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Abstract: Stress corrosion cracking is considered one of the major causes of failures in oil and gas
pipelines. This is why modeling the reliability of oil and gas pipelines subjected to stress corrosion cracking is very
important; at the same time it is very complex due to various parameters affecting the stress corrosion cracking.
Modern modeling approaches include physical-based and data-driven models that are still not competitive to cope
with the complex nature of the stress corrosion cracking mechanism. In today's research, researchers prefer machine
learning oriented algorithms and models to address such complex mechanisms due to their increasing popularity.
These algorithms and models have the capability of tackling multiple factors and their impact on output response,
allowing a prediction of the probability of failure. This research proposes some extensive simulations that lead
eventually to a rich dataset that will define some significant factors on which stress corrosion cracking depends. In
addition to this, the proposed research not only involves the correlation of derived dataset with the already published
dataset but will also provide a comprehensive validation in between the proposed experimental work and machine
learning based simulations. This research aims to propose a model that considers the most frequent parameters so
that the performance of the proposed technique can be evaluated robustly and may provide a better understanding to
upcoming researchers, including oil and gas personals.
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1. Introduction

Oil and gas pipelines are considered the lifeline for
the oil and gas industry. They are regarded as the most
economical mode of transporting hydrocarbons from
one destination to another compared to other methods,
such as train, road vehicles, and air [1]. These
pipelines, which carry very expensive oil and gas, are
also very dangerous if the pipe leaks or bursts, which
could cause a massive financial and human loss.
Therefore, it is critical to predicting the integrity of oil
and gas pipelines to make proper maintenance
strategies. Integrity management of oil and gas
pipelines consists of three main steps: 1) corrosion
detection, 2) corrosion growth, and 3) risk assessment.
According to a report by the Conservation of Clean Air
and Water in Europe (CONCAWE), factors causing
pipeline failure are 1) corrosion, 2) mechanical
damage, 3) natural, and 4) third party [2]. Among the
causes of failure, corrosion is considered one of the
significant reasons for pipeline failure, contributing
30.3% after third party (33.3%) and other causes
contributes as Mechanical (25.25%), Operational
(7.7%), Natural (4.4%) and others (1.1%), as shown in
Fig. 1. According to the Pipeline and Hazardous
Material Safety Administration (PHMSA), which is
part of the United States Department of Transportation,
an average of 287 pipeline incidents, 14 deaths, and 59
injuries happen every year [3].
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Fig. 1 Percentage of causes of damage in oil and gas pipeline [4]

Corrosion is very complex phenomenon caused by
various factors, including electrochemical reaction,
material properties, environmental factors, stresses and
the properties of the medium flowing in the pipe.

Below are several types of corrosion, such as 1)
CO2 corrosion, 2) microbiological induced corrosion,
3) pitting corrosion, and 4) stress corrosion cracking
(SCC), which is different from other corrosion failures
[5] because it is caused by the combined effects of
environment [6, 7], stresses (applied or residual) [8]
and material properties [9]. SCC is among the most
dangerous types of failures because the prediction of its
failure before its occurrence is challenging. Until the
present, three modeling approaches have been widely
used for the development of a model to predict
corroded oil and gas pipe integrity. These are
deterministic models, probabilistic models, machine

learning models, and hybrid models [10]. But no mode
currently can predict corroded oil and gas pipeline
reliability in an accurate and realistic manner [11, 12].

Deterministic models based on the physics behind
the process can provide its details, but they are very
complex to compute and consider only a few
parameters, making the model conservative in nature.
Keeping in view the conservative and complex nature
of these models, as well as scientists’ attempts to adopt
machine learning models, machine learning has
successfully used in the field of reliability of
engineering systems, including oil and gas pipelines.
Hybrid models are the combination of both model-
based and machine learning models, taking advantage
of both models.

Various researchers have successfully modeled the
corrosion integrity of oil and gas pipelines using
machine learning approaches presented in the literature
part of this proposal. From the literature, it is found that
deep learning is receiving more attention from
researchers in the integrity of engineering systems.
Deep learning aims to learn higher-level abstractions
from the raw data [13, 14]. Deep learning models
require no hand-crafted features. Instead, they will
automatically learn a hierarchical feature representation
from raw data [15-17]. In deep learning, a deep
architecture with multiple layers is built up for
automating feature design. Specifically, each layer in
deep architecture performs a nonlinear transformation
on the outputs of the previous layer, so that through
deep learning models the data are represented by
different levels of hierarchy of features. Convolutional
neural network, auto-encoders and deep belief network
are the mostly known models in deep learning.
Depending on the usage of label information, the deep
learning models can be learned in either a supervised or
an unsupervised manner. Deep learning models achieve
remarkable results in reliability of various engineering
applications including batteries [18], bearings [19] and
aero engines [20] and turbines [21]. A recent survey
indicated that the deep learning models have not been
exploited in the field of integrity estimation for oil and
gas corroded pipelines, even though deep learning
models can improvise the integrity estimation
significantly [22]. Similarly, after a comprehensive
literature analysis, we found that the deep learning
models can act as major contributors to predict
integrity estimation in corroded oil and gas pipelines.

Therefore, this research study is focused on
developing the deep learning-based corroded oil and
gas pipeline integrity prediction model, more
specifically for subjected to stress corrosion cracking.
After its successful development, the model can be
used as a simulation-free reliability model for oil and
gas pipelines subjected to stress corrosion cracking.
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2. Literature Review

Ren, Qiao et al. [23] predicted the internal corrosion
rate of underground natural gas pipelines in China
using Back-Propagation artificial neural network (BP
ANN). The experimental run collects the inputs used in
this model. Natural gas pipeline mileage, elevation
difference, pipe inclination, pressure, liquid holdup,
and Reynolds number are considered in this study as
inputs. The research finding is that the BP neural
network can predict the natural gas pipeline rate, and
the model showed an excellent convergence ability
[23].

Liao, Yao, et al. [24] used ANN-GA, ANN-PSO,
and only ANN to predict the internal corrosion rate of
natural wet gas pipelines. Among these three models,
ANN-PSO outperformed the rest. The Grey relational
analysis (GRA) technigque was used before feeding the
data into the model to check the collected data's input
variables' importance. The model's inputs are gas
maximum wall stress, liquid holdup, heat transfer
coefficient of the inner wall, deposition rate, superficial
velocity total liquid film, maximum wall shear stress,
and pipe angle [24].

Chamkalani, Nareh'ei et al. [26] predicted the CO;
corrosion rate of oil and gas pipelines using ANN. The
inputs considered in the study are pH, velocity,
temperature, and partial pressure of CO,. The dataset of
experimental research of Dugstad, Lunde, et al. [25]
was used as the training dataset for the model. This
dataset contains seven hundred and eighteen (718) data
points. A sensitivity analysis was also performed that
closely matched the experimental model results [26].

De Masi, Vichi et al. [27] predicted internal
corrosion rate, metal loss, and defect area of a 20 km
subsea oil and gas pipeline by using ANN and
highlighted the portion of the pipeline that had a high
risk of corrosion. The model combines the geometrical
profile of a real pipeline, flow simulation, physical-
based corrosion models and the De-waard model. After
trying various learning algorithms, the Lavenberg-
Marquadt (LM) algorithm was chosen as the best, with
20 as the highest number of hidden neurons found. This
model performed better than the deterministic models
[27, 28]. This model has the significant drawback that
the operation needs to be stopped for inspection of the
pipe. Also, the size of the dataset is smaller, which can
decrease the model's accuracy.

Gabetta, De Masi et al. [29] used ANN for the
prediction of internal corrosion rate, metal loss and area
of defects for onshore gas pipelines. The inputs to the
model considered in this study are geometrical features
(elevation, inclination and concavity) and fluid
dynamic multiphase variables (temperature profile,
pressure profile, velocity profile of each phase, flow
regimens and phase holdup). This model has the
drawback of having a small dataset [29].

Din, Ithnin et al. [30] applied ANN to predict
corrosion rate in carbon steel oil and gas pipelines. The

inputs in this study were orientation, depth, length, and
width of the corrosion defect. In-line inspection (ILI)
data has been used to develop the model. The model
predicts the pipe defect's length and depth, which can
be used to predict the corrosion rate [30]. Although the
prediction results obtained from ANN models have
acceptable accuracy, the variables' uncertainty due to
the deviation of test equipment measurements and the
uncertainties in the natural gas system are neglected.

Mazzella, Hayden et al. [31] used ANN to estimate
underground oil and gas pipeline corrosion rates. A
North American pipeline operator dataset was used for
the development of the model. The inputs considered in
this study are related to the environment (sulfide
pollution, chloride pollution, time of wetness, annual
average temperature, number of years below 0 degrees)
and pipeline parameters (actual diameter, year of mill
run, pipe manufacturer) [31].

Nayak, Anarghya et al. [32] used ANN to predict
the CO2 corrosion rate of the pipeline. The inputs to
the model considered in this study are pH, the partial
CO2 pressure, velocity and temperature. The dataset in
this study was generated using an experimental setup.
The optimum model was selected at five hidden
neurons [32].

Sinha developed a probabilistic neural network to
predict the probability of failure. This model can
predict POF directly from the ILI data without
extensive calculation of the conventional reliability
methods, e.g., Monte Carlo simulations. The purpose of
this model is to replace the traditional MC simulation.
The data set for the neural network training was
obtained by the simulation method [33]. This model
can maintain the oil and gas pipeline, and benefit from
reducing overall repair and maintenance costs.

Silakorn, Puncreobutr et al. [34] developed an ANN
model to predict metal loss due to Top of Line (TOL)
corrosion in the Gulf of Thailand carbon steel three-
phase pipeline, using company field data. The inputs of
the models considered were the parameters of corrosion
rate (log distance, topography, pipe slope, gas flow
rate, water flow rate, temperature, pressure, CO2, pipe
nominal thickness, no. of sea-line batch treatment
(SBT) per year, direction of east, topography series)
and the output is the wall loss. In the first phase of this
study, three pipelines with a data sample of six
obtained from magnetic flux leakage were used to
develop the model. Then two other pipelines which
were not used during the training were used for testing
purpose. The results of the model gave better
predictions than the traditional simulation-based
models. In the second phase of this project, 15
pipelines were used to develop a model. In this phase,
sensitivity analysis for the input parameters was also
carried out to check whether the inputs are important or
not. The dataset consists of 6 data samples of 3 pipes,
and these parameters were generated from the
corrosion simulation model. The modes' accuracy was
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2.6 to 6.5, greater than the other simulation models.
The ANN model is capable of predicting the metal loss
for new and existing pipelines [27]. The ultimate goal
of the research is to reduce pipeline-associated costs.
The model can not accurately predict if the data outside
the data used for training is used.

Carvalho, Rebello et al. [35] developed ANN to
predict the defects in the pipe weld zone of the API 5L-
X65 pipeline. Two ANN models were used. The first
was used to predict whether the signal was defective or
non-defective. The other model was used to predict
whether the defect was Internal Corrosion (IC),
External Corrosion (EC), or Lack of Penetration (LP).
For the model inputs, the magnetic flux leakage (MFL)
signals were obtained from Pipe Inspection Gauge
(PIG). The PIG was equipped with 136 hall sensors,
and 1,025 data points were used for the ANN inputs.
Preprocessing of the MFL signals was carried out using
wavelet transformation, moving average filter, Fourier
analysis, and Savitzky-Golay filter to improve the
performance of ANN. The results showed that the
model is 94.2% accurate for classifying defects; 92.5%
for corrosion and LP; and 71.7% for classifying the EC,
IC, and LP [28].

Tian, Gao et al. [36] used a wavelet neural network
to predict the degree of corrosion of submarine oil
pipeline that is "no corrosion, mild corrosion, moderate
corrosion, and serious corrosion” under laboratory
conditions. The inputs to the model used in this study
are parameters from ultrasonic sensors and magnetic
leakage sensors. The training data in this study were
obtained from the experimental setup [29]. The number
of datapoints is less. Therefore, this model faced the
problem of overfitting.

Pipe failure pressure and burst pressure are
significant in most reliability work. The limit state
function depends on the pipe's failure pressure. ANN
has also been successfully applied to predict the failure
and burst pressure of corroded oil and gas pipelines.

Silva, Guerreiro et al. [37] predicted the failure
pressure of pipes with interacting defects using ANN.
In this study, FEM was used to generate the dataset.
The inputs considered in the model were the relation
between the defect depth and the pipe wall thickness
and dimensionless circumferential spacing. The output
is the relative pipe pressure capacity. The results were
compared with the DNV-RP-F101. This model
successfully associated the corrosion defect depth and
length with the failure pressure [37].

Xu, Li et al. [38] used ANN to predict the burst
pressure of APl X-80 pipe. The model inputs were the
ratio of defect length to pipe thickness, the ratio of
defect depth to thickness, dimensionless longitudinal
spacing, dimensional circumferential spacing, and the
model's output was failure pressure. The study found
that the model is capable of predicting failure pressure
from the interacting pipe defects. The validation of the
ANN model was done with the experiment [30].

Chin, Arumugam [39] predicted failure pressure
subjected to internal pressure in 2020 by using ANN.
The dataset was obtained from the full-scale burst
pressure tests of API 5L X42 to X100 collected from
various literature. The developed model was further
validated with finite element modeling and a full-scale
burst pressure test. This model was also used for the
failure trend analysis of pipes with varied defect depths
and lengths, which indicated that the defect depth is
directly proportional to the pipe's failure. The model's
inputs were the pipe's true ultimate strength, nominal
diameter, nominal thickness, corrosion defect depth,
and length [31].

Luo, Hu et al. [40] used Support Vector Machine
(SVM) to predict the corrosion rate in offshore natural
gas pipes. The inputs considered in the study were
angle, pressure, deposition rate, the density of the
liquid, the density of the gas, liquid velocity, liquid
hold up, pH value, surface tension, flow regime, fluid
temperature, superficial velocity of gas, heat transfer
from inner wall pipe to fluid, inner wall surface
temperature, heat transfer coefficient of the inner wall,
the thermal conductivity of gas phase, gas maximum
wall shear stress, liquid, and maximum wall shear
stress. The author compared the results with the BP
network and multivariable regression models, and after
analyzing the results, SVM gave better prediction
results [32].

Lee, Rajkumar et al.'s [41] applied classification
approach by usin Euclidean-SVM and the MATLAB
tool to predict the failure of oil and gas pipelines with
long-range ultrasonic transducers (LRUT). The
Euclidean-SVM performed better than the conventional
SVM to classify corrosion defects when using LRUT in
terms of accuracy. Also, the need for continuous
modification and tuning of kernel function is
eliminated in Euclidean-SVM, which makes it less
computationally complex [33].

Ossai [42] predicted corrosion defect depth of aging
pipelines using a Feed-forward Neural Network
(FFNN) with optimized weights by Particle Swarm
Optimization (PSO) method, Deep Neural Network
(DNN) and Gradient Boost Method (GBM) approach.
In this study, the model inputs considered are
temperature, CO, partial pressure, pH, sulfate ion
concentration, chloride ion concentration, iron content,
total  alkalinity, operating pressure, calcium
concentration, basic sediment of water, a million cubic
feet per day of gas, the barrel of oil production per day,
and the barrel of water production per day. According
to the experts, the model can be used for prognostic
purposes [42].

Bastian, Jaspreeth et al. [43] used a deep learning
model based on a convolutional neural network to
predict the level of corrosion in oil and gas pipelines.
The input of the model was the image dataset collected
from oil and gas pipelines. The main benefit of using
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vision-based input is that operations can continue
without stoppage [34].

2.1. Analysis and Discussion

The literature review found that machine learning is
of great interest for researchers to model corroded oil
and gas pipeline reliability. Despite the high rate of
success in modeling, the majority of models are still
reliably conservative and lack the capability of
generalization. This issue can be solved by using
different types of data sources to build the input data
set for the model by developing the deep learning-
based model for better accuracy and realistic modeling
output. And still deep learning applications have to be
implemented with more versions and data.

3. Material and Methods

The proposed model in this study is shown in Fig. 2,
with the methodology consisting of two main parts, the
data generation part and developing the deep learning
model. The first part is mainly focused on the coupling
of the physical-based modeling with reliability analysis
to predict the probability of failure (POF). The second
part is developing and optimizing the deep learning
model. The steps to achieve the proposed model in the
section below are shown in detail. This study focuses
on the development of deep learning models, which is
why the data generation part is not discussed in detail.

3.1. Physical-Based Modeling

Finite element analysis (FEA) is considered to be
the accepted approach for obtaining the important
information in many engineering areas, such as residual
stresses and corrosion modeling [35]. Finite element
analysis will be used in this study using COMSOL [36]
software for obtaining the limit-state function.
Pitting—considered as the precursor to stress corrosion
cracking—and the cracking mechanism will be solved
by getting the stress corrosion cracking results.

3.2. Boundary Conditions

Table 1 Boundary condition for the pipe studied

Parameter Value
Pipeline Corban steel
Pipe outer diameter 508 mm
Pipe wall thickness 9.5mm

Residual stresses, soil
pressure, operating
pressure

Forces

3.3. Mechanical Model

This section shows the process of determining the
strength of a pipeline. To achieve this goal, various
standards have been proposed, such as DNV RPF,
SHELL, or ASME B31G. The mentioned codes will be
used to evaluate the strength of the corroded pipeline
and subsequently to determine the failure pressure.

3.4. Reliability Analysis

In this section, pipeline reliability will be analyzed
in terms of probability of failure (POF). The
information generated from the FEA model will be
used for the limit-state function g(x). Then, by using a
numerical model for reliability analysis—such as
FORM, SORM, or a Monte Carlo simulation—the
probability of failure will be predicted.

3.5. Limit State Function

Limit stat function is considered to be the security
border, which is conveniently defined by the difference
between the pipe pressure resistance and the applied
pressure,
where x is the realization of the random variables of the
pipe. This margin is defined such that G(x) =0
represents safety and G(x) < 0 shows the failure of the

pipe.

3.6. Probability of Failure
For predicting the probability of failure in this
study, we will use RELIASOFT Weibul software:

POF — n{LEF=0) ©)

where N is the total number of experiments and
n(LSF = 0) is the number of experiments that lead to
failure. A summary of input data used in the reliability
assessment is given in Table 2.

Table 2 Probability distributions of oil and gas pipeline

Variable Probability
distribution
Operating pressure Normal
Yield strength Normal
Tensile strength Normal
Corrosion defect depth  Normal
Corrosion defect length  Normal
Crack growth To be defined
Nominal wall thickness  Fixed
Outside diameter Fixed

3.7. Proposed Machine Learning Model

In this research, the purpose is to propose the
machine learning-based model for predicting the
probability of failure for corroded oil and gas pipelines.
From the literature survey during gap finding, it has
been found that machine learning has been used
effectively for the reliability prediction of corroded
pipelines but still advance machine learning and
particularly deep learning has not been utilized at a
satisfactory level based on the author of this paper.
Therefore, in this research, the author has proposed
deep learning models, such as Long Term Short Term
Memory (LSTM) and Physics Informed Deep Neural
Networks (PINN), for the probability of failure
predictions. The development of the model will be
carried out in future work.
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Fig. 2 Proposed model for the research

4. Expected Results of the Model and

Implications

The expected outcome of the proposed model is as
follows:

e  The model can predict the probability of failure
without extensive simulations.

e The model can be used to consider multiple
influential factors at a time.

e The accuracy of the model prediction can be
higher than the existing approaches.

e There will be no need to do physical and
complex modeling after the successful development of
the model.

5. Conclusion and Future Work

5.1. Conclusion

Stress corrosion cracking in oil and gas pipelines is
considered one of the major causes of failure. Its
complex nature due to the combined effect of stresses
and corrosion makes modeling of reliability more
difficult. Currently, traditional modeling approaches
are not capable of modeling the reliability of the
pipelines subjected to stress corrosion cracking. After a
thorough literature survey, it has been found that
machine learning methods are the best modeling tool to
model the reliability of such complex systems. In this
research, the advantages of deep learning over these
drawbacks have been identified and proposed in the
deep learning-based reliability model for oil and gas
pipelines. The dataset for stress corrosion cracking
parameters will be acquired through simulations using
finite element and first-order reliability methods and
published literature data. After validation of the dataset,
the model will be developed. The proposed model will
be able to predict the reliability of the oil and gas
pipelines in terms of probability of failure without
performing the traditional time-consuming and
complex modeling.

5.2. Future Direction

The model proposed in this study will be
implemented by using different versions of deep
learning and predict the probability of failure in oil and
gas pipelines subjected to corrosion. Upon successful
validation of the model, the model will be further used
for maintenance planning decision making.
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