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Abstract: The classification of tuberculosis (TB) based on chest X-Ray (CXR) remains a time-consuming 

activity that requires an expert’s interpretation. An automated TB classification on the CXR can be a significant clinical 

utility to overcome this issue as the disruptive technology is concerned. Most recent research focused on deep learning 

solutions but identifying the suitable network architecture remains a challenge as it depends on the image features. One 

of the network architectures is at the classification layer. This paper highlighted a proposed hybrid CNN and enhanced 

Particle Swarm Optimization (CNN-ePSO) to find an optimal architecture of a connected layer at the classification 

network layer. We proposed a discrete and real value representation of the particle and a dynamic update strategy of the 

particle. A series of experiments are performed using Montgomery and Shenzhen CXR for the image classification 

performance. Formulation of a suitable particle representation has shown a workable particle representation and 

successfully achieved its aim. The outcome assesses that the hybrid CNN-ePSO with image enhancement is superior to 

the CNN-PSO without image enhancement and other single CNN models with a remarkable improvement. Thus, a 

novel ePSO algorithm embedded with CNN captures significant attention on the classification result, mainly for CXR 

images. In the future, additional work on deep feature layer optimization would be possible for a better result and 

application of the most recent algorithm like cuckoo search and firefly algorithm.  

Keywords: image classification, convolution neural network, deep learning, X-ray Images, particle swarm 

optimization. 

 

基于结核病 X 射线图像分类的动态更新粒子群优化与美国有线电视新闻网 

 

摘要：基于胸部 X 射线 (CXR) 的结核病分类仍然是一项耗时的活动，需要专家的解释。就

破坏性技术而言，CXR 上的自动结核病分类可能是克服这一问题的重要临床效用。大多数最近

的研究都集中在深度学习解决方案上，但确定合适的网络架构仍然是一个挑战，因为它取决于图

像特征。网络架构之一位于分类层。本文重点介绍了提出的混合美国有线电视新闻网和增强粒子

群优化 (美国有线电视新闻网-ePSO)，以在分类网络层找到连接层的最佳架构。我们提出了粒子

的离散实值表示和粒子的动态更新策略。使用蒙哥马利和深圳 CXR 对图像分类性能进行了一系

列实验。合适的粒子表示的制定已显示出可行的粒子表示并成功实现其目标。结果评估具有图像

增强的混合美国有线电视新闻网-ePSO 优于没有图像增强的美国有线电视新闻网-粒子群算法和

其他具有显着改进的单个美国有线电视新闻网模型。因此，嵌入美国有线电视新闻网的新型 
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ePSO 算法在分类结果上引起了极大的关注，主要针对 CXR 图像。未来，在深度特征层优化方

面的额外工作将有可能获得更好的结果和应用最新的算法，如布谷鸟搜索和萤火虫算法。 

关键词：图像分类、卷积神经网络、深度学习、X 射线图像、粒子群优化。 

 
 

1. Introduction  
Tuberculosis (TB) is an acute infectious disease in the 

world. Quick and precise TB classification is necessary 

for ensuring disease prevention. Nonetheless, TB 

diagnosis disparities continue to exist in many high-

burden countries [1]. TB ranks among the top in 

worldwide fatality causes [2]. Every year millions of 

people tend to fall ill with TB. In 2018, ten million 

individuals were approximately infected with TB, and a 

million and a half have reported the death. The disease 

implication ranges greatly from fewer than 5 to over 500 

new patients per 100 000 citizens every year [3]. The 

fundamental cause of this high death rate is the gap in TB 

detection: over one portion of approximately ten million 

TB incidents is not registered and detected [4]. Many 

solutions were established. One of them is Chest X-Ray 

(CXR).  

CXR is restricted through its moderate accuracy, 

overprice equipment, and low reliability. Moreover, 

some countries with the largest burden share suffer from 

skilled radiologists’ shortage in analyzing the CXR 

images [1]. An automated CXR TB screening system 

should be viable for low-income countries with low 

accessibility to healthcare providers [5]. Deep learning 

techniques are currently considered because of their 

excellent rapport in image classification capability. It 

seems the technique is well suited for image analysis. 

The research on deep learning capabilities is still ongoing, 

especially in medical and healthcare. Deep learning work 

in the classification of medical images has produced 

results that match medical experts. In a data collection of 

over 100,000 CXR, CheXNet has shown an improved 

solution to radiologists offering assistance [6]. The 

diagnosis of pulmonary TB on CXR declared impressive 

introductory output analyses of five hundred people 

infected with TB and about five hundred ordinary people 

in four data collection by utilizing convolution neural 

network (CNN) methods. Even so, their work was 

centralized on identifying TB with limited data collection 

[7]. More work was done on a specific CXR image and 

demonstrated different results with many deep learning 

models and multiple types of CXR images, including 

COVID-19 CXR images [8-9]. However, it is a problem 

[8] and architecture [9-10] and parameters dependence 

[7], [12]. Also, the quality of the X-Ray images requires 

a specific task like augmentation [6], [9] to deal with a 

small number of images and images enhancement [13] 

and to remove noise or related occlusion [12]. 

Another important aspect is the applied classification 

method that determines the accurateness of the solution. 

Different architectures of CNNs can influence the CNN 

model performances. Identifying suitable architecture 

remains a challenge as it is the dependent type and 

features of the images. Recent research produced and 

tested on deep learning solutions improved the solutions 

with several strategies such as transfer learning and 

embedded nature-inspired algorithms [12], [15]. Several 

aspects were considered when employed nature-inspired 

algorithms, such as one of the popular [16-17], easy 

implementation [18-20], and fast convergence [19] is 

Particle Swarm Optimization (PSO). PSO has 

successfully searched for optimal network architectures 

[10-11], [21-22]. For instance, PSO can work as an 

autoencoder for CNN architectures-based image 

classification architectures [10-11], [21]. However, their 

algorithm deals with searching an optimal convolution 

architecture in CNN using Shenzen (SZ) and 

Montgomery County (MC) benchmark CXR datasets. 

The accuracy was reported to improve with the 

employment of PSO. In this paper, we concentrate on the 

steps for finding a suitable classification layer. In this 

respect, a nature-inspired computational optimization is 

improved to accommodate mainly adaptive changes of 

several layers.  

Hence, we proposed an enhanced PSO (ePSO) that is 

hybrid with CNN. The CNN-ePSO is expected to find an 

optimal architecture of a connected layer at the 

classification layer. The comparison with the recent CNN 

model and the previous models using benchmark TB 

CXR images is elaborated. We aim to use PSO to select 

the network layer architectures with a good balance 

between searching, loss, and classification accuracy. 

Thus, our main contribution is a novel PSO algorithm is 
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proposed for an optimal architecture in classifier layers 

selection using dynamic particles update with certain 

ranges. Particles are allowed to grow and reduce in size 

with an upper bound and lower bound, respectively.  

This article is arranged to start with Section 2 explains 

the related work on CNN and PSO. Material and methods 

are presented in Section 3. Section 4 discusses the 

computational results and a comparison with the chosen 

algorithm and discussion. Finally, Section 5 presents a 

conclusion and proposes a research direction for future 

works. 

 

2. Research Background 
A few approaches to computational studies have been 

earlier stated to classify lung diseases. For instance, a 

computational system utilizes Support Vector Machine 

(SVM), classifying Computer Tomography (CT) lung 

images into malignancy [23], and deep CNN methods 

[24]. CNN is becoming the most common algorithm for 

X-Ray image classification in many domains [24-26].  

The CNN method also was introduced by Hattikatti to 

identify interstitial lung disease of the 2D CT image of 

the lung by utilizing Local Binary Pattern (LBP) 

characteristics [27]. The patch CNN method was used in 

[28]to classify the normal and other lung tissue classes. 

Different performances were reported in the use of CNN 

using various types of X-Ray images. Thus, 87% 

accuracy was obtained in [29], while 85.29% accuracy 

was obtained in [15] considering differences in the CNN 

architectures and datasets. Three separate optimization 

models were tested in [30] and it was discovered that the 

Adam optimization model overpowers the others by 

accomplishing 94.73% accuracy in training and 82.09% 

accuracy in testing. They used a simple multi-layered 

architecture, LeNet, and Alexnet architectures and tested 

the CXR of MC and SZ datasets. Few architectures were 

tested; however, it can be seen that VGG19 was better 

than the other methods with optimized functions [31]. 

Image pre-processing, image augmentation, genetic 

algorithm-dependent hyperparameter tuning, and model 

assembling were utilized for segmenting and classifying 

lungs CXR [5]. The outcomes have shown a significant 

improvement. Another possible aspect is the use of the 

Bayesian convolutional neural network (B-CNN). The 

findings show that B-CNN outperforms CNN [32]. 

In obtaining better results, one aspect is transfer 

learning. Past research shows that utilizing the ImageNet 

dataset pre-trained network, then fine-tune it to a more 

particular dataset, produces excellent results in the 

classification and detection process [33-35]. This training 

protocol is booming because CNN receives the overall 

ability for description from natural image pretraining. 

Model adjusted the parameter after fine-tuning to 

represent specific characteristics of particular images and 

maintain the ability to display images. Many efforts in 

analyzing different CNN techniques, learning variables, 

and transfer learning for the TB CXR dataset were made 

in [36]. TB CXR images were detected by fine-tuning the 

pre-trained CNN system using the clinical natural image 

data collection CXR image on architectures from 

AlexNet and GoogLeNet. The model was trained using 

imbalanced data collection. Shuffle sampling utilizes the 

augmentation of data collection, increasing the precision 

of AlexNet by 53.02 % to 85.68 % and the accuracy of 

GoogleNet from 56.11 % to 91.72 %. ImageNet weight-

train InceptionV3 and transfer learning from OCT 

images of 108,312 datasets were utilized in [37], 

resulting in an average of 96.6 % accuracy, 97.8 % 

sensitivity, and 97.4 % specificity. They evaluated the 

findings with several experts. The findings have high 

sensitivity but low specificity, while increased sensitivity 

and high specificity values were found in the deep 

learning model. 

Fine-tuning the model with multiple data 

augmentation techniques has shown good potential. In 

dealing with augmentation, pre-processing, data 

enhancement, image segmentation is used to classify 

CXR images, and segmented images of the lung obtained 

good results with CNN models [38]. It is interesting to 

note that augmentation processes can be established to 

add more datasets considering a few angles of images 

and have a high chance of getting better performances 

when we lack images.  

The hybrid CNN and PSO were used in improving 

images classification performances [21], [39]. PSO 

mostly worked best for hyperparameter selection [40-42] 

and selection of convolution in deep neural networks [21], 

[39]. There are cases, for instance, where PSO is 

embedded with CNN and XGBoost to find the best 

parameter for COVID-19 diagnosis classification [39]. 

The work has resulted in a better performance compared 

to CNN and XGboost. Most of them use PSO for 

hyperparameter tuning selection and finding an optimal 

convolution network architecture compared to the 

selection of neural network architecture in a classifier 

stage. The use of PSO has demonstrated a better 

performance in the classification of CXR images. Thus, 

we can conclude that PSO can be designed to suit the 

requirement of improvement for the CNN, especially in 

TB CXR images  

 

3. Material and Method 
The structure of the proposed TB CXR images 

classification approach is illustrated in Fig.1, and the 

following steps summarize this structure. The first stage 

is data preparation and augmentation using a set of 

methods elaborated in Section 3.1.  



507 

 

 

 

 

 

 
Fig. 1 The structure of CNN-PSO TB. CXR classification approach 

 

As shown in Fig. 1, the image enhancement task is 

added to see the performance comparison between 

original and enhanced images. The second stage is to 

extract features using a set of CNN models. The third 

stage is to classify the relevant features extracted by the 

CNN models.  

 

3.1. Data Preparation  

Since TB data is very confidential, and the diagnosis 

of TB with a gold standard is complex, the openly 

accessible TB datasets are restricted and limited. We use 

two CXR datasets on TB CXR, MC, and SZ datasets [21]. 

MC CXR is made up of 138 CXR images, in which there 

are 80 positive cases, while 58 are cases with TB. 

Meanwhile, SZ CXR datasets comprise 326 positive and 

336 TB manifestations, resulting in 662 CXR images. 

The image is labeled as vectors containing the value “1” 

in the positive TB category and the value “0” in the other 

category. For the evaluation, a total of 800 CXR images 

were used to classify the TB model to classify whether 

the CXR is normal or TB. The dataset was separated into 

85:15 ratio. Hence, 680 was used for training and 120 for 

validation and testing purposes. 
 

3.2. Data Augmentation 

The augmentation method aims to increase the 

training dataset size to help identify hidden patterns in 

the original CXR image. It is expected to decrease the 

probabilities of overfitting the model. Augmentation is 

done using the TFLearn Data Augmentation available in 

TensorFlow [43]. Due to size and graphic processing 

power shortcomings, an augmentation in the random size 

of batch 50 from the training dataset was applied. The 

rescaling process is done to get the input images in the 

range of zero to one. A pixel between 0 and 255 creates 

each digital image, 0 in black and 255 in white. So, 

rescale the scale array of the original image pixel values 

between 0 and 1, making the images contribute more 

evenly to the overall loss. Otherwise, a higher pixel range 

image results in higher losses, and a lower learning rate 

should be used, and a lower pixel range image will need 

a higher learning rate. Fig. 2 shows the augmented CXR 

images after the augmentation process and will be used 

for training purposes. We use augmentation image 

generation based on width shift, height shift, the zoom 

range of 0.05, and rotation range equal to 5.0. 

 
Fig. 2 Example of augmented CXR used for training 

 

3.3. Image Enhancement 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) as an image enhancement method employed as 

it was reported good performance for X-Ray images [44]. 

It offers a better prominent structure of the images. Fig. 3 

demonstrates a sample of enhanced TB CXR images. 

 
Fig. 3 Example of enhanced TB CXR image with CLAHE 

 

3.4. Deep Features Extraction with CNN 

CNN is influenced by animal and human cortex visual 

identification used for applications, including 

recommendation systems and image and video 

recognition. CNN architectures openly assume that the 

inputs involve images, allowing the architecture to 

encode specific properties. In this section, we explain one 

of the recent models, VGG19 [45]. The VGG19 is a part 

of the VGG model that consists of 19 layers-based CNN 

models. The input layer contains the width, height, and 

dimension of the input image. CNN’s neuron is a 3D 

filter that activates following the inputs. They are only 

linked with a small region of a previous neuron 

activation, known as the receptive field. The convolution 

process is computed between inputs and parameters and 
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gets activated based on the output and non-linearity 

function. The CNN layers are classified into three types: 

convolutional, pooling, and fully connected layers. The 

convolutional layer is the CNN’s building block. It is 

essential to consider that the parameters of the layers 

consist of trainable neurons or filters. The network learns 

to produce filters when it senses a specific feature type at 

a location within the input features map, creating a 

weighted sum features map [46]. 

Pooling layers control width by measuring height by 

lowering spatial dimension of the input volume for the 

next convolutional layer without changing the 

dimensional depth. The fully connected layer is then 

converted into a 1D feature vector. Furthermore, the 

vector generated in this phase is classified for 

classification class or further processing of the feature 

vector. The VGG19 architecture starts with five blocks of 

a convolutional layer in which consists of connected 

layers. Convolutional layers utilized 3 × 3 kernels.  

Flatten are used between the fully connected layer by 

modifying a two-dimensional matrix to a one-

dimensional matrix as it can be used in the fully 

connected layer. SoftMax activation function with the 

cross-entropy loss is used to convert output neurons to a 

probability between 0 and 1 based on which class the 

images belong to. Binary cross-entropy loss is utilized 

because the TB CXR dataset only contains 0 for normal 

and 1 for TB cases. The Adam optimizer is chosen 

because its performance outperforms the other optimizer 

in research [30].  

 

3.5. Enhanced Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is the popular 

metaheuristic and stochastic algorithm. It was introduced 

in mid-1995, originally solving the binary problem [47]. 

The original PSO steps can be found in various 

publications [48-49]. Many variants were enhanced and 

established, including its representation of particle and 

hybridization complementing other methods [21], [39]. 

The PSO helps improve the solution towards an optimal 

solution for an optimization problem. One of its 

capabilities is in parameter tuning and control but 

requires a suitable representation of particles as it is 

important to run the PSO [21], [49-50]. In the aspect of 

the CNN solution, this paper addresses the use of PSO in 

finding the most suitable layers of the neural network of 

the classifier. 

TB CXR images classification addresses the objective 

function of finding the minimum loss and high accuracy 

concerning deep method employment. To obtain a better 

solution, selecting a suitable layer is necessary. We used 

a discrete PSO implementation and followed the initial 

steps of PSO [47]. Fig. 4 is the representation of the 

particle, L = {L1, L2, L3, …Ln} and Dropout, DP={0.1, 

0.2, 0.3, 0.4, 0.5. 

 
L1 L2 … Ln DP 

Fig. 4 Particle representation for neural network architecture and 

dropout 

 

Each component in the particles consists of layers that 

are randomly initiated in a population. Discrete value for 

all layers is initiated as stated in Equation 1.  

d = rand(x,y)*z              (1) 

where x,y, and z = index of layer calculation, x ={1, 2, 

3…m}. 

Equation 2 and Equation 3 present the velocity and 

position formulas for the discrete PSO, respectively.  

Vid(new)=W * Vid + C1 r1 * (Pbest(id) - Xid + C2 

* r2 * (Gbest(id)-Xid) 

(2) 

 

  

Xid(new)=Xid + Vid(new) (3) 

where: 

Vid(new) = new velocity  

Vid = current velocity  
Xid = curren position  

Xid(new) = new position  

W = inertia weight 

C1 and C2 = acceleration coefficient 

r1 and r2 = random function  

Pbest(id) = position of the personal best 

Gbest(id) = position of the global best 

We introduced a particle update based on this 

procedure. Particle update is adjusted during iterations to 

find the best fit model of the network. The dynamic 

range update is based within +8 or -8 for all L values, 

and DP is an increased value of 0.1. The PSO algorithms 

are as illustrated in Algorithm 1: Enhanced PSO. A 

canonical PSO is modified to suit the solution 

representation to obtain the most suitable layers of feed-

forward neural network. The modification covers the 

initialization of discrete particle position, considering the 

expected number of discrete particle values at each layer.  

  
Algorithm 1: ePSO  

1 Begin 

2 Set the population size P, the maximum number of 

iterations I. 

3 Initialize random populations for each particle 

4 Declare W, C1, and C2 

5 Initialize V id(min) and Vid(max) 

6 Initialize Xid(min) and Xid(max) 

7 Calculate Pbest and Gbest value for each particle 

8 Do 

9   For each particle 

10     Calculate new velocity value, V(new) 

11      Calculate new position, D(new) 

12      Calculate Pbest (new) 

13     Calculate Gbest (new) 

14      For each particle dimension 

15         If current Pbest  current Gbest 
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16              New particle dimension = current particle      

dimension – particle change value 

17         If current Pbest < current Gbest 

19            New particle dimension = current particle 

dimension + particle change value 

20   While (stopping condition is reached) 

21 End 

 

3.6. Evaluation Metrics 

Evaluation of the method was referred to as the 

confusion matrix score, which is popular in model 

validation, especially in medical images [51]. The 

accuracy, precision, recall, and F1-Score were used to 

evaluate all models. Accuracy is calculated based on the 

predictions made by the model. It is divided by the total 

number of predictions.  

Besides, a loss is an additional evaluation when 

evaluating the CNN-PSO. Loss is a distance between the 

actual and predicted value produced by the model. The 

greater the loss value is evident more errors. The function 

used to calculate the loss value is a sparse categorical 

cross-entropy function [52].  

 

4. Results for Computational 

Experiment and Discussion 
This section highlights the comparisons of the CNN 

models and a proposed CNN-PSO model. 

 

4.1. Comparison Results of the CNN Models 

This section evaluates five CNN models: Mobile Net, 

Xception, ResNet50, InceptionV3, and VGG19. The 

models are the most commonly used in imaging 

classification with deep learning. When comparing 

model performance, the evaluation metrics such as 

accuracy, F1 score, precision, and recall were used to 

evaluate the model. The comparisons of the accuracy 

among five pre-trained models are shown in Figure 5 (a), 

(b), (c), (d), (e), respectively. 

In the evaluation, trial-and-error method of the 

hyperparameters settings of the five different pre-trained 

CNN models using the validation dataset. The learning 

rate of all the five different pre-trained CNN models is 

reduced until the minimum of 0.00001. For the VGG19 

model, the training dataset is split into ten batches. The 

model used 100 epochs. The initialized weights of 

ImageNet are used for each layer. The weight value was 

updated using Adam Optimizer for each epoch. The 

learning rate is reduced to a minimum of 0.00001. 

VGG19 obtained the maximum probabilities of 

validation accuracy of 0.91 from 0 to 1 on the test dataset. 

VGG19 model used 6,423,298 trainable layers parameter 

and 20,024,384 non-trainable parameters of VGG19 

layers. Regarding the MobileNet model, the training 

dataset is split into ten batches. The initialized weights of 

ImageNet are used for each layer. The learning rate is 

reduced to a minimum of 0.00001. MobileNet obtained 

the second-highest validation accuracy probability of 

0.88 from 0 to 1 on the test dataset. MobileNet model 

used 12,845,846 trainable layers parameter and 

3,228,864 non-trainable parameters of MobileNet layers. 

 
Fig. 5 Accuracy comparison of five pre-trained CNN models with (a) 

MobileNet, (b) Xception, (c) VGG19, (d) ResNet50, (e) InceptionV 

 

The Xception model has the same datasets and 

parameters as the VGG19 and MobileNet parameters. 

The weights of ImageNet were also used for each layer. 

Xception comes in third place behind VGG19 and 

MobileNet, with a validation accuracy of 0.81 from 0 to 

1 probability on the test dataset. The Xception model 

utilized 25,690,882 trainable layers parameter and 

20,861,480 non-trainable parameters of Xception layers. 

For the InceptionV3 model, the training data set 

parameters are also the same as the other model 

parameters. The weights of ImageNet were also used for 

each layer. InceptionV3 ranks fourth among all five pre-

trained CNN models, achieving a test dataset probability 

validation accuracy of 0.73 from 0 to 1. InceptionV3 

model operates with 13,107,970 trainable layers 

parameter and 21,802,784 non-trainable parameters of 

InceptionV3 layers. In the ResNet50 model, the 

parameters used for the training dataset are also the same 

as the other model parameters. The weights of ImageNet 

were also used for each layer. ResNet50 ranks fifth 

behind all four pre-trained CNN models, achieving a 

probability validation accuracy of 0.68 from 0 to 1 on the 

test dataset. ResNet50 model used 25,690,882 trainable 

layers parameter and 23,587,712 non-trainable 

parameters of ResNet50 layers. 

ImageNet supplies the weight knowledge to the CNNs. 

The summary of all evaluation metrics measurements is 

in Table 1, including the accuracy, F1 score, precision, 
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and recall values. The highest evaluation metrics 

currently provided by VGG19 are 0.91 on the accuracy, 

0.91 on the F1 score, 0.92 on Precision, and 0.91 on 

Recall. It can be concluded from the classification results 

that the VGG19 model showed better performance than 

all the other pre-trained CNN models, including 

MobileNet, ResNet50, InceptionV3, and Xception. The 

accuracy of the VGG19 model is the highest at 0.91 and 

the lowest in the ResNet50 model with 0.68. Although 

the other pre-trained CNN model did not achieve better 

accuracy than the VGG19 model, the network 

complexity differs between the VGG19 model and other 

pre-trained CNN models. 

 
Table 1 Performance measure of all CNN models 

Particle L1 L2 L3 L4 DP Loss Accuracy 

A1 232 152 64 168 0.3 0.26 0.92 

A2 48 96 64 144 0.3 0.26 0.94 

A3 152 72 64 184 0.3 0.26 0.94 

A4 144 80 176 216 0.4 0.27 0.94 

A5 208 120 200 232 0.3 0.36 0.92 

A6 208 232 144 152 0.4 0.23 0.92 

A7 40 96 216 144 0.3 0.27 0.92 

A8 208 160 144 216 0.3 0.31 0.92 

A9 48 136 168 88 0.3 0.37 0.94 

A10 40 72 168 40 0.3 0.37 0.92 

 

This research presented a CNN model that uses 

VGG19 to classify the CXR images to identify patients 

with TB. Previous CXR classification research applied 

complex lung segmentation models before training the 

model using support vector machines. This research 

shows that the VGG19 model can use raw data to 

identify the results with comparable accuracy without 

any lung segmentations performed in the previous 

research. To further improve the accuracy, the VGG19 

model was applied on a sequential model. A flatten and 

dropout layer was also added to the fully connected layer 

to see whether the model achieved 91% accuracy. It is 

demonstrated that VGG19 achieved a better accuracy of 

about 10% higher compared to the other four models. In 

the next section, we explain the computational results of 

the proposed solution. 

 

4.2. Performance of CNN-ePSO Using Original 

Images 

In this experimental evaluation, we use the same set 

of the parameter of VGG19. The modification part of the 

CNN is the classification layer. The minimum layer of L 

= 6 and the maximum of L =256 were considered. Here, 

a dynamic update particle of -8 or +8 is established based 

on the fitness of the solution. We run CNN-PSO with ten 

population sizes for five iterations. We follow the 

classical choice of population size that requires only a 

low number of sizes [52]. The weight is 0.9, as suggested 

in [47], [49]. The velocity and position value range are 

between 0 and 1. The dropout value is randomly 

initialized and update dynamically within the range of 

0.1 and 0.5. The dropout dynamic update value is either -

0.1 or +0.1. In this case, we use four layers of networks. 

Table 2 shows the result of CNN-ePSO at the 1st iteration 

with ten particles that generated ten classification layers. 

The results were based on the use of original images. 

Interestingly, particle A1 outperforms other particles, 

and most of the accuracy is better than CNN-VGG19, as 

demonstrated in Table 1. There are four particles 

reported at the highest accuracy of 94%. The highest loss 

value is obtained by particle A4, but the accuracy s only 

92%. The results suggest that the embedded PSO in the 

fully connected layer gives an added value mainly in the 

model accuracy. Particles A2 and A3 achieved the highest 

accuracy of 94% and a lower value than A1, as indicated 

in Table 2. At the 5th iteration, as demonstrated in Table 

3, all particles obtained more than 92% accuracy.  

 
Table 2 Results of CNN-PSO with original images at the 1st iterations 

Particle L1 L2 L3 L4 DP Loss Accuracy 

A1 256 160 48 160 0.3 0.30 0.94 

A2 32 96 48 128 0.2 0.36 0.94 

A3 160 48 48 176 0.3 0.25 0.92 

A4 144 64 192 224 0.2 0.23 0.92 

A5 224 128 224 256 0.2 0.38 0.94 

A6 224 256 144 144 0.2 0.25 0.92 

A7 16 96 240 128 0.2 0.25 0.91 

A8 224 176 144 224 0.2 0.40 0.95 

A9 32 144 176 64 0.2 0.33 0.92 

A10 16 48 176 16 0.2 0.36 0.94 

 
Table 3 Results of CNN-PSO with original images at the 5th iterations 

Measure Mobile 

Net 

Xception Res

Net 

50 

Inception

V3 

VGG

19 

Accuracy 0.88 0.81 0.68 0.73 0.91 

F1 Score 0.88 0.81 0.68 0.73 0.91 

Precision 0.88 0.81 0.68 0.74 0.92 

Recall 0.87 0.81 0.67 0.73 0.91 

 

4.3. Performance of CNN-ePSO Using Enhancement 

Images 

In this section, we explain the performance of CNN-

PSO using enhanced images. The same setting is 

employed, as mentioned earlier. Results of CNN-PSO 

with image enhancement at the 1st iteration are 

illustrated in Table 4. The utilization of an enhancement 

image has resulted in a significant improvement in its 

performance. All particles have demonstrated a 

significant improvement in accuracy from 94% to 97%.  

In terms of loss value, all particles obtained less value 

than the performance in Section 4.2. The highest loss 

value was reduced to a minimum of 0.09, as indicated by 

the A10 particle. At the 5th iteration, particle A7 finally 

achieved the highest accuracy, 98%, at the same loss 

value of 0.09 as demonstrated in Table 5.  
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Table 4 Results of CNN-PSO with image enhancement at the 1st 

iterations 

Particle L1 L2 L3 L4 DP Loss Accuracy 

A1 16 16 112 96 0.3 0.19 0.97 

A2 72 168 56 96 0.2 0.2 0.97 

A3 40 232 104 232 0.2 0.13 0.95 

A4 200 24 152 136 0.2 0.14 0.97 

A5 72 184 136 232 0.3 0.14 0.97 

A6 16 136 88 168 0.2 0.15 0.95 

A7 56 136 216 24 0.2 0.13 0.97 

A8 40 56 200 56 0.2 0.12 0.97 

A9 16 232 216 88 0.2 0.11 0.97 

A10 248 72 168 56 0.3 0.09 0.97 

 
Table 5 Results for CNN-PSO with image enhancement at the 5th 

iterations 

Particle L1 L2 L3 L4 DP Loss Accuracy 

A1 16 16 112 96 0.06 0.21 0.97 

A2 56 152 72 96 0.10 0.24 0.97 

A3 24 216 112 216 0.13 0.12 0.97 

A4 184 16 136 120 0.35 0.14 0.97 

A5 56 168 120 216 0.56 0.11 0.97 

A6 16 120 104 152 0.5 0.16 0.97 

A7 40 120 200 40 0.85 0.09 0.98 

A8 24 40 184 72 0.12 0.14 0.97 

A9 16 216 200 96 0.00 0.14 0.97 

A10 232 56 152 72 0.46 0.16 0.97 

 

4.4. Comparison Performance of CNN-PSO, CNN 

Models and a Recent Solution 

This section gives some important points obtained 

from the results of the experiments. It was based on the 

capability of both CNN and PSO. CNNs play an essential 

role in many imaging domains, especially in healthcare 

solutions. Thus, to validate our proposed CNN-PSO, we 

compare it against CNN models. The result is shown in 

Table 6. Overall, the stochastic flavor of PSO led to a 

better classification performance with a 3% improvement 

in accuracy, F1 Score, Precision, and Recall as compared 

to VGG19 of the CNN model when using original 

images. However, a significant result is achieved using 

enhanced images with 98% accuracy, F1 Score, Precision, 

and Recall. The dynamic particle update of the layer and 

dropout give an effect on the accuracy and loss.    

 
Table 6 Comparison performance of CNN-PSO and CNN models 

Measurement CNN-

VGG19 

CNN-ePSO  

(Original 

images) 

CNN-ePSO  

(Enhanced images) 

Accuracy 0.91 0.94 0.98 

F1 Score 0.91 0.94 0.98 

Precision 0.92 0.96 0.98 

Recall 0.91 0.94 0.98 

 

Compared to VoPreCNNFT developed in [13], the 

proposed CNN-PSO with CLAHE performed about a 

similar result which is 98% accuracy. However, their 

evaluation on the separate datasets of MC and SZ. It is 

supported that the chosen fully connected layer 

architecture is one of the criteria for the image 

classification performance [21]. PSO itself has shown its 

capability in finding the optimized architecture. The 

balance of exploitation and exploration searching 

strategy in PSO has brought a good result even with only 

five iterations. Even though a small population size is 

used, the result is at par compared to the recent output 

from [13]. In addition, evaluation of PSO can be 

extended by using more numbers of population size as 

also suggested by [53]. 

 

5. Conclusions  
This paper presents the proposed CNN-ePSO models 

to handle automated TB CHR image classification 

challenges. CNN, to be known, requires many images for 

its training task. Producing adequate experimental 

datasets in the real world is challenging. In this work, the 

augmentation processes for the existing images were 

performed to improve identifying its features before 

applying the models. The benchmark TB CXR images 

were used to perform a binary classification, whether it 

falls under normal or TB. The VGG19 with appropriate 

dense layer and dropout parameters are evident for better 

performance than MobileNet, ResNet50, InceptionV3, 

and Xception, with the same datasets and augmentation 

images. A different architecture of CNNs and training 

parameters influence the CNN model performances. The 

CNN-ePSO with image enhancement has demonstrated 

superior performance in accuracy and loss. A novel 

ePSO as an embedded tool to CNN was reported as a 

significant commitment to all CNN methods. ePSO has 

performed well with a small number of population sizes 

in this context, as proved in many types of problems. 

Also, PSO works well in balancing the global and local 

search that aims for an optimal solution. Hence, the 

proposed CNN-ePSO can be tested on different types of 

CXR especially using real-life data. It is expected to 

provide good accuracy. 

In addition, some limitations such as the performance 

on computational times and lack of concentration in deep 

feature behavior could be improved using several 

strategies. Future work can improve efficiency by adding 

embedded optimization algorithms such as the most 

recent Cuckoo Search and firefly algorithm. Another part 

of improvement is enhancing the feature extraction at the 

convolution layer, such as ensemble methods. For 

instance, this research can be made more effective by 
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implementing a hybrid method. The pre-processed CXR 

image can be used and further processed where the 

region of interest can be extracted from these CXR 

images. 
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