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Abstract: Multiple correspondence analysis (MCA) is well-known in statistics as a data analysis technique 

for multiple categorical variables. This method detects and represents underlying structures in a data set by 

representing data as points in a low-dimensional space. MCA is performed by applying the simple correspondence 

analysis (CA) algorithm to either an indicator matrix or a Burt matrix formed from these variables. Furthermore, the 

Burt matrix is scaled and undertaken eigendecomposition to get coordinates, which depicts the association's nature 

among variables. This study re-proposed the scale matrix of the Burt matrix, whose elements are the scale values of 

the categories of a variable, then so-called the scaled Burt matrix. While some researchers are interested in many 

MCA applications, we convenient our attention to exploring the properties of the scaled Burt matrix from a matrix 

algebraic perspective. These properties are derived mathematically to investigate the link between the Burt matrix 

and its scale matrix in representing the variables' associations. 

Keywords: Burt matrix, categorical data analysis, indicator matrix, multiple correspondence analysis, scale 

matrix. 

 

多重對應分析的尺度伯特矩陣的一些性質 
 

摘要：多重對應分析（馬華）在統計領域是眾所周知的，是一種用於多個類別變量的數

據分析技術。該方法通過將數據表示為低維空間中的點來檢測和表示數據集中的底層結構。

通過將簡單對應分析（認證機構）算法應用於由這些變量形成的指標矩陣或伯特矩陣，可以

執行馬華。此外，對伯特矩陣進行縮放並進行特徵分解以獲得坐標，該坐標描述了變量之間

的關聯性質。這項研究重新提出了伯特矩陣的比例矩陣，其元素是變量類別的比例值，然後

稱為縮放的伯特矩陣。雖然一些研究人員對許多馬華應用感興趣，但我們將注意力集中在從

矩陣代數的角度探索縮放伯特 矩陣的屬性。這些屬性是通過數學推導得出的，以研究伯特矩

陣與其標度矩陣之間的聯繫，以表示變量的關聯。 

关键词：伯特矩陣，分類數據分析，指標矩陣，多重對應分析，比例尺矩陣。 
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1. Introduction 

Jean-Paul Benzécri proposed multiple 

correspondence analysis (MCA) in the early 1960s as 

graphical data analysis for categorical variables. MCA 

is a statistical technique for uncovering latent structures 

in large or more complex datasets, including 

multidimensional categorical data [1]. This technique is 

practically applied to the simple correspondence 

analysis (CA) algorithm to multivariate categorical data 

that involves transforming such table into a two-way 

from through coded in an indicator matrix or a Burt 

matrix form [2]. In brief, MCA extends the CA by 

providing the ability to analyze a table containing some 

measure of correspondence among the rows and 

columns for more than two variables [3]. 

MCA is widely used in social sciences, behavioral 

science, material science, engineering, and biomedical 

research for graphically depicting the association 

between more than two categorical variables. Goodwill 

and Meloy [4] used MCA as a multidimensional 

scaling method to visualize the association among 

indicators for lone-actor terrorist attacks. Lestari et al. 

[5] utilized MCA to establish the reliability of crash car 

protection by describing circle confidence regions for 

each coordinate in the MCA plot. Greenacre. [6], 

Yudhanegara and Lestari [7] examine the utility of 

MCA in clustering a mixed-scale data set. Royan and 

Royan [8] applied MCA to explore the diabetic foot 

screening procedures data by investigating the 

relationships among the risk status classification of the 

post-screening decisions. Fred et al. [9] used MCA to 

derive the different impact dimensions of projects on 

biodiversity among Uganda communities. Brunette et 

al. [10] realize MCA to identify economic perspectives 

of forest adaptation to climate change. Beh and 

Lombardo [11] briefly explore the development, 

literature, and possible MCA research opportunities. 

The analysis of the association between the 

variables of a two-way contingency table may be 

considered a particular case of MCA. In practice, any 

two-way contingency table can be obtained from a 

multi-way table by considering the product of the 

indicator matrix of one variable with the indicator 

matrix of another variable [11]. If there are 𝑛 

individuals observed based on 𝑚  categories, the 

mathematical indicator will be 𝑛 × 𝑚in size. In case 

the number of respondents or categories is large, the 

indicator matrix requires large memories. It is one 

practical reason that the MCA is rarely performed using 

this matrix. Hence, many applications of this method 

commonly use the Burt matrix.  

The Burt matrix is scaled and decomposed to get 

coordinates, which depicts the association among 

variables in the low-dimensional space. The scaling on 

the Burt matrix yields a matrix whose elements are the 

scale values of the categories of a variable, then so-

called the scaled Burt matrix. While some researchers 

are interested in many MCA applications, we 

convenient our attention to exploring the properties of 

the scaled Burt matrix from a matrix algebraic 

perspective. This study examines the scaled matrix 

elements' characteristics through an algebraic approach 

to find the link between the Burt matrix and its scale 

matrix in representing the variables associations. It 

contributes to the development of scientific theories 

and practices relating to MCAs. Some findings which 

the novelty of this study are written in theorem form. 

This paper is organized as follows. The preliminary 

theory of CA is briefly described in Section 2. In 

Section 3, we elaborate on expanding CA into MCA 

and investigating the scaled Burt matrix element. Some 

properties of this matrix are also presented. A case 

study is put forward in Section 4. A Summary and 

future works are presented as a conclusion in the last 

section. 
 

2. A Preliminary Theory  
Consider two categorical variables 𝑋1  and 𝑋2 , 

where 𝑋1 consists of 𝐼 categories, and 𝑋2 consists of 𝐽 

categories. According to the 𝐼 row and 𝐽 columns, let 𝑁 

be an 𝐼 × 𝐽  two-way contingency table that cross-

classifies 𝑛 individuals. CA’s main idea is to reduce the 

matrix's dimensionality and visualize the association 

between variables in a low-dimensional subspace, 

usually a two- or three-dimensional plot [12]. This plot 

represented the data as a set of points on the 

perpendicular coordinate axes.  

For a simple example, suppose the 3 × 2 

contingency table of Labor data reflecting a cross-

classification of the race (𝑋1) and employment status 

(𝑋2) from a survey of 15 individuals. The contingency 

table (Table 1) has three categories of race as rows 

(e.g., white, black, and Asian) and two categories of 

employment status as columns (e.g., employment and 

unemployment). The data obtained are in Table 2. 

 
Table 1 Labor data for 15 American civilians 25 years and over by 

race and employment status, along with the percentages of 

employment status in each race (in parentheses) 

           Status 

Race 
Employment Unemployment Sum 

White 4 (66.7%) 2 (33.3%) 6 

Black 1 (20%) 4 (80%) 5 

Asian 3 (75%) 1 (25%) 4 

Sum 8 7 15 

 

This table can be considered in two different views: 

a set of rows or columns. To illustrate this point, each 

row in Table 1 is a set of frequencies reflecting the 

respective race, while each column reflects the two 

levels of employment status. If we want to compare the 

race, we should consider the different numbers of 

individuals in a total was have in each race. Otherwise, 

if we want to compare the two employment status 

levels visually, we should consider the number of 
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individuals in each status. 

When analyzing frequency data, it is sometimes 

better to reexpress the data as a set of percentages. For 

example, each race involves a different number of 

civilians and corresponds to a different base as far as 

the frequencies of the types of employment status are 

concerned. The four civilians in the white race, 

compare to the three in the Asian race, can be judged 

only concerning the number of civilians in these 

respective races. As percentages, they turn out to be 

quite different: 4 out of 6 is 66.7%, while 3 out of 4 is 

75%. The visualization of the relative frequencies in 

Table 1 gives a more accurate comparison of the 

employment of people of different races.  

The description above shows that the concept of a 

set of relative frequencies or a profile is fundamental to 

CA. Such sets or vectors of relative frequencies have 

special geometric features because each set’s elements 

add up to 1 (or 100%). In analyzing a frequency table, 

relative frequencies can be computed for rows (row 

profiles) or columns (columns profiles) by dividing 

their frequencies by their total. Consider Table 1, the 

row profiles for these data: the profile of white is 
[4 6⁄ 2 6⁄ ]. It is referred to as the profile of the white 

race across the type of employment status. Similarly, 

the profile of the Asian race across the type of 

employment status is [3 4⁄ 1 4⁄ ], concentrated mostly 

in the employment, as is the white race. In contrast, the 

black race has a profile of [1 5⁄ 4 5⁄ ], concentrated 

mostly in unemployment. These profiles can be 

depicted as points in a profile space (Fig. 1a).  

Similarly, the column profiles for these data: the profile 

of employment across the race is [4 8⁄ 1/8 3/8], 

concentrated mostly in the Asian race, while the profile 

of unemployment is  [2 7⁄ 4/7 1/7], concentrated 

mostly in the Black race, as shown in  Fig. 1c. 

 
Fig. 1 The plot of the row and column profiles: (a) The row profiles in two-dimensional space; (b) The position of the three rows profile lies 

on a line; (c) Column profiles in three-dimensional space; (d) The two-column profile points lie precisely on an equilateral triangle 

 

The profile points in two-dimensional space lie on a 

line (one-dimension) that joints the unit points [1 0] 
and [0 1] on the two axes, as shown in Fig. 1b. While 

the points in three-dimensional space lie precisely on a 

flat triangle (two-dimension) that joints the unit points 
[1 0 0], [0 1 0] ,  and [0 0 1]  on the three 

respective axes, as in Fig. 1d. Each side is rescaled to 

be of length 1 and can be calibrated accordingly on a 

linear scale from 0 to 1. 

 

3. Expansion into Multiple 

Correspondence Analysis 
Consider two categorical variables 𝑋1  and 𝑋2 , 

where 𝑋1 consists of 𝐼 categories, and 𝑋2 consists of 𝐽 

categories. According to the 𝐼 row and 𝐽 columns, let 𝑁 

is an 𝐼 × 𝐽  two-way contingency table that cross-

classifies 𝑛 individuals. CA’s 

As data tables increase in size (e.g., more than two 

variables), it becomes more difficult to make simple 
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graphical displays as in Fig. 1. One approach is to 

rearrange the multi-way frequency table as a two-way 

table to apply CA later. This approach well-known as 

multiple correspondence analysis (MCA). The 

expansion of CA into MCA is explained in the next 

section. 

MCA's fundamental idea is that two or more 

categorical variables can be recoded as dummy 

variables in an indicator matrix or as a concatenation of 

categories-by-categories in a Burt matrix. The 

interpretation of the data from these both alternative 

codings of MCA is similar. The expansion of a simple 

contingency table into an indicator and Burt matrix is 

visualized in Fig. 2. 

 
Fig. 2 Rearranging data from a simple contingency table into an indicator and Burt matrix 

 

Considering the data in Table 1, it can recode into 

an indicator matrix form, which has as many rows as 

several individuals and as many columns as several 

categories. An alternative coding of the data is the Burt 

matrix, a square symmetric matrix of categories-by-

categories. This matrix consists of all two-way 

contingency tables of pairs of variables, including the 

block diagonal of each variable's marginal frequencies. 

A brief description of the indicator and the Burt matrix 

is explained below to understand CA's expansion into 

MCA. 

 

3.1. The Burt Matrix Construction 

Suppose 𝑋1, 𝑋2,⋯ , 𝑋𝑞  are 𝑞  categorical variables 

for 𝑛 individuals, where variable 𝑘 has 𝑗𝑘 categories for 

𝑘 = 1, 2,⋯ , 𝑞 . Note that for the 𝐼 × 𝐽  contingency 

table, 𝐼  is referred to as 𝑗1  that is the number of 

categories of 𝑋1,  and 𝐽 is referred to as 𝑗2 (the number 

of categories of 𝑋2 ). The total number of categories 

under consideration is 𝑚 = ∑ 𝑗𝑘
𝑞
𝑘=1 . Let 𝑋𝑘  be the 

indicator matrix for the 𝑘 -th variable, where 𝑋𝑘  is a 

binary 𝑛 × 𝑗𝑘  matrix with precisely one nonzero 

element in each row 𝑖 indicating in which category of 

variable 𝑘 observation 𝑖  falls for 𝑖 = 1, 2,⋯ , 𝑛 . Thus, 

𝑋 = (𝑥𝑖𝑗𝑘
),  where 𝑥𝑖𝑗𝑘

= 1  if the subject 𝑖  selects 

category 𝑘  of variable  𝑗 , and 𝑥𝑖𝑗𝑘
= 0  otherwise. In 

previous literature, 𝑋𝑘 was called a block matrix [1] or 

submatrix. The concatenating these block or sub-

matrices leads to the 𝑛 × 𝑚  super-indicator matrix, 

which is 

𝑋 
(𝑛×𝑚)

= ( 𝑋1
(𝑛×𝑗1)

| 𝑋2
(𝑛×𝑗2)

|⋯ | 𝑋𝑘
(𝑛×𝑗𝑘)

|⋯ | 𝑋𝑞
(𝑛×𝑗𝑞)

).        (1) 

However, if the sample size is considerable, the 

indicator matrix can consist of thousands or even many 

more rows [11], [13]. It is the reason why the MCA 

involves summarising the data in the Burt matrix form. 

The Burt matrix 𝐵 derived by considering its indicator 

matrix form and has the following block structure [5]: 

𝐵
(𝑛×𝑚)

= 𝑋𝑇𝑋 =

(

 
 
 
 
 

𝐷1
(𝑗1×𝑗1)

𝑁12
(𝑗1×𝑗2)

𝑁12
T

(𝑗2×𝑗1)
𝐷2

(𝑗2×𝑗2)

⋯
⋯

𝑁1𝑞
(𝑗1×𝑗𝑞)

𝑁2𝑞
(𝑗2×𝑗𝑞)

⋮           ⋮ ⋱ ⋮
𝑁1𝑞

T

(𝑗𝑞×𝑗1)

𝑁2𝑞
T

(𝑗𝑞×𝑗2)
⋯ 𝐷𝑞

(𝑗𝑞×𝑗𝑞))

 
 
 
 
 

(2) 

Here, 𝑁𝑘𝑘′

(𝑗𝑘×𝑗
𝑘′

)

is the two-way contingency table 

formed from the 𝑘-th and 𝑘 ′-th variables (𝑘 ≠ 𝑘 ′), and 

𝑁
𝑘𝑘′
T

(𝑗
𝑘′

×𝑗𝑘)

is the transpose of 𝑁𝑘𝑘′

(𝑗𝑘×𝑗
𝑘′

)

. Denote 𝑛𝑖𝑘  as the 

element of 𝑁𝑘𝑘′

(𝑗𝑘×𝑗
𝑘′

)

, and 𝐷𝑘 = 𝑑𝑖𝑎𝑔(𝑛∙𝑗𝑘
)  to be a 

diagonal matrix of column marginal frequencies of the 
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𝑘-th variables. 

The association between the 𝑞 variables visualizes 

in a reduced dimension space by correspondence plot. 

It is constructed by first performing an 

eigendecomposition (ED) on the scaled Burt matrix. 

Define 𝐵∗  as the scaled Burt matrix, whose elements 

are the scale value of the categories of a variable [11]. 

The scaled Burt matrix can be computed by 

𝐵∗ =
1

𝑞2𝑛
𝐷−1𝐵,                                                                (3) 

where 𝐷 = diag (
𝑛∙𝑗𝑘

𝑛
) is the diagonal matrix of the 

column proportions of the k-th variable, such that 

ED(𝐵∗) = 𝑈𝛬𝐵𝑈𝑇. (4) 

Here, 𝛬𝐵 is a diagonal matrix of the eigenvalues 𝜆ℓ
𝐵 

for ℓ = 1, 2,⋯ , 𝐿 , that is 𝛬𝐵 = diag (𝜆ℓ
𝐵) . The 

matrix 𝑈 contains the eigenvector of 𝐵∗. The left-hand 

side is the eigendecomposition of the scaled Burt 

matrix, and the right-hand side is the matrices resulting 

from the decomposition. For example, consider the 

3 × 2 contingency table in Table 1, then 𝑛 = 15, and 

𝑞 = 2  variables with 𝑗1 = 3 = 𝐼  and 𝑗2 = 2 = 𝐽 

categories. Then we obtain: 

Fig. 3 Scale Burt matrix process

The matrices 𝑁 and 𝑋 are indeed related codings of 

data. In the indicator matrix approach, associations 

between variables are exposed by calculating the chi-

square distance between different categories of the 

variables and between the individuals (or respondents). 

These associations are depicted graphically as "maps", 

which simplify the interpretation of the structures in the 

data. The number of individuals with the same 

characteristics for each category can be known directly 

through each column's marginal frequency and denoted 

by 𝑛∙𝑗𝑘
= ∑ 𝑥𝑖𝑗𝑘

𝑛
𝑖=1 . Oppositions between rows and 

columns are then maximized to uncover the underlying 

dimensions best able to describe the central oppositions 

in the data. The first axis is the most important 

dimension, the second axis the second most important, 

and so on. The number of axes to be retained for 

analysis is determined by calculating modified 

eigenvalues. 

Analyzing the indicator matrix allows the direct 

representation of individuals as points in geometric 

space. On the other hand, analyzing the Burt matrix is a 

more natural generalization of simple correspondence 

analysis. Individuals or groups of individuals can be 

added as additional points to the graphical display. The 

Burt matrix is a real symmetric matrix of all two-way 

cross-classification between the categorical variables, a 

square matrix of size 𝑚 × 𝑚 and an analogy to the 

covariance matrix of continuous variables. Fig. 4 

presents an MCA plot using three matrix approaches 

comprehensively. 
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Fig. 4 MCA’s plots for the variable by the indicator matrix (a), the Burt matrix (b), and the scaled Burt matrix approach (c). These plots 

display the association between race and employment status with a similar interpretation. The scaled Burt matrix is akin to a profiled version 

of the Burt matrix

Generally, MCA is characterized by the optimal 

scaling of categorical variables. This scaling can be 

undertaken using generalized singular value 

decomposition or eigendecomposition [11]. The link 

between 𝐵 and 𝐵∗, including some of the properties of 

𝐵∗,  will be investigated in the following subsection. 

The research hypothesis related to this link is that the 

scaled Burt matrix elements represent the association 

of the variables and are associated with the proportion 

of the number of categories with the number of 

categorical variables. 

 

3.2. The Scaled Burt Matrix Properties 

In this section, the relationship between 𝐵  and 𝐵∗ 

by observing the elements of 𝐵∗ is presented. Theorem 

1a shows that the elements of 𝐵∗  are the conditional 

probability for each pair of a categorical variable. 

Theorem 1: Suppose 𝑋
(n×m)

 is a super-indicator 

matrix of q categorical variables. The Burt matrix and 

its scale are defined by 𝐵 = 𝑋𝑇𝑋, and 𝐵∗ =
1

q2n
𝐷−1𝐵, 

then:  

the element of 𝐵∗ is b
kk′
∗ =

n
kk′

q2 n∙jk

, for  k, k′ =

1, 2,⋯ , q. 

the diagonal element of  𝐵∗ is equal to 
1

q2. 

Proof (1a): Since 𝐵∗ =
1

q2n
𝐷−1𝐵, we have 

𝐵∗ =
1

𝑞2𝑛

(

 
 
 
 
 

𝐷1
−1𝐷1

(𝑗1×𝑗1)
𝐷1

−1𝑁12  
(𝑗1×𝑗2)

𝐷2
−1𝑁12

T

(𝑗2×𝑗1)
𝐷2

−1𝐷2
(𝑗2×𝑗2)

⋯
⋯

𝐷1
−1𝑁1𝑞

(𝑗1×𝑗𝑞)

𝐷2
−1𝑁2𝑞

(𝑗2×𝑗𝑞)

⋮                   ⋮ ⋱ ⋮
𝐷𝑞

−1𝑁1𝑞
T

(𝑗𝑞×𝑗1)

𝐷𝑞
−1𝑁2𝑞

T

(𝑗𝑞×𝑗2)
⋯ 𝐷𝑞

−1𝐷𝑞
(𝑗𝑞×𝑗𝑞) )

 
 
 
 
 

, 

where 𝐷𝑘
−1

(𝑗𝑘×𝑗𝑘)
= diag (

𝑛

𝑛∙𝑗𝑘

) with 𝑛∙𝑗𝑘
= ∑ 𝑥𝑖𝑗𝑘

𝑛
𝑖=1  is 

the number of observations on the j-th category of k-th 

variable and ∑ 𝑗𝑘 = 𝑚
𝑞
𝑗=1 . Suppose that 𝑁

𝑘𝑘 ′
∗ = (

𝑛
𝑘𝑘′

𝑛∙𝑗𝑘

), 

since 𝐷𝑘 = diag(𝑛∙𝑗𝒌
) and 𝑁𝑘𝑘′ = (𝑛𝑘𝑘′), then 

𝐵∗ =
1

𝑞2𝑛

[
 
 
 
 
 
 
 

𝑛

(

 
 
 
 
 

𝑁11
∗

(𝑗1×𝑗1)

𝑁21
∗

(𝑗2×𝑗1)

⋮

𝑁𝑞1
∗

(𝑗𝑞×𝑗1)

𝑁12
∗

(𝑗1×𝑗2)

𝑁22
∗

(𝑗2×𝑗2)

⋮

𝑁𝑞2
∗

(𝑗𝑞×𝑗2)

⋯

⋯

⋱

𝑁11
∗

(𝑗1×𝑗1)

𝑁1𝑞
∗

(𝑗1×𝑗𝑞)

𝑁2𝑞
∗

(𝑗2×𝑗𝑞)

⋮

𝑁𝑞𝑞
∗

(𝑗𝑞×𝑗𝑞))

 
 
 
 
 

]
 
 
 
 
 
 
 

 

or 𝐵∗ = (𝑏𝑘𝑘′
∗ ), with 𝑏

𝑘𝑘′
∗ =

𝑛
𝑘𝑘′

𝑞2𝑛∙𝑗𝑘

. 

QED. 

Since 𝑁
𝑘𝑘′
∗ =

𝑛
𝑘𝑘′

𝑛∙𝑗𝑘

, the theorem above shows that the 

scaled Burt matrix element is 
1

𝑞2  times the bivariate 

conditional probability values for each submatrix 

element. The quantity of 
1

𝑞2  expresses the number of 

submatrices formed from 𝑞 variables.  

Proof (1b): By previous definition 𝑁𝑘𝑘
∗ =

𝑛𝑘𝑘

𝑛∙𝑗𝑘

= 1, 

then 𝑁𝑘𝑘
∗

(𝑗𝑘×𝑗𝑘)
= 𝐼𝑘

(𝑗𝑘×𝑗𝑘)
 where 𝐼𝑘 is an identity matrix of 

size 𝑗𝑘 × 𝑗𝑘. According to Proof (1a), we obtained: 

𝐵∗ =
1

𝑞2

(

 
 
 
 
 

𝐼1
(𝑗1×𝑗1)

𝑁12
∗

(𝑗1×𝑗2)

𝑁21
∗

(𝑗2×𝑗1)
𝐼2

(𝑗2×𝑗2)

⋯
⋯

𝑁1𝑞
∗

(𝑗1×𝑗𝑞)

𝑁2𝑞
∗

(𝑗2×𝑗𝑞)

⋮           ⋮ ⋱ ⋮
𝑁𝑞1

∗

(𝑗𝑞×𝑗1)

𝑁𝑞2
∗

(𝑗𝑞×𝑗2)
⋯ 𝐼𝑞

(𝑗𝑞×𝑗𝑞))

 
 
 
 
 

. 
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It is clear that 
1

𝑞2  has been absorbed into the 

diagonal submatrices, then the diagonal element 

of 𝐵∗is
1

𝑞2. 

QED. 

The diagonal elements of 𝐵∗, which have the same 

value, indicate that each variable's category has the 

same proportion to be chosen. The next study will 

investigate the sum of elements on each submatrix of 

𝐵∗, as follows. 

Theorem 2: Suppose  𝑋
(n×m)

is an indicator matrix of q 

categorical variables. The Burt matrix and its scale are 

defined by  𝐵 =

 𝑋𝑇𝑋𝐵  = XTX and B∗ = 1q2nD − 1𝐵, then: 

the sum of the  jk ×  jk′ submatrix elements of 𝐵∗ is 

equal to 
   jk

q2 . 

the sum of elements of the  jk ×  jk′ submatrix on 𝐵∗ 

is equal to 
 jk

q
 for any k.  

the sum of elements of the  jk ×  jk′ submatrix of  𝐵∗ 

is equal to the sum of elements of the  jh ×  jh′ 

submatrix of  𝐵∗, for jk =  jh. 

The total elements of 𝐵∗ are equal to 
m

q
. 

Proof (2a): Suppose that 𝑁
𝑘𝑘′
∗

(𝑗𝑘× 𝑗
𝑘′)

= (
𝑛

𝑘𝑘′

𝑛∙𝑗𝑘

) , is a 

submatrix of 𝐵∗. From Theorem 1a,  

𝑁𝑘𝑘
∗

(𝑗𝑘× 𝑗
𝑘′)

=
1

𝑞2

(

 
 
 
 
 

𝑛11

𝑛∙𝑗1

𝑛12

𝑛∙𝑗1
𝑛21

𝑛∙𝑗2

𝑛22

𝑛∙𝑗2

⋯
⋯

𝑛1𝑘′

𝑛∙𝑗1
𝑛2𝑘′

𝑛∙𝑗2

    ⋮        ⋮ ⋱ ⋮
𝑛𝑘1

𝑛∙𝑗𝑘

𝑛𝑘2

𝑛∙𝑗𝑘

⋯
𝑛𝑘𝑘′

𝑛∙𝑗𝑘 )

 
 
 
 
 

.      

Then, the sum of elements of  𝑁
𝑘𝑘′
∗

 (𝑗𝑘× 𝑗
𝑘′

)

 is 

∑ ∑
𝑛𝑖𝑖′

𝑞2𝑛∙𝑗𝑖

𝑘′

𝑖′=1

=
1

𝑞2 [(∑
𝑛1𝑘′

𝑛∙𝑗1

𝑘′

𝑖′=1

) + ⋯+ (∑
𝑛𝑘𝑘′

𝑛∙𝑗𝑘

𝑘′

𝑖′=1

)]

𝑘

𝑖=1

 

                           =
1

𝑞2
[(1) + (1) + ⋯+ (1)]  =

𝑗𝑘
𝑞2

 .   

QED. 

Theorem 2a shows that the sum of elements of each 

submatrix of size  𝑗𝑘 ×  𝑗𝑘′ is the ratio of the number 

categories of 𝑘 -th variable and the square of the 

number of variables. This ratio manifests the 

proportion of the number of categories and the number 

of submatrices on 𝐵∗ . The difference between the 

Theorems 2a and 2b is in terms of the number of sub-

matrices of 𝐵∗  that are considered. Theorem 2a 

calculates the sum of elements from one submatrix of 

size 𝑗𝑘 ×  𝑗𝑘′, while Theorem 2b calculates the sum of 

the elements of some sub-matrices with row size is 𝑗𝑘. 

Proof (2b): If there are q categorical variable, then 

according to Theorem 2a, the sum of elements of 

the 𝑗𝑘 ×  𝑗𝑘′ submatrix on 𝐵∗ for any k is 

∑ (∑ ∑
𝑛𝑖𝑖′

𝑞2𝑛∙𝑗𝑖

𝑘′

𝑖′=1

𝑘

𝑖=1

) =

𝑞

ℎ=1

𝑞 (
𝑗𝑘
𝑞2

) =
 𝑗𝑘
𝑞

. 

QED. 

Theorem 2b provides a simple formulation to 

calculate the sum of the 𝑗𝑘 ×  𝑗𝑘′ submatrix elements on 

𝐵∗ for any k. In this formula, the sum of submatrix 

elements is expressed as a proportion of the number of 

categories from the 𝑘-th variable and the number of 

variables.  

Proof (2c): Suppose that 𝑁
𝑘𝑘′
∗

 ( 𝑗𝑘× 𝑗
𝑘′)

and  𝑁
ℎℎ′
∗

( 𝑗ℎ× 𝑗
ℎ′)

 be the 

submatrix of 𝐵∗.  According to Theorem 2a, the sum of 

elements of 𝑁
𝑘𝑘 ′
∗

( 𝑗𝑘× 𝑗
𝑘′)

 and 𝑁
ℎℎ′
∗

( 𝑗ℎ× 𝑗
ℎ′)

 is 
𝑗𝑘

𝑞2  and 
𝑗ℎ

𝑞2 , 

respectively. Since  𝑗𝑘 =  𝑗ℎ, then the sum of elements 

of  𝑁
𝑘𝑘′
∗

( 𝑗𝑘× 𝑗
𝑘′)

 and 𝑁
ℎℎ′
∗

( 𝑗ℎ× 𝑗
ℎ′)

 are equal. 

QED. 

Theorem 2c implies that the sum of elements for 

any submatrix on  𝐵  depends on the number of 

categories of variables. Thus, two or more variables 

with the same number of categories will have the sum 

of submatrices elements with the same quantity. The 

last evaluation was undertaken on the total number of 

the scaled Burt matrix elements, as below. 

Proof (2d): Since 𝐵∗ = (𝑏𝑘𝑘′
∗ ), where 𝑏

𝑘𝑘 ′
∗ =

𝑛
𝑘𝑘′

𝑞2 𝑛∙𝑗𝑘

, 

for  𝑘, 𝑘 ′ = 1, 2,⋯ , 𝑞  (Theorem 1a). By applying 

Theorem 2a and 2b, the total elements of 𝐵∗are 

∑ (
 𝑗𝑘
𝑞

) =

𝑞

𝑘=1

∑  𝑗𝑘
𝑞
𝑘=1

𝑞
=

𝑚

𝑞
. 

where 𝑚  is the total numbers of categories of q 

variables.  

QED. 

The last statement implies that the scaled Burt 

matrix's total elements depend on the number of 

variables and the total number of categories. 

Furthermore, the sum of these elements is expressed as 

a proportion of the total number of categories and the 

number of variables. Thus, the total elements of this 

matrix will increase as the number of categories 

enhance. 

 

4. Case Study 
Consider the contingency table given in Table 2, 

originally obtained from the United States Bureau of 

Labor Statistics website [15] and analyzed using three-

way correspondence analysis Tucker3 by Lestari et al. 

[14]. The data consists of 134877 American civilians 

and three categorical variables; educational attainment 

(𝑋1 ), race (𝑋2 ), and employment status (𝑋3 ). The 
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educational attainment reflects the educational 

background of the civilians. It consists of four 

categories (𝑗1 = 4): less than a high school diploma, 

high school graduate and no college, some college or 

associate degree, and bachelor’s degree and higher. The 

race was specified into three categories ( 𝑗2 = 3 ); 

white, black, and Asia. The employment status is 

divided into two categories (𝑗3 = 2); employment and 

unemployment. The Burt matrix 𝐵 and its scaled 𝐵∗ for 

the table above, derived by its indicator matrix form, 

are displayed in Fig. 5.  

 
Table 2 Labor data for 134877 American civilians 25 years and over by educational attainment, race, and employment status 

Categories 
Employment Unemployment Marginal 

(𝑿𝟏) White Black Asian White Black Asian 

Less than a high school diploma 7690 1038 481 461 148 22 9840 

High school graduate and no college 26710 4889 1474 1,127 421 41 34662 

Some college or associate degree 28388 5230 1375 987 321 45 36346 

Bachelor’s degree and higher 42662 4874 5261 902 182 148 54029 

Marginal (𝑋2) 108927 17103 8847    
134877 

Marginal (𝑋3)  130072   4805  

 

 
Fig. 5 Burt matrix construction: (a) The Burt matrix corresponding to the data in Table 2; (b) The scaled Burt matrix elements by applying 

Theorem 1a 

 

Easily to verify the elements of this matrix by 

comparing the calculations of 𝐵∗ =
1

𝑞2𝑛
𝐷−𝟏𝐵 . The 

results show that Theorem 1 accomplished. 

Furthermore, Theorem 2a ensure that the sum of 

element of the top-red marked submatrix is 
4

9
, since  

∑ ∑
𝑛𝑘𝑘′

𝑞2𝑛∙𝑗𝑘

3

𝑘′=1

4

𝑘=1

=
1

32 [(∑
𝑛1𝑘′

𝑛∙𝑗1

3

ℓ=1

) + (∑
𝑛2𝑘′

𝑛∙𝑗2

3

ℓ=1

)     

+ (∑
𝑛3𝑘′

𝑛∙𝑗3

3

ℓ=1

) + (∑
𝑛4𝑘′

𝑛∙𝑗4

3

ℓ=1

)] 

=
1

32 [(
8,151 + 1,186 + 503

9840
) 

+ (
27,837 + 5,310 + 1,515

34,662
) 
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+(
29,375 + 5,515 + 1,420

36,346
)

+ (
43,564 + 5,056 + 5,409

54,029
)] 

=
4

9
 

where 4 refers to the number of categories for 𝑋1, 

and 9 - to the squared of the number of variables. The 

position of the four-row profiles of this submatrix can 

be plotted in three-dimensional space as given in Fig. 

6a.  

The profile points lie precisely in the plane defined 

by the triangle that joins the coordinates [1 9⁄ 0 0], 
[0 1 9⁄ 0] , and [0 0 1 9⁄ ] . Each side is 

considered to have a length of  1 9⁄  (Fig. 6b). This 

quantity obtained is obtained from 𝑞−2, where 𝑞 is the 

number of variables. Additionally, the two red marked 

submatrices imply that the scaled Burt matrix is not 

symmetric as the original Burt matrix. 

Now, let pay attention to the top three submatrices 

in Fig. 4b. Let these matrices be denoted as 𝐷1
(4×4)

, 𝑁12
(4×3)

, 

and 𝑁13
(4×2)

, respectively. Based on Theorem 2b, the sum 

of these submatrix elements is 
4

3
, since 

∑ (∑ ∑
𝑛𝑘𝑘′

𝑞2𝑛∙𝑗𝑘

3

𝑘′=1

4

𝑘=1

) =

3

ℎ=1

∑ ∑
𝑛𝑘𝑘′

32𝑛∙𝑗𝑘

4

𝑘′=1

4

𝑘=1

+ ∑ ∑
𝑛𝑘𝑘′

32𝑛∙𝑗𝑘

3

𝑘′=1

4

𝑘=1

 

                    + ∑ ∑
𝑛𝑘𝑘′

32𝑛∙𝑗𝑘

2

𝑘′=1

4

𝑘=1

 

=
4

9
+

4

9
+

4

9
 

                                       =
4

3
 

This result leads us to get the conclusion that the 

total elements of 𝐵∗in Fig. 4b is equal to 3, since 

∑ (
 𝑗𝑘
3

) =

3

𝑘=1

4

3
+

3

3
+

2

3
=

9

3
= 3. 

It shows that the total elements in the scaled Burt 

matrix do not depend on the number of individuals 𝑛, 

but only depend on the number of variables 𝑞 and 

categories of variables 𝑚. 

 
Fig. 6 Row profiles of the top-red marked submatrices on the scaled Burt matrix for labor data in Table 2 

 

5. Conclusion 
This study re-proposed the scale matrix of the Burt 

matrix, whose elements are the scale values of the 

categories of a variable, then so-called the scaled Burt 

matrix. This scaled matrix is then analyzed by 

eigendecomposition to get coordinates, which depicts 

the association's nature among variables. This study 

aims to identify the characteristics of the scaled matrix 

elements through an algebraic approach to find the link 

between the Burt matrix and its scale matrix in 

representing the variables associations. The results 

show that the elements of this matrix represent the 

association of the variables. The investigation of the 

sum of the matrix elements, both for each submatrix or 

overall, yields fascinating values. It is still related to 

the proportion of the number of categories with the 

number of categorical variables (as hypothesized). For 

example, the sum of elements for any submatrix on the 

scaled Burt matrix depends on the number of categories 

of variables. The results lead to the conclusion that the 

scaled Burt matrix is akin to a profiled version of the 

Burt matrix. The advantage of deals with a scale matrix 

is to standardize the independent features present in the 

data in a fixed range. It is performed to handle highly 

varying magnitudes or values, or units. This study's 

results are an early stage that still provides some open 
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problems to be explored in future work. 
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