniques are currently considered because of their
excellent rapport in image classification capability. It
seems the technique is well suited for image analysis.
The research on deep learning capabilities is still ongoing,
especially in medical and healthcare. Deep learning work
in the classification of medical images has produced
results that match medical experts. In a data collection of
over 100,000 CXR, CheXNet has shown an improved
solution to radiologists offering assistance [6]. The
diagnosis of pulmonary TB on CXR declared impressive
introductory output analyses of five hundred people
infected with TB and about five hundred ordinary people
in four data collection by utilizing convolution neural
network (CNN) methods. Even so, their work was
centralized on identifying TB with limited data collection
[7]. More work was done on a specific CXR image and
demonstrated different results with many deep learning

models and multiple types of CXR images, including
COVID-19 CXR images [8-9]. However, it is a problem
[8] and architecture [9-10] and parameters dependence
[71, [12]. Also, the quality of the X-Ray images requires
a specific task like augmentation [6], [9] to deal with a
small number of images and images enhancement [13]
and to remove noise or related occlusion [12].

Another important aspect is the applied classification
method that determines the accurateness of the solution.
Different architectures of CNNs can influence the CNN
model performances. Identifying suitable architecture
remains a challenge as it is the dependent type and
features of the images. Recent research produced and
tested on deep learning solutions improved the solutions
with several strategies such as transfer learning and
embedded nature-inspired algorithms [12], [15]. Several
aspects were considered when employed nature-inspired
algorithms, such as one of the popular [16-17], easy
implementation [18-20], and fast convergence [19] is
Particle Swarm Optimization (PSO). PSO has
successfully searched for optimal network architectures
[10-11], [21-22]. For instance, PSO can work as an
autoencoder for CNN architectures-based image
classification architectures [10-11], [21]. However, their
algorithm deals with searching an optimal convolution
architecture in CNN using Shenzen (SZ) and
Montgomery County (MC) benchmark CXR datasets.
The accuracy was reported to improve with the
employment of PSO. In this paper, we concentrate on the
steps for finding a suitable classification layer. In this
respect, a nature-inspired computational optimization is
improved to accommodate mainly adaptive changes of
several layers.

Hence, we proposed an enhanced PSO (ePSO) that is
hybrid with CNN. The CNN-ePSO is expected to find an
optimal architecture of a connected layer at the
classification layer. The comparison with the recent CNN
model and the previous models using benchmark TB
CXR images is elaborated. We aim to use PSO to select
the network layer architectures with a good balance
between searching, loss, and classification accuracy.
Thus, our main contribution is a novel PSO algorithm is
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proposed for an optimal architecture in classifier layers
selection using dynamic particles update with certain
ranges. Particles are allowed to grow and reduce in size
with an upper bound and lower bound, respectively.

This article is arranged to start with Section 2 explains
the related work on CNN and PSO. Material and methods
are presented in Section 3. Section 4 discusses the
computational results and a comparison with the chosen
algorithm and discussion. Finally, Section 5 presents a
conclusion and proposes a research direction for future
works.

2. Research Background

A few approaches to computational studies have been
earlier stated to classify lung diseases. For instance, a
computational system utilizes Support Vector Machine
(SVM), classifying Computer Tomography (CT) lung
images into malignancy [23], and deep CNN methods
[24]. CNN is becoming the most common algorithm for
X-Ray image classification in many domains [24-26].

The CNN method also was introduced by Hattikatti to
identify interstitial lung disease of the 2D CT image of
the lung by utilizing Local Binary Pattern (LBP)
characteristics [27]. The patch CNN method was used in
[28]to classify the normal and other lung tissue classes.
Different performances were reported in the use of CNN
using various types of X-Ray images. Thus, 87%
accuracy was obtained in [29], while 85.29% accuracy
was obtained in [15] considering differences in the CNN
architectures and datasets. Three separate optimization
models were tested in [30] and it was discovered that the
Adam optimization model overpowers the others by
accomplishing 94.73% accuracy in training and 82.09%
accuracy in testing. They used a simple multi-layered
architecture, LeNet, and Alexnet architectures and tested
the CXR of MC and SZ datasets. Few architectures were
tested; however, it can be seen that VGG19 was better
than the other methods with optimized functions [31].
Image pre-processing, image augmentation, genetic
algorithm-dependent hyperparameter tuning, and model
assembling were utilized for segmenting and classifying
lungs CXR [5]. The outcomes have shown a significant
improvement. Another possible aspect is the use of the
Bayesian convolutional neural network (B-CNN). The
findings show that B-CNN outperforms CNN [32].

In obtaining better results, one aspect is transfer
learning. Past research shows that utilizing the ImageNet
dataset pre-trained network, then fine-tune it to a more
particular dataset, produces excellent results in the
classification and detection process [33-35]. This training
protocol is booming because CNN receives the overall
ability for description from natural image pretraining.
Model adjusted the parameter after fine-tuning to
represent specific characteristics of particular images and

maintain the ability to display images. Many efforts in
analyzing different CNN techniques, learning variables,
and transfer learning for the TB CXR dataset were made
in [36]. TB CXR images were detected by fine-tuning the
pre-trained CNN system using the clinical natural image
data collection CXR image on architectures from
AlexNet and GoogLeNet. The model was trained using
imbalanced data collection. Shuffle sampling utilizes the
augmentation of data collection, increasing the precision
of AlexNet by 53.02 % to 85.68 % and the accuracy of
GoogleNet from 56.11 % to 91.72 %. ImageNet weight-
train InceptionV3 and transfer learning from OCT
images of 108,312 datasets were utilized in [37],
resulting in an average of 96.6 % accuracy, 97.8 %
sensitivity, and 97.4 % specificity. They evaluated the
findings with several experts. The findings have high
sensitivity but low specificity, while increased sensitivity
and high specificity values were found in the deep
learning model.

Fine-tuning the model with multiple data
augmentation techniques has shown good potential. In
dealing with augmentation, pre-processing, data
enhancement, image segmentation is used to classify
CXR images, and segmented images of the lung obtained
good results with CNN models [38]. It is interesting to
note that augmentation processes can be established to
add more datasets considering a few angles of images
and have a high chance of getting better performances
when we lack images.

The hybrid CNN and PSO were used in improving
images classification performances [21], [39]. PSO
mostly worked best for hyperparameter selection [40-42]
and selection of convolution in deep neural networks [21],
[39]. There are cases, for instance, where PSO is
embedded with CNN and XGBoost to find the best
parameter for COVID-19 diagnosis classification [39].
The work has resulted in a better performance compared
to CNN and XGboost. Most of them use PSO for
hyperparameter tuning selection and finding an optimal
convolution network architecture compared to the
selection of neural network architecture in a classifier
stage. The use of PSO has demonstrated a better
performance in the classification of CXR images. Thus,
we can conclude that PSO can be designed to suit the
requirement of improvement for the CNN, especially in
TB CXR images

3. Material and Method

The structure of the proposed TB CXR images
classification approach is illustrated in Fig.1, and the
following steps summarize this structure. The first stage
is data preparation and augmentation using a set of
methods elaborated in Section 3.1.
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Fig. 1 The structure of CNN-PSO TB. CXR classification approach

As shown in Fig. 1, the image enhancement task is
added to see the performance comparison between
original and enhanced images. The second stage is to
extract features using a set of CNN models. The third
stage is to classify the relevant features extracted by the
CNN models.

3.1. Data Preparation

Since TB data is very confidential, and the diagnosis
of TB with a gold standard is complex, the openly
accessible TB datasets are restricted and limited. We use

two CXR datasets on TB CXR, MC, and SZ datasets [21].

MC CXR is made up of 138 CXR images, in which there
are 80 positive cases, while 58 are cases with TB.
Meanwhile, SZ CXR datasets comprise 326 positive and
336 TB manifestations, resulting in 662 CXR images.
The image is labeled as vectors containing the value “1”
in the positive TB category and the value “0” in the other
category. For the evaluation, a total of 800 CXR images
were used to classify the TB model to classify whether
the CXR is normal or TB. The dataset was separated into
85:15 ratio. Hence, 680 was used for training and 120 for
validation and testing purposes.

3.2. Data Augmentation

The augmentation method aims to increase the
training dataset size to help identify hidden patterns in
the original CXR image. It is expected to decrease the
probabilities of overfitting the model. Augmentation is
done using the TFLearn Data Augmentation available in
TensorFlow [43]. Due to size and graphic processing
power shortcomings, an augmentation in the random size
of batch 50 from the training dataset was applied. The
rescaling process is done to get the input images in the
range of zero to one. A pixel between 0 and 255 creates
each digital image, 0 in black and 255 in white. So,
rescale the scale array of the original image pixel values
between 0 and 1, making the images contribute more
evenly to the overall loss. Otherwise, a higher pixel range
image results in higher losses, and a lower learning rate
should be used, and a lower pixel range image will need

a higher learning rate. Fig. 2 shows the augmented CXR
images after the augmentation process and will be used
for training purposes. We use augmentation image
generation based on width shift, height shift, the zoom
range of 0.05, and rotation range equal to 5.0.

T TR

)
e

Fig. 2 Example of augmented CXR used for training

3.3. Image Enhancement
Contrast Limited Adaptive Histogram Equalization
(CLAHE) as an image enhancement method employed as
it was reported good performance for X-Ray images [44].
It offers a better prominent structure of the images. Fig. 3
demonstrates a sample of enhanced TB CXR images.
o> ] e

7 X

Fig. 3 Example of enhanced TB CXR image with CLAHE

3.4. Deep Features Extraction with CNN

CNN is influenced by animal and human cortex visual
identification used for  applications, including
recommendation systems and image and video
recognition. CNN architectures openly assume that the
inputs involve images, allowing the architecture to
encode specific properties. In this section, we explain one
of the recent models, VGG19 [45]. The VGG19 is a part
of the VGG model that consists of 19 layers-based CNN
models. The input layer contains the width, height, and
dimension of the input image. CNN’s neuron is a 3D
filter that activates following the inputs. They are only
linked with a small region of a previous neuron
activation, known as the receptive field. The convolution
process is computed between inputs and parameters and
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gets activated based on the output and non-linearity
function. The CNN layers are classified into three types:
convolutional, pooling, and fully connected layers. The
convolutional layer is the CNN’s building block. It is
essential to consider that the parameters of the layers
consist of trainable neurons or filters. The network learns
to produce filters when it senses a specific feature type at
a location within the input features map, creating a
weighted sum features map [46].

Pooling layers control width by measuring height by
lowering spatial dimension of the input volume for the
next convolutional layer without changing the
dimensional depth. The fully connected layer is then
converted into a 1D feature vector. Furthermore, the
vector generated in this phase is classified for
classification class or further processing of the feature
vector. The VGG19 architecture starts with five blocks of
a convolutional layer in which consists of connected
layers. Convolutional layers utilized 3 x 3 kernels.

Flatten are used between the fully connected layer by
modifying a two-dimensional matrix to a one-
dimensional matrix as it can be used in the fully
connected layer. SoftMax activation function with the
cross-entropy loss is used to convert output neurons to a
probability between 0 and 1 based on which class the
images belong to. Binary cross-entropy loss is utilized
because the TB CXR dataset only contains O for normal
and 1 for TB cases. The Adam optimizer is chosen
because its performance outperforms the other optimizer
in research [30].

3.5. Enhanced Particle Swarm Optimization

Particle Swarm Optimization (PSO) is the popular
metaheuristic and stochastic algorithm. It was introduced
in mid-1995, originally solving the binary problem [47].
The original PSO steps can be found in various
publications [48-49]. Many variants were enhanced and
established, including its representation of particle and
hybridization complementing other methods [21], [39].
The PSO helps improve the solution towards an optimal
solution for an optimization problem. One of its
capabilities is in parameter tuning and control but
requires a suitable representation of particles as it is
important to run the PSO [21], [49-50]. In the aspect of
the CNN solution, this paper addresses the use of PSO in
finding the most suitable layers of the neural network of
the classifier.

TB CXR images classification addresses the objective
function of finding the minimum loss and high accuracy
concerning deep method employment. To obtain a better
solution, selecting a suitable layer is necessary. We used
a discrete PSO implementation and followed the initial
steps of PSO [47]. Fig. 4 is the representation of the

particle, L = {L1, L2, L3, ...Ln} and Dropout, DP={0.1,
0.2,0.3,04,0.5.

[ L | L. | .. | Ln | DP |
Fig. 4 Particle representation for neural network architecture and
dropout

Each component in the particles consists of layers that
are randomly initiated in a population. Discrete value for
all layers is initiated as stated in Equation 1.

d =rand(x,y)*z Q)
where X,y, and z = index of layer calculation, x ={1, 2,
3...m}.

Equation 2 and Equation 3 present the velocity and
position formulas for the discrete PSO, respectively.

Vidpnew=W * Vig + C1r1 * (Pbestga) - Xia+ C2 (2)
*r,* (GbeSt(id)-Xid)

Xidew)=Xid + Vid(new) (3)

where:
Vidnew) = NEW velocity
Vig = current velocity
Xig = curren position
Xid(new) = NEW position
W = inertia weight
C:and C;, =acceleration coefficient
r, and r, = random function
Pbestq) = position of the personal best
Gbestigy = position of the global best

We introduced a particle update based on this
procedure. Particle update is adjusted during iterations to
find the best fit model of the network. The dynamic
range update is based within +8 or -8 for all L values,
and DP is an increased value of 0.1. The PSO algorithms
are as illustrated in Algorithm 1: Enhanced PSO. A
canonical PSO is modified to suit the solution
representation to obtain the most suitable layers of feed-
forward neural network. The modification covers the
initialization of discrete particle position, considering the
expected number of discrete particle values at each layer.

Algorithm 1: ePSO

1 Begin

2 Set the population size P, the maximum number of
iterations 1.

3 Initialize random populations for each particle

4 Declare W, Cy, and C2

5 Initialize V idminy and Vid(max)

6 Initialize Xid(min) and Xid(max)

7 Calculate Pbest and Gbest value for each particle

8 Do

9 For each particle

10 Calculate new velocity value, V(new)

11 Calculate new position, Dnew)

12 Calculate Pbest (new)

13 Calculate Gbest (ew)

14 For each particle dimension

15 If current Pbest >current Gbest
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16 New particle dimension = current particle
dimension — particle change value

17 If current Pbest < current Gbest

19 New particle dimension = current particle

dimension + particle change value
20 While (stopping condition is reached)
21 End

3.6. Evaluation Metrics

Evaluation of the method was referred to as the
confusion matrix score, which is popular in model
validation, especially in medical images [51]. The
accuracy, precision, recall, and F1-Score were used to
evaluate all models. Accuracy is calculated based on the
predictions made by the model. It is divided by the total
number of predictions.

Besides, a loss is an additional evaluation when
evaluating the CNN-PSO. Loss is a distance between the
actual and predicted value produced by the model. The
greater the loss value is evident more errors. The function
used to calculate the loss value is a sparse categorical
cross-entropy function [52].

4. Results for

Experiment and Discussion
This section highlights the comparisons of the CNN
models and a proposed CNN-PSO model.

Computational

4.1. Comparison Results of the CNN Models

This section evaluates five CNN models: Mobile Net,
Xception, ResNet50, InceptionV3, and VGG19. The
models are the most commonly used in imaging
classification with deep learning. When comparing
model performance, the evaluation metrics such as
accuracy, F1 score, precision, and recall were used to
evaluate the model. The comparisons of the accuracy
among five pre-trained models are shown in Figure 5 (),
(b), (c), (d), (e), respectively.

In the evaluation, trial-and-error method of the
hyperparameters settings of the five different pre-trained
CNN models using the validation dataset. The learning
rate of all the five different pre-trained CNN models is
reduced until the minimum of 0.00001. For the VGG19
model, the training dataset is split into ten batches. The
model used 100 epochs. The initialized weights of
ImageNet are used for each layer. The weight value was
updated using Adam Optimizer for each epoch. The
learning rate is reduced to a minimum of 0.00001.
VGG19 obtained the maximum probabilities of

validation accuracy of 0.91 from 0 to 1 on the test dataset.

VGG19 model used 6,423,298 trainable layers parameter

and 20,024,384 non-trainable parameters of VGG19
layers. Regarding the MobileNet model, the training
dataset is split into ten batches. The initialized weights of
ImageNet are used for each layer. The learning rate is
reduced to a minimum of 0.00001. MobileNet obtained
the second-highest validation accuracy probability of
0.88 from 0 to 1 on the test dataset. MobileNet model
used 12,845,846 trainable layers parameter and
3,228,864 non-trainable parameters of MobileNet layers.

%
1
o8]
)
51

|

"1
L

Fig. 5 Accuracy comp‘arison of five pre-trained CNN models with (a)
MobileNet, (b) Xception, (c) VGG19, (d) ResNet50, () InceptionV

The Xception model has the same datasets and
parameters as the VGG19 and MobileNet parameters.
The weights of ImageNet were also used for each layer.
Xception comes in third place behind VGG19 and
MobileNet, with a validation accuracy of 0.81 from 0 to
1 probability on the test dataset. The Xception model
utilized 25,690,882 trainable layers parameter and
20,861,480 non-trainable parameters of Xception layers.
For the InceptionV3 model, the training data set
parameters are also the same as the other model
parameters. The weights of ImageNet were also used for
each layer. InceptionV3 ranks fourth among all five pre-
trained CNN models, achieving a test dataset probability
validation accuracy of 0.73 from 0 to 1. InceptionV3
model operates with 13,107,970 trainable layers
parameter and 21,802,784 non-trainable parameters of
InceptionV3 layers. In the ResNet50 model, the
parameters used for the training dataset are also the same
as the other model parameters. The weights of ImageNet
were also used for each layer. ResNet50 ranks fifth
behind all four pre-trained CNN models, achieving a
probability validation accuracy of 0.68 from 0 to 1 on the
test dataset. ResNet50 model used 25,690,882 trainable
layers parameter and 23,587,712 non-trainable
parameters of ResNet50 layers.

ImageNet supplies the weight knowledge to the CNNs.
The summary of all evaluation metrics measurements is
in Table 1, including the accuracy, F1 score, precision,
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and recall values. The highest evaluation metrics
currently provided by VGG19 are 0.91 on the accuracy,
0.91 on the F1 score, 0.92 on Precision, and 0.91 on
Recall. It can be concluded from the classification results
that the VGG19 model showed better performance than
all the other pre-trained CNN models, including
MobileNet, ResNet50, InceptionV3, and Xception. The
accuracy of the VGG19 model is the highest at 0.91 and
the lowest in the ResNet50 model with 0.68. Although
the other pre-trained CNN model did not achieve better
accuracy than the VGG19 model, the network
complexity differs between the VGG19 model and other
pre-trained CNN models.

Table 1 Performance measure of all CNN models

Particle L: L L3 Lsg DP Loss Accuracy
A1 232 152 64 168 03 0.26 0.92
Az 48 96 64 144 03 0.26 094
Az 152 72 64 184 03 026 094
Aq 144 80 176 216 04 0.27 094
As 208 120 200 232 03 036 092
As 208 232 144 152 04 023 0.92
Ar 40 96 216 144 0.3 0.27 0.92
As 208 160 144 216 0.3 031 0.92
A9 48 136 168 88 0.3 0.37 0.94

Al0 40 72 168 40 03 037 0.92

This research presented a CNN model that uses
VGG19 to classify the CXR images to identify patients
with TB. Previous CXR classification research applied
complex lung segmentation models before training the
model using support vector machines. This research
shows that the VGG19 model can use raw data to
identify the results with comparable accuracy without
any lung segmentations performed in the previous
research. To further improve the accuracy, the VGG19
model was applied on a sequential model. A flatten and
dropout layer was also added to the fully connected layer
to see whether the model achieved 91% accuracy. It is
demonstrated that VGG19 achieved a better accuracy of
about 10% higher compared to the other four models. In
the next section, we explain the computational results of
the proposed solution.

4.2. Performance of CNN-ePSO Using Original
Images

In this experimental evaluation, we use the same set
of the parameter of VGG19. The modification part of the
CNN is the classification layer. The minimum layer of L
= 6 and the maximum of L =256 were considered. Here,
a dynamic update particle of -8 or +8 is established based
on the fitness of the solution. We run CNN-PSO with ten
population sizes for five iterations. We follow the
classical choice of population size that requires only a
low number of sizes [52]. The weight is 0.9, as suggested
in [47], [49]. The velocity and position value range are

between O and 1. The dropout value is randomly
initialized and update dynamically within the range of
0.1 and 0.5. The dropout dynamic update value is either -
0.1 or +0.1. In this case, we use four layers of networks.
Table 2 shows the result of CNN-ePSO at the 1% iteration
with ten particles that generated ten classification layers.
The results were based on the use of original images.

Interestingly, particle A; outperforms other particles,
and most of the accuracy is better than CNN-VGG19, as
demonstrated in Table 1. There are four particles
reported at the highest accuracy of 94%. The highest loss
value is obtained by particle A4, but the accuracy s only
92%. The results suggest that the embedded PSO in the
fully connected layer gives an added value mainly in the
model accuracy. Particles A2and As achieved the highest
accuracy of 94% and a lower value than Ay, as indicated
in Table 2. At the 5" iteration, as demonstrated in Table
3, all particles obtained more than 92% accuracy.

Table 2 Results of CNN-PSO with original images at the 1st iterations

Particle L: L2 Ls Ls DP Loss Accuracy
A1 256 160 48 160 0.3 0.30 094
Az 32 96 48 128 02 036 094
As 160 48 48 176 0.3 025 0.92
A 144 64 192 224 0.2 0.23 0.92
As 224 128 224 256 0.2 0.38 0.94
As 224 256 144 144 0.2 025 0.92
A7 16 96 240 128 0.2 025 0.91
As 224 176 144 224 0.2 040 0.95
A9 32 144 176 64 0.2 033 0.92
Al10 16 48 176 16 0.2 036 094

Table 3 Results of CNN-PSO with original images at the 5 iterations

Measure  Mobile Xception Res Inception VGG
Net Net V3 19
50
Accuracy  0.88 0.81 0.68 0.73 0.91
F1 Score  0.88 0.81 0.68 0.73 0.91
Precision ~ 0.88 0.81 0.68 0.74 0.92
Recall 0.87 0.81 0.67 0.73 0.91

4.3. Performance of CNN-ePSO Using Enhancement
Images

In this section, we explain the performance of CNN-
PSO using enhanced images. The same setting is
employed, as mentioned earlier. Results of CNN-PSO
with image enhancement at the 1st iteration are
illustrated in Table 4. The utilization of an enhancement
image has resulted in a significant improvement in its
performance. All particles have demonstrated a
significant improvement in accuracy from 94% to 97%.
In terms of loss value, all particles obtained less value
than the performance in Section 4.2. The highest loss
value was reduced to a minimum of 0.09, as indicated by
the A10 particle. At the 5" iteration, particle A finally
achieved the highest accuracy, 98%, at the same loss
value of 0.09 as demonstrated in Table 5.
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Table 4 Results of CNN-PSO with image enhancement at the 1st

iterations
Particle L: L L3 Ls DP Loss Accuracy
AL 16 16 112 96 03 019 0.97
A 72 168 56 96 02 0.2 0.97
As 40 232 104 232 0.2 0.13 0.9
As 200 24 152 136 0.2 0.14 097
As 72 184 136 232 03 014 097
As 16 136 88 168 0.2 0.15 0.9
Ar 56 136 216 24 0.2 013 0.97
As 40 56 200 56 0.2 012 0.97
Ay 16 232 216 88 0.2 011 0.97
Ao 248 72 168 56 03 0.09 0.97

Table 5 Results for CNN-PSO with image enhancement at the 5t

iterations
Particle L: L2 L3 Ls DP  Loss Accuracy
A1 16 16 112 96 0.06 021 0.97
Az 56 152 72 96 0.10 024 0.97
As 24 216 112 216 0.13 0.12 0.97
As 184 16 136 120 0.35 0.14 0.97
As 56 168 120 216 0.56 0.11 0.97
As 16 120 104 152 0.5 0.16 0.97
Az 40 120 200 40 085 0.09 0.98
As 24 40 184 72 0.12 014 0.97
A9 16 216 200 96 0.00 0.14 0.97
Al10 232 56 152 72 0.46 0.16 0.97

4.4. Comparison Performance of CNN-PSO, CNN
Models and a Recent Solution

This section gives some important points obtained
from the results of the experiments. It was based on the
capability of both CNN and PSO. CNNs play an essential
role in many imaging domains, especially in healthcare
solutions. Thus, to validate our proposed CNN-PSO, we
compare it against CNN models. The result is shown in
Table 6. Overall, the stochastic flavor of PSO led to a
better classification performance with a 3% improvement
in accuracy, F1 Score, Precision, and Recall as compared
to VGG19 of the CNN model when using original
images. However, a significant result is achieved using
enhanced images with 98% accuracy, F1 Score, Precision,
and Recall. The dynamic particle update of the layer and
dropout give an effect on the accuracy and loss.

Table 6 Comparison performance of CNN-PSO and CNN models

Measurement CNN- CNN-ePSO CNN-ePSO
VGG19 (Original (Enhanced images)
images)
Accuracy 0.91 0.94 0.98
F1 Score 0.91 0.94 0.98
Precision 0.92 0.96 0.98
Recall 0.91 0.94 0.98

Compared to VoPreCNNFT developed in [13], the
proposed CNN-PSO with CLAHE performed about a

similar result which is 98% accuracy. However, their
evaluation on the separate datasets of MC and SZ. It is
supported that the chosen fully connected layer
architecture is one of the criteria for the image
classification performance [21]. PSO itself has shown its
capability in finding the optimized architecture. The
balance of exploitation and exploration searching
strategy in PSO has brought a good result even with only
five iterations. Even though a small population size is
used, the result is at par compared to the recent output
from [13]. In addition, evaluation of PSO can be
extended by using more numbers of population size as
also suggested by [53].

5. Conclusions

This paper presents the proposed CNN-ePSO models
to handle automated TB CHR image classification
challenges. CNN, to be known, requires many images for
its training task. Producing adequate experimental
datasets in the real world is challenging. In this work, the
augmentation processes for the existing images were
performed to improve identifying its features before
applying the models. The benchmark TB CXR images
were used to perform a binary classification, whether it
falls under normal or TB. The VGG19 with appropriate
dense layer and dropout parameters are evident for better
performance than MobileNet, ResNet50, InceptionV3,
and Xception, with the same datasets and augmentation
images. A different architecture of CNNs and training
parameters influence the CNN model performances. The
CNN-ePSO with image enhancement has demonstrated
superior performance in accuracy and loss. A novel
ePSO as an embedded tool to CNN was reported as a
significant commitment to all CNN methods. ePSO has
performed well with a small number of population sizes
in this context, as proved in many types of problems.
Also, PSO works well in balancing the global and local
search that aims for an optimal solution. Hence, the
proposed CNN-ePSO can be tested on different types of
CXR especially using real-life data. It is expected to
provide good accuracy.

In addition, some limitations such as the performance
on computational times and lack of concentration in deep
feature behavior could be improved using several
strategies. Future work can improve efficiency by adding
embedded optimization algorithms such as the most
recent Cuckoo Search and firefly algorithm. Another part
of improvement is enhancing the feature extraction at the
convolution layer, such as ensemble methods. For
instance, this research can be made more effective by
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implementing a hybrid method. The pre-processed CXR
image can be used and further processed where the
region of interest can be extracted from these CXR
images.
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