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Abstract: This on-road study explores the effect of a visual (VPIS) and haptic peripheral information 

system (HPIS) on a user’s level of motion sickness when engaging in reading activity while being driven in a fully 

automated vehicle (AV). Both systems notify the user regarding the upcoming navigational information in the 

lateral direction, and HPIS also supports the user from being involuntarily moved by the lateral acceleration when 

cornering. It was hypothesized that both systems would reduce the experienced motion sickness compared to those 

without any intervention. Eighteen participants with severe motion sickness susceptibility were exposed to low-

frequency lateral acceleration that induces a moderate-to-severe dose of motion sickness. The automated driving 

was simulated by an automated-like instrumented vehicle and performed with the Wizard-of-Oz approach. The 

participants were asked to perform reading while being exposed to three different conditions (control-, VPIS-, and 

HPIS-condition), each for about 15-minutes. Results from a self-rating questionnaire indicated statistically 

significant decreases in motion sickness found with the presence of HPIS but not with VPIS. Results showed HPIS 

produced the least experienced motion sickness while VPIS exacerbated the symptoms of motion sickness. 

Adaptation effects were also found due to the repetitive exposure to the same route of automated driving. 

Keywords: automated driving, peripheral information system, motion sickness. 

 

在自动驾驶阅读时缓解晕车的道路研究 

 

摘要：这项正在进行中的研究探索了视觉（视觉信息系统）和触觉外围信息系统（信息

系统）在全自动驾驶（影音）的同时进行阅读活动时对用户晕车程度的影响。两种系统都将

在横向方向上即将到来的导航信息通知给用户，并且信息系统还支持用户在转弯时不会因横

向加速度而随意移动。假设与没有任何干预的系统相比，这两种系统都将减少经历的晕车病

。十八名患有严重晕动病的参与者被暴露于低频侧向加速度，该加速度诱发了中等至严重剂

量的晕动病。自动驾驶由类似自动驾驶的仪表车模拟，并采用绿野仙踪（绿野仙踪）方法进

行。要求参与者在暴露于三种不同条件（对照，视觉信息系统和信息系统条件）下进行阅读

，每种条件持续约 15 分钟。自评问卷的结果表明，在存在信息系统的情况下发现的晕动病

在统计学上显着降低，而在 VPIS 的情况下却没有。结果显示，信息系统产生的晕车病最少

，而视觉信息系统加剧了晕车的症状。由于重复暴露于相同的自动驾驶路线，因此还发现了

适应效果。 
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1. Introduction 

Having a fully automated vehicle (AV), a user only 

decides on the destination, and the AV will handle all 

the driving tasks. Therefore, drivers will become users 

or occupants who have the freedom to do their 

preferred activities [1]. Studies showed that future AV 

users would like to focus on relaxation-, hobby-, and 

working-related activities when traveling inside the 

moving vehicle [2]. However, indulging in non-driving 

related tasks (NDRT) might contribute to the 

development of motion sickness. Performing an NDRT 

would create a mismatch between the sensory inputs. 

Besides, the occupants would not be able to anticipate 

the direction of the movement of the moving AV and 

therefore lead to motion sickness occurrence [3–5]. 

Studies also indicated that future AV’s potential 

users ranked reading as their preferred NDRT 

compared to other NDRTs [6–8]. However, reading in a 

moving vehicle might not be a great combination. A 

study with 31 subjects on a moving vehicle, done by 

Isu, Hasegawa, Takeuchi, and Morimoto (2014), found 

that reading caused 3.5 times more motion sickness 

than not performing any NDRT [10]. Another study 

also found that motion sickness rating was higher when 

reading (3.3 times higher than not performing any 

NDRT) compared to when watching a video/television 

(2.9 times higher than not performing any NDRT) [11], 

[12].  

One possible way to allow NDRT to be performed 

and avoid motion sickness from developing is by using 

a peripheral information system (PIS). PIS is defined as 

“aesthetically pleasing displays of information which 

sit on the periphery of a user’s attention” [13]. Since a 

large amount of the user’s attention is paid to 

performing an NDRT, the periphery of attention can 

help the user get relevant information and important. In 

addition, PIS is implemented not to distract its users 

from their primary task but would adequately inform or 

notify them when required in the least intrusive 

manner. 

The PIS is also termed as an adaptive ambient 

display [14] in the automotive field and can be further 

categorized into a passive and active system. In the 

context of reducing motion sickness in a moving 

vehicle, a passive PIS would notify its user regarding 

the intention of the vehicle, and the user has to take 

action such as adjusting their body or head against the 

induced acceleration produced by the moving vehicle 

(e.g., centrifugal acceleration when cornering). For 

example, Hanau and Popescu investigated the use of 

visual signals as acceleration cues in reducing motion 

sickness experienced by twenty bus passengers who 

were reading using phones or tablets [16]. They found 

that participants experienced less motion sickness with 

a set of texts that moved proportionally with the 

vehicle acceleration for acceleration cue. 

On the other hand, an active PIS will automatically 

adjust the user’s body or head against the induced 

acceleration produced by the moving vehicle, with or 

without notifying the user regarding the vehicle 

intention or action. For example, an actuator-controlled 

seat automatically adjusts or compensates the user from 

being moved by the vehicle acceleration [17]. 

In the present study, one passive PIS (visual-based) 

and one active PIS (haptic-based) were developed and 

tested on the participants categorized as having mild to 

severe susceptibility to motion sickness. This study 

aims to explore if the proposed PISs manage to lower 

the users’ experienced motion (i.e., occupants) who 

were instructed to perform reading while being driven 

in automated driving mode. 

 

2. Methodology 
 

2.1. Experiment Design 

In this study, all the participants underwent three 

different conditions (control-, visual-, and haptic-

condition) in three separate sessions (Session 1, 2, and 

3). The control condition was without any intervention 

of a peripheral information system (PIS). The visual- 

and haptic-condition were the conditions with the 

implementation of a visual-based PIS (VPIS) and 

haptic-based PIS (HPIS), respectively. The dependent 

variable was the level of motion sickness, measured 

with a self-rating questionnaire. The independent 

variables were the conditions (control-, visual-, and 

haptic-condition) and sessions (Session 1, 2, and 3). 

The order of the three test conditions exposed to the 

participants was counter-balanced to mitigate any 

cross-over effects (3! = 6 orders), and each session was 

executed at least three days apart to make sure that if 

motion sickness did occur within the first session, it 

would not affect the following session. Since the 

susceptibility to motion sickness is different among 

individuals; therefore, the conditions of interest are 

evenly tested by each individual rather than by 

different individuals [10]. 

All the AV test rides were done within the 

Eindhoven University of Technology’s compound, 

where Dutch traffic laws and regulations apply (see Fig. 

1). 

The route consisted of three laps of 22 turns to the 

right and 16 turns to the left (cornering radii, Mean = 

9.2 m, standard deviation (SD) = 3.3 m). For safety 

reasons, the security officers were informed about the 

study, and permission to use the designated route was 
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granted. Approval by the Research Ethics Committee 

of Universiti Teknikal Malaysia Melaka (UTeM) on a 

study with human subjects was obtained following the 

ethical standards of the 1964 Declaration of Helsinki. 

Besides, this research complied with the Netherlands 

Code of Conduct for Scientific Practice (principle 1.2 

on page 5) [19]. 

 
Fig. 1 Experiment route with the numbers depicts the sequence of 

the corners, and the arrows represent the direction of the corners 

[18] 

 

2.2. Equipment – Mobility Lab and Peripheral 

Information Systems 

An on-road AV simulator called the Mobility Lab 

(see  [18] for elaborated description) was employed to 

provide a fully automated driving experience (see Fig. 

2). Within this study, a TV display connected to a high-

definition action camera (placed just behind the front 

windshield) was implemented to show the live front-

windshield-view (as what the driver sees) to imitate a 

real AV without exposing the driver. This simulation 

was done by selecting the action camera location to 

include the windshield- and dashboard-view but not the 

driver’s hands and the steering wheel. The projected 

video image was set at the resolution of 1080p with 60 

frames per second, while the video image latency was 

kept to a minimum using an HDMI cable for the 

connection between the action camera and the TV 

display. The Mobility Lab exterior was also equipped 

with a rotating look-alike LIDAR device on the vehicle 

top to give a more realistic appearance for a real AV. 

 
Fig. 2 Mobility Lab interior layout [18] 

 

During the briefing process, the participants were 

told that this research aims to study motion sickness in 

AV in general. Explicit instructions were given about 

how both PISs will be operating; however, no specific 

instructions were given on how the participants should 

react to the PISs or what effects they will produce. 

The first prototype, VPIS, (Fig. 3) was designed to 

utilize the functionality of the underused peripheral 

vision of a human user. VPIS aimed to eliminate the 

need to look outside of the vehicle to avoid motion 

sickness from the sensory mismatch. The design of 

VPIS was iterated from the previous study [20], where 

a PIS called Peripheral Visual Feedforward System 

(PVFS) was used to deliver the navigational 

information of the AV when the occupant of the 

vehicle was engaged in watching a video/movie on a 

40” display that was mounted 1.2 meters in front of 

them. They found that the proposed PIS managed to 

reduce the participant’s motion sickness compared to 

when no PIS was implemented. 

 
Fig. 3 Visual peripheral information system (VPIS) 

 

In the current study, VPIS was also used to provide 

navigational information of the AV. However, in this 

study, the occupants were engaged in a different NDRT 

reading using a handheld tablet. VPIS consisted of a 4" 

display and two LED-filled arrays, at around an 8.9" 

tablet. Each of the arrays was equipped with 7 LEDs, 

with blue-emitting color, that switched on 3 seconds 

before the on-road AV simulator (Mobility Lab) 

entered a corner/turning. The LEDs moved three times 

from the bottom to the top of the tablet, at each of the 

corners/turnings. The LEDs were also diffused using a 

Perspex cover on top of the LEDs to make sure the 

VPIS notified its users but at the same time did not 

degrade the experience of the primary task (i.e., 

reading). 

A 4" display, located above the tablet viewing area, 

showed the windshield-view live video streamed from 

the camera mounted on the front windshield. The 

displayed live video image was set at the resolution of 

1080p with 60 frames per second. The video image 

latency was kept to a minimum with an HDMI cable 

was used as the connection between the action camera 

and the 4” display. The implementation of the 4” 

display as part of the VPIS, placed in the periphery of 

attention of the participants, was to avoid any conflict 
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of expectations that might arise from the disagreement 

between the previously stored memories in the 

participants’ “internal model” with the one that the 

participants were experiencing at that moment. 

The internal model, believed to be located in the 

cerebellum, is where all the sensed signals from a 

human body are interpreted and stored in the human’s 

memory [21], [22]. Sensory conflict theory [23] 

postulates two components: a network of sensory 

inputs that integrate currently experienced signals and 

an "internal model" that compares the currently 

experienced signals with what is stored or experienced 

before. This result is supported by the previous work of 

Prothero [24], known as the "rest frame hypothesis," in 

which he explained motion sickness in terms of the 

perception of space [24]. Prothero [24] explained that 

the human brain creates a “rest frame” in which the 

brain will look for something stationary to be the 

reference point, and if the brain finds any motion, a 

mental comparison to this frame will be made. Hence, 

the conflict between what is expected and what is 

experienced will lead to motion sickness. Thus, 

humans need to have a reference frame to associate any 

movements that would deviate from this frame. 

The 4” display was designed to provide a reference 

frame on which the users can relate their motion with 

the true horizon seen on the screen, without the need to 

access the view outside of the Mobility Lab. In this 

study, the participants were also asked to hold the 

tablet as naturally as possible to replicate the real 

situation scenario while also giving them the freedom 

to determine how they wanted to use the tablet for 

reading. 

HPIS, the second prototype used in this study, is an 

active PIS that was developed based on the idea of 

conveying the navigational information (i.e., 

cornering/turning left or right) through a vibrotactile 

display on the user’s forearms and also providing an 

active movement that adjusts the user’s body in the 

direction of the corner/turning (Fig. 4). 

 
Fig. 4 Haptic peripheral information system (HPIS) 

 

HPIS was developed based  on 1from the previous 

study where a passive PIS called vibrotactile display 

was used, and the studied NDRT was watching a video 

in a moving vehicle [25]. In this study, a mechanism 

that will automatically adjust the user’s body was 

implemented to improve its performance based on the 

finding that the previous passive haptic-based PIS did 

not manage to reduce the user’s motion sickness just by 

providing the navigational information. 

For improvement, an additional active feature was 

added to the HPIS, where a mechanism consisted of 

two movable plates, which were fixed on the backrest 

of the car seat and covered with foam cushion and 

fabric. Three seconds before the Mobility Lab turned to 

the left or right, the vibration motors (the left forearm 

set if turning to the left, the right forearm set if turning 

to the right) were activated and deactivated for three 

cycles. Immediately afterward, the movable plate (the 

right plate if turning to the left, the left plate if turning 

to the right) was activated, turning forward the user’s 

shoulder through servo motors at about an angle of 40° 

and stayed for as long as the cornering took place, to 

align the gravitoinertial force. Since the defensive 

driving style was the preferred autonomous driving 

style with 0.29 g of lateral acceleration, the expected 

tilt angle of the gravitoinertial force to align with the 

gravity vector is about 16° (see Fig. 5). Hence, about 

40° turning forward of the moveable plate is enough to 

push the participants’ shoulder at about 16° sideways. 

 
Fig. 5 Mechanism of haptic peripheral information system (HPIS) 

 

Although constraining the head from uncontrollable 

movements might probably reduce the likeliness of the 

occurrence of motion sickness [26], [27], actively 

aligning gravitoinertial force by pushing the head can 

lead to whiplash injury, a neck injury caused by a 

sudden movement of the head forwards, backward, or 

sideways. Thus, for HPIS, the participants’ shoulder 

was instead selected to be pushed at the 

corners/turnings rather than the head. 

 

2.3. Participants and Procedure 

Eighteen participants (nine male and nine female) 

aged between 22 and 33 years old (Mean = 28.4, SD = 

3.0) participated in this study. Stratified sampling was 

implemented based on the short version of the Motion 

Sickness Susceptibility Questionnaire (MSSQ) [28], 
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[29] to check for participants’ susceptibility to motion 

sickness. Within this study, only participants with mild 

and severe susceptibility (25th to 100th percentile) were 

selected based on the MSSQ’s scores (Mean = 79.1%, 

SD = 17.3%). Participants who fall under the first 

quartile of the MSSQ (0 to 25th percentile) are 

considered immune to motion sickness. Therefore, the 

effects of the proposed PISs on participant’s motion 

sickness levels might be hard to determine. 

Motion sickness Assessment Questionnaire (MSAQ) 

was used to assess the level of experienced motion 

sickness. MSAQ was developed by Gianaros et al. 

(2001), and it comprises 16 questions on a 9-point scale 

(1= not at all, 9 = severely) [30]. MSAQ consists of 16 

questions that can be grouped into four constructs: 

gastrointestinal -, central-, peripheral-, and sopite-

related symptoms of motion sickness. MSAQ can be 

presented on a single cumulative score and as four sub-

scores for each of its constructs. The participants twice 

filled MSAQ, once before entering the Mobility Lab 

(pre-MSAQ) and once after Mobility Lab has been 

stopped (post-MSAQ). MSAQ was used in this study 

as it is composed of multi-dimensional constructs 

rather than other tests like the Pensacola Diagnostic 

Index (PDI) [31], which is composed of a one-

dimensional continuum. 

After arriving and answering the pre-MSAQ, the 

participant was escorted to the Mobility Lab and was 

asked to take a seat and always wear the seat belt inside 

the Mobility Lab. Inside the Mobility Lab, the 

participants were then asked to wear a headband 

accelerometer, sit comfortably, and then look straight 

ahead for 10 seconds for calibration (see Fig. 6) of the 

wearable headband accelerometer. The headband 

accelerometer was used to measure the participants’ 

head movements, and the calibration position is where 

the user’s vestibular system is assumed to be in its 

natural position. A vestibular system consists of semi-

circular canals and otoliths. The function of the former 

is to detect the rotational movements, while the 

purpose of the latter is to identify the translational 

movements. A vestibular system function is to maintain 

balance and spatial orientation and stabilize the vision 

through vestibular-ocular reflexes. It is a crucial 

component in determining the experienced motion 

sickness. In an experiment done by Kennedy et al. 

(1968), they found that patients with a dysfunctional 

vestibular system did not suffer from motion sickness 

[32]. 

 
 (a)                                             (b) 

Fig. 6 Wearable accelerometer headband: (a) Calibration position 

and (b) reading position 

 

Three different sets of reading materials were used 

for three separate sessions, and the reading materials 

were the compilations of jokes from Reader’s Digest 

magazine [33]. Participants were asked to continuously 

perform the reading task from the beginning until the 

end of the experiment. There was a stop button if the 

participant wishes to stop the experiment at any time 

during the experiment. 

The automated driving test ride was performed with 

the participant using the Wizard-of-Oz method for 

about 15 minutes. Baltodano’s work inspired the 

method Wizard of Oz; however, in this study, two 

operators were operating the Mobility Lab; one was 

called the driving wizard, and the other was the 

experimenter [34]. The driving wizard task was to 

simulate fully automated driving using the Mobility 

Lab as if it would be produced in an actual fully 

automated vehicle. A driving style can be consistently 

controlled using the Automatic Acceleration and Data 

Controller (AUTOAccD) [35]. The AUTOAccD was 

developed to assist the driving wizard in driving 

according to the defined acceleration condition called 

defensive automated driving style. This style was based 

on previous findings, that regardless of the type of 

driver or driving style, most people prefer the fully AV 

to be driven in a more defensive driving style [36], [37]. 

For this defensive automated driving style, the driving 

speed was set at 30 km/h, and the lateral acceleration 

generated at the turning/cornering was aimed to be 

about 0.29 g or 2.84 ms-2. 

A standard called Motion Sickness Dose Value 

(MSDV) is calculated to measure the level of motion 

sickness experienced by the participant in each session 

of the automated driving based on the simulated 

acceleration. The earliest characterization of motion 

with motion sickness was done in [38]. The researchers 

found that motion with frequencies around 0.2 Hz was 

the most provoking in motion sickness development. 

Later work also confirmed that longitudinal and lateral 

motions with frequencies below 0.5 Hz and peaking at 

around 0.2 Hz are highly correlated with motion 

sickness [39]–[42]. MSDV can be calculated 

individually in each of the three axes (x-, y-, and z-

axis). 

The participants were asked to answer a post-

MSAQ immediately inside the Mobility Lab after the 

vehicle is stopped. At the end of all the sessions, 

compensation (€30) was given to the participants for 

their participation in this study. 

 

3. Results 
 

3.1. The Consistency of the Automated Driving 

Sessions 
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The distributions of tri-axial accelerations across the 

frequency spectrum for all 54 sessions (three 

conditions for each of 18 participants) were first plotted 

as a function of power spectral density (PSD) in three 

semi-log graphs (Fig. 7). This is done to check the 

consistency of the automated driving generated by 

Mobility Lab by the driving wizard. The accelerations 

in x- (longitudinal acceleration) and y-direction (lateral 

accelerations) were found to dominate at below 0.2 Hz, 

while the acceleration in the z-direction (vertical 

acceleration) was peaking between 1.0 and 2.0 Hz. The 

maximum amplitude of the lateral acceleration was 

almost ten times higher than the maximum amplitude 

of the longitudinal acceleration, while the maximum 

amplitude of the vertical acceleration barely exceeded 

0.25 ms-4Hz-1. 

 
Fig. 7 Power spectral densities (PSDs) of mean acceleration in x-, y- and z-directions for the control-, visual-, and haptic-condition 

 

 
Fig. 8 Comparison of mean accumulated squared Motion Sickness Dose Value (MSDV2) between the accelerometer placed inside the 

Mobility Lab and worn by passengers (head movements) in tri-axial directions for the three conditions 

 

The Motion Sickness Dose Values (MSDV) were 

calculated and showed to be highly correlated with the 

low-frequency motions (i.e., below 0.5 Hz) [43], [44] 

while the high-frequency motions (i.e., above 1.0 Hz) 

are found to be not provocative to motion sickness [45]. 

For the whole 15 minutes of automated driving, the 

calculated motion sickness dose values (MSDVs) were 

similar in the longitudinal acceleration for control-

condition (mean = 3.049 ms-1.5, SD = 0.530), visual-

condition (mean = 2.987 ms-1.5, SD = 0.437), and 

haptic-condition (mean = 3.092 ms-1.5, SD = 0.410) and 

also in the lateral acceleration for control-condition 

(mean = 8.756 ms-1.5, SD = 1.194), visual-condition 
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(mean = 9.028 ms-1.5, SD = 1.187), and haptic-

condition (mean = 9.286 ms-1.5, SD = 0.852) (Fig. 8). 

 

2.2 Measurement of Motion Sickness 
First, a comparison was made between the result of 

pre-MSAQ from the three conditions to check whether 

there are differences in the level of motion sickness 

among the participants at the beginning of the 

experiment. Wilcoxon signed-rank tests were 

performed to determine if there were statistically 

significant differences (two-tailed) for the pre-MSAQ 

score across the conditions and sessions. There was no 

statistically significant difference found in the pre-

MSAQ score either across the conditions or sessions. 

Table 1 shows the median and interquartile range (IQR) 

of the pre-MSAQ score across the conditions and 

sessions.

  
Table 1 Median and IQR for the MSAQ in the pre-MSAQ across conditions and sessions (MSAQ = 100%-point scale; 11.1% = no symptoms, 

100.0% = most severe symptoms) 

Pre-MSAQ 

Constructs  

By Condition By Session 

Condition Median IQR Session Median IQR 

Gastrointestinal 

Control 11.1 (11.1 – 11.1) Session 1 11.1 (11.1 – 11.1) 

Haptic 11.1 (11.1 – 11.1) Session 2 11.1 (11.1 – 11.8) 

Visual 11.1 (11.1 – 11.1) Session 3 11.1 (11.1 – 11.1) 

Central 

Control 11.1 (11.1 – 11.1) Session 1 11.1 (11.1 – 13.9) 

Haptic 11.1 (11.1 – 11.7) Session 2 11.1 (11.1 – 14.4) 

Visual 11.1 (11.1 – 13.9) Session 3 11.1 (11.1 – 11.7) 

Peripheral 

Control 11.1 (11.1 - 11.1) Session 1 11.1 (11.1 - 15.7) 

Haptic 11.1 (11.1 - 15.7) Session 2 11.1 (11.1 - 18.5) 

Visual 11.1 (11.1 - 14.8) Session 3 11.1 (11.1 - 12.0) 

Sopite 

Control 15.3 (13.2 - 20.8) Session 1 16.7 (13.2 - 20.1) 

Haptic 13.9 (11.1 - 17.4) Session 2 13.9 (11.1 - 19.4) 

Visual 13.9 (11.1 - 19.4) Session 3 13.9 (11.1 - 16.7) 

Total MSAQ 

Control 13.5 (12.3 - 15.3) Session 1 13.9 (12.5 - 14.6) 

Haptic 12.8 (11.8 - 14.1) Session 2 13.2 (12.3 - 15.6) 

Visual 12.5 (11.8 - 14.6) Session 3 12.5 (11.8 - 13.9) 

 

Wilcoxon signed-rank tests were then performed on 

the post-MSAQ’s scores to determine if there were 

statistically significant differences in the level of 

motion sickness reported by the participants between 

the control-condition and the conditions where the 

peripheral information systems were implemented 

(visual- and haptic-condition) (see Table 2 and 3). A 

statistically significant difference was found for the 

post-MSAQ total score between the haptic- and 

control-condition; however, not between the visual- 

and control-condition. For the post-MSAQ total score, 

the result indicated that the visual condition induced 

more motion sickness compared to the control 

condition as indicated by higher reported median 

values. Power analysis for the actual sample size of 18 

participants revealed power of 0.06. Since the achieved 

power was low (< 0.80 [46]), a power analysis with a 

probability of making a type II error (β = 20%) and 

with a large effect size (r = 0.5) was conducted for the 

visual-condition post-MSAQ total score. The total 

sample size needed was found to equal 1940 to show 

any significant difference between the two conditions. 

 
Table 2 Median and IQR for the MSAQ in the pre-MSAQ across 

conditions and sessions (MSAQ = 100%-point scale; 11.1% = no 

symptoms, 100.0% = most severe symptoms) 

Post-MSAQ 

Constructs 
Conditions 

Median   

(n = 18) 
IQR 

Gastrointestinal 

Control 19.5 (11.1 – 19.5) 

Visual 18.1 (13.2 – 66.0) 

Haptic 13.9 (11.1 – 13.9) 

Central 

Control 22.2 (18.9 – 61.1) 

Visual 26.7 (15.6 – 69.4) 

Haptic 18.9 (15.6 – 34.4) 

Peripheral 

Control 11.1 (11.1 – 26.9) 

Visual 14.8 (11.1 – 20.4) 

Haptic 11.1 (11.1 – 23.4) 

Sopite 

Control 30.6 (18.7 - 30.6) 

Visual 33.3 (19.4 – 67.3) 

Haptic 23.6 (18.7 – 40.3) 

Total MSAQ 

Control 23.3 (17.4 – 54.2) 

Visual 23.6 (15.3 – 58.7) 

Haptic 18.4 (14.9 – 32.1) 

 
Table 3 Wilcoxon signed-rank test for comparison between control-

condition and visual-/haptic-condition for post-MSAQ and its 

constructs 

Post-MSAQ 

constructs 
Conditions Z 

Effect 

size (r) 

p-value 

(two-

tailed) 

Gastrointestinal 

Control 

Visual 
- 0.421 0.07 0.67 

Control 

Haptic 
- 1.767 0.29 0.08 

Central 
Control 

Visual 
- 0.044 0.01 0.97 
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Control 

Haptic 
- 1.962 0.33 0.05 

Peripheral 

Control 

Visual 
- 0.851 0.14 0.40 

Control 

Haptic 
- 0.984 0.16 0.33 

Sopite 

Control 

Visual 
- 0.233 0.04 0.82 

Control 

Haptic 
- 1.734 0.29 0.08 

Total 

Control 

Visual 
- 0.305 0.05 0.76 

Control 

Haptic 
- 2.298 0.38  0.02* 

* Indicates significant effect (p < 0.05) 

 

There was a statistically significant decrease in the 

post-MSAQ total score and two of its constructs, 

namely central and sopite. For the sopite-construct, it 

was found that Session 3 showed a statistically 

significant decrease when compared to Session 1. For 

the post-MSAQ total score and central construct, 

Session 2 indicated a statistically significant decrease 

from Session 1. Power analysis for the actual sample 

size of 18 participants revealed power of 0.40. Since 

the achieved power was low (< 0.80 [46]), a power 

analysis with a probability of making a type II error (β 

= 20%) and with a large effect size (r = 0.5) was 

conducted for the post-MSAQ total score. The total 

sample size needed for this Wilcoxon signed-rank test 

was found to be 46 to show any significant difference 

between the post-MSAQ total score for Sessions 1 and 

3. 

Wilcoxon signed-rank tests were also performed to 

determine if there were statistically significant 

differences in the level of motion sickness reported by 

the participants between the sessions. It is particularly 

interesting to check whether adaptation to motion 

sickness occurred when the participants were 

repeatedly exposed to the same motion sickness dose 

with the same motion profiles (see Table 4 and 5). 

Wilcoxon signed-rank tests were performed to 

determine if there were statistically significant 

decreases in motion sickness level determined by the 

participants’ head movement between the control and 

test condition. In this study, the participant’s head 

movement was measured by analyzing the MSDV of 

the participant’s head accelerations from a wearable 

headband accelerometer. 
 

Table 4 Median and interquartile range (IQR) for post-MSAQ total 

score and its constructs for different sessions. (MSAQ = 100%-

point scale; 11.1% = no symptoms, 100.0% = most severe 

symptoms) 

Post-MSAQ 

Construct 
Conditions n Median IQR 

Gastrointestinal 

Session 1 18 26.4 (13.9 – 62.5) 

Session 2 18 13.9 (11.1 – 65.3) 

Session 3 18 13.0 (11.1 – 25.9) 

Central 

Session 1 18 31.1 (20.0 – 67.2) 

Session 2 18 15.3 (11.1 – 42.4) 

Session 3 18 23.6 (16.7 – 56.3) 

Peripheral 

Session 1 18 16.7 (11.1 – 24.0) 

Session 2 18 20.0 (15.0 – 48.9) 

Session 3 18 22.2 (18.7 – 46.5) 

Sopite 

Session 1 18 38.9 (21.5 – 66.7) 

Session 2 18 21.1 (15.6 – 32.8) 

Session 3 18 17.7 (13.7 – 52.4) 

Total 

Session 1 18 27.4 (18.8 – 57.8) 

Session 2 18 11.1 (11.1 – 14.8) 

 Session 3 18 18.1 (15.3 – 31.1) 

 
Table 5 Wilcoxon signed-rank test for comparison between Session 

1 and Session 2/Session 3 for post-MSAQ and its constructs 

Post-MSAQ 

constructs 
Group Z 

Effect 

size (r) 

p-value 

(two-tailed) 

Gastrointestinal 

Session 1 

Session 2 
- 1.011 0.17 0.31 

Session 1 

Session 3 
- 1.399 0.23 0.16 

Central 

Session 1 

Session 2 
- 2.134 0.36  0.03* 

Session 1 

Session 3 
- 1.483 0.25 0.14 

Peripheral 

Session 1 

Session 2 
- 1.183 0.20 0.24 

Session 1 

Session 3 
- 0.051 0.01 0.96 

Sopite 

Session 1 

Session 2 
- 1.847 0.31 0.07 

Session 1 

Session 3 
- 2.205 0.37  0.03* 

Total 

Session 1 

Session 2 
- 2.070 0.35  0.04* 

Session 1 

Session 3 
- 1.587 0.26 0.11 

* Indicates significant effect (p < 0.05) 
 

A similar method was used to assess the dose of MS 

given to the participant through the Mobility Lab’s 

movements. However, there was no statistically 

significant decrease found between the control 

condition and the condition with the VPIS and HPIS. 

The median and IQR were presented in Table 6. 

 
Table 6 Median and interquartile range (IQR) for participant head movement’s MSDV in three directions for both across the condition and 

session 

Constructs Condition 
By Conditions 

Session 
By Sessions 

Mdn IQR Mdn IQR 

MSDVx  

Control 10.3 (8.9 – 12.6) 1 10.3 (9.3 – 13.8) 

Visual 10.6 (9.6 – 13.2) 2 10.2 (9.2 – 13.3) 

Haptic 9.9 (9.2 –13.9) 3 10.5 (8.5 – 12.0) 
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MSDVy  

Control 6.7 (6.2 – 7.4) 1 7.2 (6.5 – 7.8) 

Visual 7.0 (6.5 – 7.5) 2 7.0 (6.3 – 7.5) 

Haptic 7.1 (6.4 – 8.0) 3 6.7 (6.3 – 7.9) 

MSDVz  

Control 9.4 (7.0 – 12.1) 1 10.2 (8.6 – 12.3) 

Visual 10.2 (8.1 – 12.8) 2 8.9 (6.5 – 14.0) 

Haptic 9.3 (7.8 – 11.8) 3 10.0 (7.4 – 12.1) 

 

4. Discussion 
 

4.1. Validation of the Consistency of the Automated 

Driving Sessions 
In general, all the test rides performed by the 

Mobility Lab showed almost identical distributions 

over the frequency spectrum for all the conditions. The 

dominant frequencies both in the longitudinal (x-axis) 

and lateral direction (y-axis) were low-frequency 

motions that are highly correlated to the development 

of motion sickness [39], [41], [44]. On the other hand, 

the dominant frequency in the z-direction was 

considered as high-frequency (>1.0 Hz) motions that 

are found to be physically uncomfortable but not a 

factor that contributes to the development of motion 

sickness [45]. The big difference between the 

amplitude of the accelerations in the longitudinal (2.0 

ms-4Hz-1) and lateral direction (16.0 ms-4Hz-1) was 

expected since it was intended that the longitudinal (x-

axis) accelerations were to be kept to a minimum while 

the lateral (y-axis) accelerations were to be 

manipulated to reach the intended range. 

In this study, the high-frequency motion in the 

vertical direction (z-axis) was contributed by the 

designated route made of cobblestone. Calculation of 

frequency resulted from direct measurement of the 

cobblestone’s geometry, and the average speed of the 

vehicle at 30 km/h revealed a frequency of 55 Hz. 

However, due to the vehicle suspension system and 

weight, the dominant frequency in the z-direction was 

found to be much lower. For comparison, Griffin and 

Newman also reported a similar finding that the 

vertical accelerations were peaked between 1.0 and 2.0 

Hz with an acceleration magnitude of about 0.25 ms-

4Hz-1 [47]. 

MSDVs for all three conditions were quite similar, 

and this indicated a good consistency in providing the 

dose of motion sickness to the participants. The 

calculated MSDV also indicated that the dose of 

motion sickness was three times higher in the lateral 

direction (about 9.0 ms-1.5 = considered as mildly to 

severely dose of motion sickness) compared to the one 

in the longitudinal direction (about 3.0 ms-1.5 = 

considered as slightly or no dose of motion sickness) 

[48]. 

 

4.2. Motion Sickness Assessment – Effect of 

Conditions 
For the total score of Post-MSAQ results, 

participants experienced lower motion sickness with 

HPIS but not with the VPIS than when no peripheral 

information system (PIS) was present. However, 

further analyzing the individual construct of Post-

MSAQ results for HPIS did not indicate better 

performance than the control condition. 

For the HPIS, the reduction of the motion sickness 

levels was because HPIS was built with the idea of an 

active movement on which the mechanism with the 

flappers actively aligns participants’ shoulder into the 

direction of the corner rather than being passively 

moved by the centrifugal acceleration towards the 

opposite direction of the corner. This finding was 

consistent with the findings by [27], [49], [50]. They 

found that an active head tilting or under external 

control (e.g., active suspension) is able to lessen 

motion sickness symptoms. When taking a corner, 

drivers usually do not just lean but also tilt their head 

toward the curve center or centrifugal force, whereas 

the passenger’s head usually is tilted in the opposite 

direction. Bles, Bos, de Graaf, Groen, and Wertheim 

mentioned that the changes of head orientation relative 

to the gravity vector, also called gravitoinertial force 

(GIF) [51] can also provoke motion sickness. As found 

in [27], [49], active head tilting could reduce motion 

sickness symptoms. Within this study, the head tilting 

toward the direction of the corner was assisted by the 

HPIS mechanism. 

 
Fig. 9 Typical head postures of the driver and passenger when 

taking a corner (Adapted from [27]) 

 

The second PIS, VPIS, was built on the idea of 

notifying and alerting the participants in a passive 

approach, which means that VPIS informs the user 

about the upcoming (i.e., 3 seconds before arriving at 

the corner/turning) navigational intention of the vehicle. 

Consequently, the user has to initiate an action to adjust 

his/her body according to the induced lateral 

acceleration. VPIS was designed to give real-time 

information that would match the participants’ 

expectations from their "internal models" and with one 

they are experiencing at that moment. Thus, avoiding 

the sensory mismatch from occurring, which would 

lead to the development of motion sickness. 
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However, the post-MSAQ results for visual-

condition (VPIS) indicated the opposite. In this study, 

VPIS was shown to exacerbate the experienced motion 

sickness as compared to the control condition. The 

reason might be determined by the movement from 

both the array of lights from the LEDs and the live 

display from the 4" screen, along with performing the 

reading task, might amplify motion sickness 

development. It was suspected that the multi-

movements presented in front of the participants’ field 

of view induce a phenomenon called Visually Induced 

Motion Sickness (VIMS). VIMS is technically a 

different kind of vestibular-visual conflict than a 

typical motion sickness but characterized by similar 

symptoms such as nausea, headache, fatigue, and 

drowsiness [53], [54]. VIMS develops when an 

observer is in a stationary position, or at least the 

vestibular system detects that the human is static (i.e., 

being driven at a constant speed). However, at the same 

time, the human is being exposed to moving visual 

images [55]. These moving visual images induce the 

illusionary sensation of self-motions, also known as 

“vection” [56]. Hence, VIMS might explain why in 

certain post-MSAQ-constructs, visual-condition 

indicated higher motion sickness than the control 

condition. The condition with the VPIS might mimic 

the scenarios like using a simulator with fixed-based or 

watching a 3D movie where motions are detected by 

the visual system but not the vestibular system [54]. 

Compared to the previous study [20], they found a 

statistically significant decrease in the motion sickness 

from the score of the total MSAQ and its constructs for 

their PIS called Peripheral Visual Feedforward System 

(PVFS). However, the PVFS was mounted on each side 

of the television display, located about 1.2 m from the 

participant. In this study, the location of the VPIS was 

much closer to the participants and was held typically 

on the lap area of the participant. A recent study done 

by Kuiper et al. found that this particular position is 

more susceptible to motion sickness development [1]. 

In addition, in the previous study [20], the given non-

driving related task (NDRT) was watching a video on 

the television display, while in this study, the given 

NDRT task was reading from a tablet. Hence, there 

might be a possibility that the distance between where 

the PIS was located and the NDRT might play a crucial 

role in determining the experienced level of motion 

sickness. 

In terms of the participants’ head movement, no 

statistically significant decreases were found between 

the control condition with the visual- or haptic 

condition. One of the interpretations of why the MSDV 

results by head movements were higher than the 

Mobility Lab motions was probably due to the 

participants’ head alignment. Although the 

accelerometer on the headband was calibrated each 

session by looking straight ahead, the participants tilted 

their heads down once the reading task began. Hence, 

the accelerometer x-axis already registered certain 

acceleration values rather than zero value, and the z-

axis (vertical direction) was not equal to the gravity 

vector anymore. On the other hand, the y-axis (lateral 

direction) of the accelerometer should not be affected 

by the tilted head if the participants were sat up straight 

and only tilted their head in a down-forward direction. 

However, the positions of the x-, y- and z-axis of the 

accelerometer-equipped headband were aligned with 

the semi-circular canals of the vestibular system. Thus, 

the recorded accelerations were exactly in the tri-axial 

directions of the semi-circular canals, and the head 

movements were defined in these vectors’ quantity. 

Another interpretation of why we obtained higher 

MSDV results in the head movements compared to the 

Mobility Lab motions is that perhaps the participants 

could not control the movements induced by the 

Mobility Lab motions to their head. As mentioned in 

[57], these uncontrolled movements can induce motion 

sickness because all selected participants were highly 

susceptible to motion sickness who might have 

difficulties controlling their bodies in an unexpected 

motion environment. 

 

4.3. Motion Sickness Assessment – Effect of Sessions 

Comparing the post-MSAQ scores between the 

sessions (see Tables 4 and 5) indicated the possibility 

of adaptation to motion sickness, particularly in the 

post-MSAQ total score and two of its constructs, 

namely central and sopite. A trend was found in which 

the post-MSAQ score for Session 1 was always the 

highest (about 15% reduction from Session 1 to 

Session 2 for the central-construct, and about 18% to 

21% reduction for the sopite-construct from Session 1 

to Session 2 and from Session 1 to Session 3). 

However, there were no further reductions of the 

motion sickness level from Session 2 to Session 3 (less 

than 0.6% reduction, except for the sopite-related 

dimension with a reduction of 1.7%).  

Adaptation to motion sickness is a weakened 

response over time when being continuously exposed 

to stimulation [58]. In addition, adaptation to motion 

sickness is only specific to the repeated stimulation that 

someone is exposed to. It can only occur when the head 

or body movements are involved [58]. Repetitive 

exposures to the same motion resulted in adaptation 

over time [59]. In this study, the general pattern of the 

experienced motion sickness in the first session was 

always the highest, and the last session was always the 

lowest. Therefore, the effect of the peripheral 

information systems and, in general, the effects of 

different conditions may have been weakened. 

Since all of the participants experienced the same 

dose of motion sickness given in every condition, 

therefore, ideally, the participants should also yield 

different reactions according to the different conditions 

they were exposed to. In this study, each participant 

was subjected to three different conditions on three 
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different days. Even though a precaution measure was 

taken by restricting at least three days apart between 

the two consequent sessions to make sure if motion 

sickness occurs during one of the sessions, the effect of 

adaptation to motion sickness might still occur. Three 

days intersession was based on a study with repeated 

exposure to motion sickness stimulus that found that 

humans returned to resting level after 48 hours [60]. 

The adaptation to motion sickness might be caused by 

the participants’ exposure to an identical route and 

motion profile for all three conditions. Therefore, 

participants might show fewer motion sickness 

symptoms in the later sessions compared to the first 

session, which would weaken the effect of the tested 

peripheral information system. 

 

5. Conclusion 
In conclusion, the realization of the test rides was 

consistently achieved, as shown by the Motion 

Sickness Dose Values (MSDVs) in the tri-axial 

direction. In addition, from the Power Spectrum 

Density (PSD), the motions of interest in longitudinal 

(y-axis) direction were realized in the low-frequency 

region, which has been proven to be inducing motion 

sickness.  

In terms of motion sickness assessment, Haptic 

Peripheral Information System (HPIS) managed to 

reduce the experienced motion sickness caused by the 

low-frequency acceleration in the lateral direction and 

when reading inside a moving automated vehicle (AV). 

On the other hand, Visual Peripheral Information 

System (VPIS) seemed to exacerbate the experienced 

motion sickness. When comparing the results between 

the consequent sessions, adaptation to motion sickness 

was found likely to occur. It is believed that it 

happened because the participants exposed to the same 

motion profiles were used throughout the three 

conditions. 
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