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Abstract: Multiple correspondence analysis (MCA) is well-known in statistics as a data analysis technique
for multiple categorical variables. This method detects and represents underlying structures in a data set by
representing data as points in a low-dimensional space. MCA is performed by applying the simple correspondence
analysis (CA) algorithm to either an indicator matrix or a Burt matrix formed from these variables. Furthermore, the
Burt matrix is scaled and undertaken eigendecomposition to get coordinates, which depicts the association's nature
among variables. This study re-proposed the scale matrix of the Burt matrix, whose elements are the scale values of
the categories of a variable, then so-called the scaled Burt matrix. While some researchers are interested in many
MCA applications, we convenient our attention to exploring the properties of the scaled Burt matrix from a matrix
algebraic perspective. These properties are derived mathematically to investigate the link between the Burt matrix
and its scale matrix in representing the variables' associations.
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1. Introduction

Jean-Paul Benzécri proposed multiple
correspondence analysis (MCA) in the early 1960s as
graphical data analysis for categorical variables. MCA
is a statistical technique for uncovering latent structures
in large or more complex datasets, including
multidimensional categorical data [1]. This technique is
practically applied to the simple correspondence
analysis (CA) algorithm to multivariate categorical data
that involves transforming such table into a two-way
from through coded in an indicator matrix or a Burt
matrix form [2]. In brief, MCA extends the CA by
providing the ability to analyze a table containing some
measure of correspondence among the rows and
columns for more than two variables [3].

MCA is widely used in social sciences, behavioral
science, material science, engineering, and biomedical
research for graphically depicting the association
between more than two categorical variables. Goodwill
and Meloy [4] used MCA as a multidimensional
scaling method to visualize the association among
indicators for lone-actor terrorist attacks. Lestari et al.
[5] utilized MCA to establish the reliability of crash car
protection by describing circle confidence regions for
each coordinate in the MCA plot. Greenacre. [6],
Yudhanegara and Lestari [7] examine the utility of
MCA in clustering a mixed-scale data set. Royan and
Royan [8] applied MCA to explore the diabetic foot
screening procedures data by investigating the
relationships among the risk status classification of the
post-screening decisions. Fred et al. [9] used MCA to
derive the different impact dimensions of projects on
biodiversity among Uganda communities. Brunette et
al. [10] realize MCA to identify economic perspectives
of forest adaptation to climate change. Beh and
Lombardo [11] briefly explore the development,
literature, and possible MCA research opportunities.

The analysis of the association between the
variables of a two-way contingency table may be
considered a particular case of MCA. In practice, any
two-way contingency table can be obtained from a
multi-way table by considering the product of the
indicator matrix of one variable with the indicator
matrix of another variable [11]. If there are n
individuals observed based on m categories, the
mathematical indicator will be n x min size. In case
the number of respondents or categories is large, the
indicator matrix requires large memories. It is one
practical reason that the MCA is rarely performed using
this matrix. Hence, many applications of this method
commonly use the Burt matrix.

The Burt matrix is scaled and decomposed to get
coordinates, which depicts the association among
variables in the low-dimensional space. The scaling on
the Burt matrix yields a matrix whose elements are the
scale values of the categories of a variable, then so-
called the scaled Burt matrix. While some researchers

are interested in many MCA applications, we
convenient our attention to exploring the properties of
the scaled Burt matrix from a matrix algebraic
perspective. This study examines the scaled matrix
elements' characteristics through an algebraic approach
to find the link between the Burt matrix and its scale
matrix in representing the variables associations. It
contributes to the development of scientific theories
and practices relating to MCAs. Some findings which
the novelty of this study are written in theorem form.

This paper is organized as follows. The preliminary
theory of CA is briefly described in Section 2. In
Section 3, we elaborate on expanding CA into MCA
and investigating the scaled Burt matrix element. Some
properties of this matrix are also presented. A case
study is put forward in Section 4. A Summary and
future works are presented as a conclusion in the last
section.

2. A Preliminary Theory

Consider two categorical variables X; and X, ,
where X; consists of I categories, and X, consists of J
categories. According to the I row and J columns, let N
be an I xJ two-way contingency table that cross-
classifies n individuals. CA’s main idea is to reduce the
matrix's dimensionality and visualize the association
between variables in a low-dimensional subspace,
usually a two- or three-dimensional plot [12]. This plot
represented the data as a set of points on the
perpendicular coordinate axes.

For a simple example, suppose the 3 x2
contingency table of Labor data reflecting a cross-
classification of the race (X;) and employment status
(X,) from a survey of 15 individuals. The contingency
table (Table 1) has three categories of race as rows
(e.g., white, black, and Asian) and two categories of
employment status as columns (e.g., employment and
unemployment). The data obtained are in Table 2.

Table 1 Labor data for 15 American civilians 25 years and over by
race and employment status, along with the percentages of
employment status in each race (in parentheses)

Status
Race Employment  Unemployment Sum
White 4 (66.7%) 2 (33.3%) 6
Black 1 (20%) 4 (80%) 5
Asian 3 (75%) 1 (25%) 4
Sum 8 7 15

This table can be considered in two different views:
a set of rows or columns. To illustrate this point, each
row in Table 1 is a set of frequencies reflecting the
respective race, while each column reflects the two
levels of employment status. If we want to compare the
race, we should consider the different numbers of
individuals in a total was have in each race. Otherwise,
if we want to compare the two employment status
levels visually, we should consider the number of
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individuals in each status.

When analyzing frequency data, it is sometimes
better to reexpress the data as a set of percentages. For
example, each race involves a different number of
civilians and corresponds to a different base as far as
the frequencies of the types of employment status are
concerned. The four civilians in the white race,
compare to the three in the Asian race, can be judged
only concerning the number of civilians in these
respective races. As percentages, they turn out to be
quite different: 4 out of 6 is 66.7%, while 3 out of 4 is
75%. The visualization of the relative frequencies in
Table 1 gives a more accurate comparison of the
employment of people of different races.

The description above shows that the concept of a
set of relative frequencies or a profile is fundamental to
CA. Such sets or vectors of relative frequencies have
special geometric features because each set’s elements
add up to 1 (or 100%). In analyzing a frequency table,

1.0

relative frequencies can be computed for rows (row
profiles) or columns (columns profiles) by dividing
their frequencies by their total. Consider Table 1, the
row profiles for these data: the profile of white is
[4/6 2/6]. Itis referred to as the profile of the white
race across the type of employment status. Similarly,
the profile of the Asian race across the type of
employment status is [3/4 1/4], concentrated mostly
in the employment, as is the white race. In contrast, the
black race has a profile of [1/5 4/5], concentrated
mostly in unemployment. These profiles can be
depicted as points in a profile space (Fig. 1a).
Similarly, the column profiles for these data: the profile
of employment across the race is [4/8 1/8 3/8],
concentrated mostly in the Asian race, while the profile
of unemployment is [2/7 4/7 1/7], concentrated
mostly in the Black race, as shown in Fig. 1c.
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Fig. 1 The plot of the row and column profiles: (a) The row profiles in two-dimensional space; (b) The position of the three rows profile lies
on a line; (c) Column profiles in three-dimensional space; (d) The two-column profile points lie precisely on an equilateral triangle

The profile points in two-dimensional space lie on a
line (one-dimension) that joints the unit points [1 0]
and [0 1] on the two axes, as shown in Fig. 1b. While
the points in three-dimensional space lie precisely on a
flat triangle (two-dimension) that joints the unit points
[1 0 0],[0 1 0], and[0 0O 1] on the three
respective axes, as in Fig. 1d. Each side is rescaled to
be of length 1 and can be calibrated accordingly on a
linear scale from 0 to 1.

3. Expansion into Multiple

Correspondence Analysis

Consider two categorical variables X; and X, ,
where X; consists of I categories, and X, consists of J
categories. According to the I row and J columns, let N
is an I XJ two-way contingency table that cross-
classifies n individuals. CA’s

As data tables increase in size (e.g., more than two
variables), it becomes more difficult to make simple
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graphical displays as in Fig. 1. One approach is to
rearrange the multi-way frequency table as a two-way
table to apply CA later. This approach well-known as
multiple correspondence analysis (MCA). The
expansion of CA into MCA is explained in the next
section.

MCA's fundamental idea is that two or more
categorical variables can be recoded as dummy

variables in an indicator matrix or as a concatenation of
categories-by-categories in a Burt matrix. The
interpretation of the data from these both alternative
codings of MCA is similar. The expansion of a simple
contingency table into an indicator and Burt matrix is
visualized in Fig. 2.
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Fig. 2 Rearranging data from a simple contingency table into an indicator and Burt matrix

Considering the data in Table 1, it can recode into
an indicator matrix form, which has as many rows as
several individuals and as many columns as several
categories. An alternative coding of the data is the Burt
matrix, a square symmetric matrix of categories-by-
categories. This matrix consists of all two-way
contingency tables of pairs of variables, including the
block diagonal of each variable's marginal frequencies.
A brief description of the indicator and the Burt matrix
is explained below to understand CA's expansion into
MCA.

3.1. The Burt Matrix Construction

Suppose X;, X5+, X, are q categorical variables
for n individuals, where variable k has j, categories for
k=1,2,---,q. Note that for the I xJ contingency
table, I is referred to as j; that is the number of
categories of X;, and ] is referred to as j, (the number
of categories of X,). The total number of categories
under consideration is m = Zzﬂjk. Let X, be the
indicator matrix for the k-th variable, where X;, is a
binary n X j, matrix with precisely one nonzero
element in each row i indicating in which category of
variable k observation i falls fori =1,2,---,n. Thus,
X = (x5, ), where x;;, =1 if the subject i selects
category k of variable j, and x;;, = 0 otherwise. In
previous literature, X, was called a block matrix [1] or

submatrix. The concatenating these block or sub-
matrices leads to the n X m super-indicator matrix,
X, | X, X

which is
(xm)  \ (xjy) |(nxja) | | i) | | (mxig)

However, if the sample size is considerable, the
indicator matrix can consist of thousands or even many
more rows [11], [13]. It is the reason why the MCA
involves summarising the data in the Burt matrix form.
The Burt matrix B derived by considering its indicator
matrix form and has the following block structure [5]:

D1 N12 qu
Urxj1)  UixJj2) (j1><jq)
N1Tz D, NZq
B =XTX UzXj1)  UzXJ2) (jzqu) (2)
(nxm) : : :
T T
Gy (et Dq/
]q ]1 ]q ]2 (jqqu)
Here, N,, is the two-way contingency table

UrxJi)
formed from the k-th and k -th variables (k # k"), and
N,;Fkr is the transpose of N, . Denote n; as the
Gt UrxJjy)
element of N, , and Dy =diag(n;,) to be a
UrxJy)
diagonal matrix of column marginal frequencies of the
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k-th variables.

The association between the g variables visualizes
in a reduced dimension space by correspondence plot.
It is constructed by first performing an
eigendecomposition (ED) on the scaled Burt matrix.
Define B* as the scaled Burt matrix, whose elements
are the scale value of the categories of a variable [11].
The scaled Burt matrix can be computed by

B = D75, 3)

where D = diag (n%) is the diagonal matrix of the

column proportions of the k-th variable, such that

ED(B*) = UAgUT. (4)

Here, A is a diagonal matrix of the eigenvalues 12
for £=1,2,--,L, that is Ap =diag(2%) . The
matrix U contains the eigenvector of B*. The left-hand
side is the eigendecomposition of the scaled Burt
matrix, and the right-hand side is the matrices resulting
from the decomposition. For example, consider the
3 x 2 contingency table in Table 1, then n = 15, and
q =2 variables with j,=3=1] and j,=2=]
categories. Then we obtain:

indicator matrix (X) data matrix (N) Burt matrix (B) scaled Burt matrix (B*)
X X, X, X, D, Ny

1 0 o1 o0 11 6 0 054 2 /4 0 0 14/24 2/24
i o o1 o 1 1 ! .
1 o o1 o 11 005 01 4} byra3 | 0 1/4 0 11/20 4/20
oo opt o tol 0.0 4:3 1 00 1/413/16 1/16
i 0 o]lo 1 1 2 e T TS S, SRR/ A R
1 o oflo 1 12 41 3.8 0 432 1/32 332 1/4 0
o 1 o1 o 2 1 2 4 110 7 2/28 4/28 1/281 0 1/4
o 1 oo 1 2 2 p.

o 1 o]lo 1 2 2 Ny, D, @

o 1 o]lo 1 2 2
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o o 1|1 o 3 1 B = L p-ip
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Fig. 3 Scale Burt matrix process

The matrices N and X are indeed related codings of
data. In the indicator matrix approach, associations
between variables are exposed by calculating the chi-
square distance between different categories of the
variables and between the individuals (or respondents).
These associations are depicted graphically as "maps",
which simplify the interpretation of the structures in the
data. The number of individuals with the same
characteristics for each category can be known directly
through each column's marginal frequency and denoted
by n.;, = Xit,x;j, . Oppositions between rows and
columns are then maximized to uncover the underlying
dimensions best able to describe the central oppositions
in the data. The first axis is the most important
dimension, the second axis the second most important,

and so on. The number of axes to be retained for
analysis is determined by calculating modified
eigenvalues.

Analyzing the indicator matrix allows the direct
representation of individuals as points in geometric
space. On the other hand, analyzing the Burt matrix is a
more natural generalization of simple correspondence
analysis. Individuals or groups of individuals can be
added as additional points to the graphical display. The
Burt matrix is a real symmetric matrix of all two-way
cross-classification between the categorical variables, a
square matrix of size m X mand an analogy to the
covariance matrix of continuous variables. Fig. 4
presents an MCA plot using three matrix approaches
comprehensively.
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The Coordinates for Variable
(Based on the scaled Burt matrix)

The Coordinates for Variable
(Based on the Burt matrix)

The Coerdinates for Variable
(Based on the indicator matrix)
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Fig. 4 MCA’s plots for the variable by the indicator matrix (a), the Burt matrix (b), and the scaled Burt matrix approach (c). These plots
display the association between race and employment status with a similar interpretation. The scaled Burt matrix is akin to a profiled version
of the Burt matrix

Generally, MCA is characterized by the optimal
scaling of categorical variables. This scaling can be
undertaken using generalized singular  value
decomposition or eigendecomposition [11]. The link
between B and B*, including some of the properties of
B*, will be investigated in the following subsection.
The research hypothesis related to this link is that the
scaled Burt matrix elements represent the association
of the variables and are associated with the proportion
of the number of categories with the number of
categorical variables.

3.2. The Scaled Burt Matrix Properties
In this section, the relationship between B and B*
by observing the elements of B* is presented. Theorem
la shows that the elements of B* are the conditional
probability for each pair of a categorical variable.
Theorem 1: Suppose (nifm) is a super-indicator

matrix of q categorical variables. The Burt matrix and

where D;! = diag ( )Wlth Nj, = Xiz1 Xij, 1
UkXjK) Jk

the number of observations on the j-th category of k-th

n, .
N = (22)
kk n.]-k

since Dy, = diag(n.;,) and N,,» = (m,'), then

variable and Z, 1Jx = m. Suppose that

N{y Ny, .Nl‘? ]

Uaxi)  Gixjz) (j1%Jq)
1 Nz, Nop Nzq

B* = n Uzxj1)  UzXJ2) (jzqu)
q’n : : :
Nc}k1 st Ny Nc’;

(jqle) (qufz) (J1xJ1) (jqqu)

or B* = (b},), with b}, = qu’f]jk.
QED.

Since Nk =

o = X, the theorem above shows that the

n'jk
scaled Burt matrix element is q—12 times the bivariate
conditional probability values for each submatrix

element. The quantity of iz expresses the number of
q

submatrices formed from q variables.

Proof (1b): By previous definition Ny, = % =1,
i

its scale are defined by B = XX, and B* = D 1B,
then:
the element of B*isb, =
1, 2' -, q.
the diagonal element of B* is equal to q—12.
Proof (1a): Since B* = qunD‘lB, we have
D7D, DIN, D' Nyq
(1%J1) (J1%J2) (JaxJq)
1 D2__1N1TZ D2_1D2 D2_1N2q
«—_— | Gzxjo) (]lez) (J2xiq)
\ o o b7 |
Gosi)  Gaie) GaxJa)

then Ny, = [, where [is an identity matrix of
UrXi)  UrXjk)
size ji X j. According to Proof (1a), we obtained:
I N, .Nl‘?
U1xj1)  (1xJj2) (]1X]q)
oMb N3g
B* = — Uz2xj1)  UzxJ2) (J2xJq)
q2 . . .
pa o N I,
X X
Jgxi1)  (Jgxjz2) Gaxia)



111

It is clear that qiz has been absorbed into the

diagonal submatrices, element

of B*isqiz.

QED.

The diagonal elements of B*, which have the same
value, indicate that each variable's category has the
same proportion to be chosen. The next study will
investigate the sum of elements on each submatrix of
B*, as follows.

Theorem 2: Suppose(ni(m)is an indicator matrix of g

then the diagonal

categorical variables. The Burt matrix and its scale are
defined by B =

XTxRB =XTX and B*:qunD—lB then:

the sum of the ji x j,- submatrix elements of B* is
equal to ﬁ.

the sum of elements of the ji X j,- submatrix on B*
is equal to % for any k.

the sum of elements of the j, X j,- submatrix of B*
is equal to the sum of elements of the j, X j,-
submatrix of B*, for ji = jy.

The total elements of B* are equal to %.

Proof (2a): Suppose that N =(nﬂ) is a

kK n.;
UrX Ji) Tk
submatrix of B*. From Theorem 1a,
M1 Mz i’
n.h n.h Tl.j1
1| P2y Pz o T
Nl:k == n'fz n'jz n'jz
Uix ) 4 : : :
M1 Tz Mgk
n]k n.’k n'jk
Then, the sum of elements of N, - is
UrXxJi)
k kK 1 k K
ny L 1k Mgy’
ZZqzn.-__qz Zn ot Zn.-
i=1i'=1 Ji i=1 i=1 Tk
1 Jk
=[O+ +-—-+@D] ==.
q q
QED.

Theorem 2a shows that the sum of elements of each
submatrix of size j, x j,-is the ratio of the number
categories of k -th variable and the square of the
number of variables. This ratio manifests the
proportion of the number of categories and the number
of submatrices on B*. The difference between the
Theorems 2a and 2b is in terms of the number of sub-
matrices of B* that are considered. Theorem 2a
calculates the sum of elements from one submatrix of
size ji X j,, while Theorem 2b calculates the sum of
the elements of some sub-matrices with row size is j.

Proof (2b): If there are q categorical variable, then
according to Theorem 2a, the sum of elements of
the jx X j, - submatrix on B* for any k is

q kK . .
> () -a(l) -
h=1 i=1i’:1q2n'j" 9 1

QED.

Theorem 2b provides a simple formulation to
calculate the sum of the j, X j,-submatrix elements on
B*for any k. In this formula, the sum of submatrix
elements is expressed as a proportion of the number of
categories from the k-th variable and the number of
variables.

Proof (2c): Suppose that N, and N, be the

(jkxjk') (th jh’)
submatrix of B*. According to Theorem 2a, the sum of
* * H Jk jn
elements of N, and N, is = and el
(kX ) (Jjnx jy)

respectively. Since j, = jj, then the sum of elements
of N, and N, areequal
(Jrx Jy) (Jrx Jy)

QED.

Theorem 2c implies that the sum of elements for
any submatrix on B depends on the number of
categories of variables. Thus, two or more variables
with the same number of categories will have the sum
of submatrices elements with the same quantity. The
last evaluation was undertaken on the total number of
the scaled Burt matrix elements, as below.

Proof (2d): Since B* = (by, '), where b;, - = qjl;lk" ,
e

for k,k' =1,2,--,q (Theorem 1a). By applying
Theorem 2a and 2b, the total elements of B*are

q
NEE Tiey Jk _m
e~ g q q

where m is the total numbers of categories of g
variables.

QED.

The last statement implies that the scaled Burt
matrix's total elements depend on the number of
variables and the total number of categories.
Furthermore, the sum of these elements is expressed as
a proportion of the total number of categories and the
number of variables. Thus, the total elements of this
matrix will increase as the number of categories
enhance.

4. Case Study

Consider the contingency table given in Table 2,
originally obtained from the United States Bureau of
Labor Statistics website [15] and analyzed using three-
way correspondence analysis Tucker3 by Lestari et al.
[14]. The data consists of 134877 American civilians
and three categorical variables; educational attainment
(X,), race (X,), and employment status (X5). The
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educational attainment reflects the educational
background of the civilians. It consists of four
categories (j; = 4): less than a high school diploma,
high school graduate and no college, some college or
associate degree, and bachelor’s degree and higher. The
race was specified into three categories (j, = 3);

white, black, and Asia. The employment status is
divided into two categories (j; = 2); employment and
unemployment. The Burt matrix B and its scaled B* for
the table above, derived by its indicator matrix form,
are displayed in Fig. 5.

Table 2 Labor data for 134877 American civilians 25 years and over by educational attainment, race, and employment status

Categories Employment Unemployment Marginal
9 White Black Asian White Black Asian (Xq1)
Less than a high school diploma 7690 1038 481 461 148 22 9840
High school graduate and no college 26710 4889 1474 1,127 421 41 34662
Some college or associate degree 28388 5230 1375 987 321 45 36346
Bachelor’s degree and higher 42662 4874 5261 902 182 148 54029
Marginal (X5) 108927 17103 8847 134877
Marginal (X3) 130072 4805
(a) 9840 0 0 0 8151 1186 503 9209 631
0 34662 0 0 27837 5310 1515 33073 1589
0 0 36346 0 29375 5515 1420 34993 1353
0 0 0 54029 43564 5056 5409 52797 1232
B — 8151 27837 29375 43564 108927 0 0 105450 3477
1186 5310 5515 5056 O 17103 0 16031 1072
503 1515 1420 5409 0 0 8847 8591 256
9209 33073 34993 52797 105450 16031 8591 130072 0
631 1589 1353 1232 3477 1072 256 0 4805
(b) . 0 0 0 8151 1186 503 9209 631
0840 0840 0840 | 0840 9840
0 ) 0 o | 27837 5310 1515 | 33073 1589
34662 34662 34662 | 34662 34662
0 0 L o | 29375 5515 1420 | 34993 1353
36346 36346 36346 | 36346 36346
1 0 0 0 . 43564 5056 5409 | 52797 1232
* 54029 54029 54029 | 54020 54029
B =— — | 8151 27837 29375 43564 . . , 105450 3477
9 108927 108927 108927 108927 108927 108927
1186 5310 5551 5056 0 L 0 16031 1072
17103 17103 17103 17103 17103 17103
503 1515 1420 5400 0 0 . 8591 256
8847 8847 8847 8847 8847 8847
9209 33073 34993 52797 105450 16031 8591 N 0
130072 130072 130072 130072 130072 130072 130072
631 1589 1353 1232 3477 1072 256 .
1805 4805 4805 4805 4805 4805 4805
Fig. 5 Burt matrix construction: (a) The Burt matrix corresponding to the data in Table 2; (b) The scaled Burt matrix elements by applying
Theorem la
i i i i 4 3 3 3
Easily to verify the elements of tlhls matrix by Mg 1 Ny My
comparing the calculations of B* = qz—nD‘lB. The Z Z 72n.; ~ 32 Z—n , Z—n ,
) —1 1 = Jk — J1 = ‘J2
results show that Theorem 1 accomplished.  *=1*=1 A .
Furthermore, Theorem 2a ensure that the sum of n Znsk’ zn4k’
.. 4 .
element of the top-red marked submatrix is , since =i n.j, =i n.j,
1 [(8,151 + 1,186 + 503
32 984

0
(27,837 + 5,310 + 1,515)
34,662
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(29,375 + 5,515+ 1,420)

36,346
(43,564 + 5,056 + 5,409)]

54,029

where 4 refers to the number of categories for X,
and 9 - to the squared of the number of variables. The
position of the four-row profiles of this submatrix can
be plotted in three-dimensional space as given in Fig.
6a.

The profile points lie precisely in the plane defined
by the triangle that joins the coordinates [1/9 0 0],
[0 1/9 0], and [0 O 1/9] . Each side is
considered to have a length of 1/9 (Fig. 6b). This
quantity obtained is obtained from g2, where q is the
number of variables. Additionally, the two red marked
submatrices imply that the scaled Burt matrix is not
symmetric as the original Burt matrix.

Now, let pay attention to the top three submatrices

in Fig. 4b. Let these matrices be denoted as D; , Ny, ,
(4%x4) (4%3)

and N, , respectively. Based on Theorem 2b, the sum
(4%2)

. . 4 .
of these submatrix elements is 7 since

i 1/9
(a) Asian

White )9

3 4 3 4 4
(Y me) -y y
20 . | 2n .
h=1 k=1k:1q M k=1k’=13 "k
4 3
n
+zz kk
- 32n.jk
k=1k'=1
4 2
+22 Nyy'
— 3%n.;,
k=1k'=1
_4, 4l
9 9 9
_4
3

This result leads us to get the conclusion that the
total elements of B*in Fig. 4b is equal to 3, since

3
h) 4 3 2 9
—_—] == —_ _= — = 3
;( 3 3 T3t 3 3
It shows that the total elements in the scaled Burt
matrix do not depend on the number of individuals n,
but only depend on the number of variables g and

categories of variables m.

ian 19
(b) Asian

0,0 1/9
Black
E4
32
3

White, o

Fig. 6 Row profiles of the top-red marked submatrices on the scaled Burt matrix for labor data in Table 2

5. Conclusion

This study re-proposed the scale matrix of the Burt
matrix, whose elements are the scale values of the
categories of a variable, then so-called the scaled Burt
matrix. This scaled matrix is then analyzed by
eigendecomposition to get coordinates, which depicts
the association's nature among variables. This study
aims to identify the characteristics of the scaled matrix
elements through an algebraic approach to find the link
between the Burt matrix and its scale matrix in
representing the variables associations. The results
show that the elements of this matrix represent the
association of the variables. The investigation of the

sum of the matrix elements, both for each submatrix or
overall, yields fascinating values. It is still related to
the proportion of the number of categories with the
number of categorical variables (as hypothesized). For
example, the sum of elements for any submatrix on the
scaled Burt matrix depends on the number of categories
of variables. The results lead to the conclusion that the
scaled Burt matrix is akin to a profiled version of the
Burt matrix. The advantage of deals with a scale matrix
is to standardize the independent features present in the
data in a fixed range. It is performed to handle highly
varying magnitudes or values, or units. This study's
results are an early stage that still provides some open
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problems to be explored in future work.
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