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Abstract: Distribution or dispersion analysis of polymer composite particle fillers is crucial to determine 

the material's properties and strengths. Bottom ash was used as reinforcement particles in the polymer composite. 

Bottom ash particles have an irregular shape, porous structure, and rough texture surface. The characteristics cause 

difficulty in detecting and analyzing the particles in the microstructure image of the polymer composite. This study 

aimed to build a robust method to detect bottom ash particles in the polymer composite automatically through 

microstructure image observation. The proposed method can also identify the agglomerated bottom ash particles, 

separate them, and analyze the distribution. Firstly, an image enhancement technique is applied to eliminate noise in 

the input image. A multi-level fuzzy segmentation method is implemented to obtain the filler particles region. Each 

particle region obtained is examined whether it is a touching particle and split it using an edge detection-based 

method. Before implementing the edge detection, the void filler algorithm is applied. We used a Prewitt edge 

detector that combines filling gaps between two broken segments using a round mask. The logic difference 

operation between the whole area and the resulting edge area is implemented to separate the touching particle 

region. At finally, the quantification of filler dispersion is carried out. To investigate the performance of the splitting 

method, we compared it with the watershed method.  In experiments, this touching particle splitting method can 

separate agglomeration particles with more than 90% accuracy. This study has two-fold novelties. Firstly, this 

pioneering study automatically identifies and quantifies filler particles with irregular shapes using image processing 

techniques. Second, the proposed splitting method has better performance than the watershed method used in 

previous studies. 

Keywords: image processing, dispersion analysis, bottom ash particles, agglomeration particle, 

microstructure image. 

 

底灰增强聚合物复合材料微观结构图像中填料的自动分散定量   

 

抽象: 

聚合物复合颗粒填料的分布或分散分析对于确定材料的性能和强度至关重要。底灰用作聚合

物复合材料中的增强颗粒。底灰颗粒具有不规则形状，多孔结构和粗糙的表面纹理。该特性

导致难以检测和分析聚合物复合物的微结构图像中的颗粒。这项研究旨在建立一种可靠的方

法，通过微观结构图像观察来自动检测聚合物复合物中的底灰颗粒。所提出的方法还可以识

别附聚的底灰颗粒，将其分离，并分析其分布。首先，应用图像增强技术来消除输入图像中

的噪声。实现了一种多级模糊分割的方法来获得填料颗粒区域。检查所获得的每个粒子区域

是否为接触粒子，并使用基于边缘检测的方法对其进行分割。在实施边缘检测之前，应应用

空隙填充算法。我们使用了普威特边缘检测器，该检测器使用圆形蒙版组合了两个破碎段之

间的填充间隙。整个区域与所得边缘区域之间的逻辑差运算被实现为分离触摸粒子区域。最
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后，进行填料分散的定量。为了研究分割方法的性能，我们将其与分水岭方法进行了比较。

在实验中，这种接触式颗粒分裂方法可以以90％以上的精度分离附聚颗粒。这项研究有两个

新颖之处。首先，这项开创性研究使用图像处理技术自动识别和量化了具有不规则形状的填

料颗粒。其次，所提出的分裂方法比以前的研究中使用的分水岭方法具有更好的性能。 

关键词: 图像处理，色散分析，底灰颗粒，团聚颗粒，微观结构图像。 

 
 

1. Introduction 

Composites can be defined as materials consisting 

of two or more phases that are chemically and 

physically separated by different interfaces [1]. The 

behavior of composite materials is explained based on 

the combined action of the reinforcing elements, 

polymer matrix, and fiber or matrix interface. To 

achieve superior mechanical properties, the interface 

adhesion must be strong. Matrix molecules can be 

anchored to the fiber's surface by chemical reaction or 

adsorption, determining interfacial adhesion level.  The 

interface investigation was conducted through 

microstructure images obtained using electron 

microscope devices such as a Scanning Electron 

Microscope (SEM) and Transmission Electron 

Microscope (TEM) or optical microscope devices the 

digital microscope.  

Dispersion analysis to determine the distribution of 

reinforcing particles is essential to underlie the 

measurement of polymer composites' mechanical 

properties [2–8]. The more evenly distributed the 

particles of filler, the stronger the material produced. 

Bottom ash is one of the polymer matrix fillers which 

has the advantage of having a rough surface, and the 

shape is not homogeneous. Moreover, bottom-ash 

particles have a large pore structure, so that it is a 

reason to enlarge the adhesive bond [9–11]. On the 

other hand, due to the irregular shape of bottom ash 

particles, analyzing these particles' dispersion in 

microstructure images is not easy and requires robust 

segmentation techniques.  

To get the distribution of filler particles in the 

polymer matrix, we need to detect each particle's 

presence in the polymer matrix layer both in the 

direction and perpendicular direction of the observation 

field. The problem is for the clumping particles or 

overlapping particles. We have to split the clumping 

particles so that we can detect each particle in the 

cluster. Some segmentation studies for separating the 

overlapping objects implement the watershed method 

[12–17]. Nevertheless, the researchers apply the 

watershed technique to segment objects with regular 

shapes such as circles or ellipse.  

In this study, we propose an automatic filler 

particles distribution analyzer that processes a 

microstructure image of polymer composite and results 

in a distribution index of filler particles in the image. 

Firstly, we implement an image enhancement method 

to improve the quality of the image. The enhancement 

technique uses the hybrid approach that combines 

Wavelet multiscale algorithm and spatial filtering 

method. The advantage of this approach can reduce 

noise while preserving the image detail components 

[18]. Furthermore, to obtain the particle regions in the 

image, a Fuzzy based multi-level thresholding method 

is applied. According to Sarkar et al. [19] and 

confirmed by the research of Naidu et al. [20], fuzzy-

based entropy has better performance than the Shannon 

entropy approach. For each particle region obtained 

from the segmentation step, we separate the 

overlapping particle using edge detection-based 

segmentation techniques instead of region-based 

segmentation. Several techniques get the object's edge, 

such as the active contour method [21] and edge 

detection with operators. The weakness of active 

contour is that it requires an extensive iteration so that 

the computation time required is also considerable. In 

this research, edge detection is used to get the boundary 

between overlapping objects. The gap-filling is applied 

to connect the disconnected edges. Individually, the 

splitting method was tested using overlapping particle 

images, and it was measured quantitatively by region-

based performance measurement. The performance of 

the proposed segmentation method was also compared 

to the watershed method. Finally, we calculate the 

distribution index of filler particles in the whole image 

using a Gaussian probability density function based on 

the particle region center [8]. When compared with the 

automatic index dispersion calculation system that was 

proposed by Li et al. [8], our entire pipeline for filler 

particle dispersion analysis can detect particles that are 

not uniform in size and separate touching and 

overlapping particles. The precision of measuring the 

distribution of filler particles in the composite polymer 

becomes better.  

Our main contribution is developing an automatic 

technique to quantize filler particles' distribution with 

non-uniform sizes and irregular shapes. It will help 

analyze the strength of the material by measuring the 

particle distribution quickly and precisely. We also 

propose a method for recognizing and splitting 

agglomerated particles to support the automatic filler 

dispersion system's robustness. 

This article is organized into several sections. After 



38 

 

the introductory part, the first section is the research 

methodology that discusses the proposed segmentation 

methods. The results and discussion are explained in 

the second section. This section evaluates the proposed 

method's performance and the comparison method. The 

last section consists of conclusions and suggestions. 

 

2. Research Methodology 

The proposed method is fully described based on 

Fig. 1. The main steps of this filler particle dispersion 

analyzer consist of the image quality improvement step 

to improve the detection accuracy of the particle area, 

the segmentation of the particle area from the polymer 

matrix, the detecting and separating the accumulated or 

agglomerated particle areas, and the stage of 

calculating the distribution index or the dispersion 

index of the filler particles. 

Image 
Enhancement

Image 
Segmentation

Agglomerated Particles 
Detection and Splitting 

Image Capture

For each particle 
region

Splitted Particle Region 
Merging  

Index Dispersion Analysis

 
Fig. 1 Flow diagram of the filler particle dispersion analyzer 

 

2.1. Image Enhancement Method 

The algorithm used to improve the quality of the 

microstructure image has two stages. The first stage is 

enhancing dark color sharpness, which is the bottom 

ash particles' color. The second step is a hybrid noise 

reduction method, combining the spatial filter method 

and the multiresolution wavelet approach. The process 

of enhancing the image quality uses a two-dimensional 

input image, which is then represented by I, which has 

some rows M and the number of columns N. From the 

input image, the average grey value is calculated. 

Suppose it is represented by the variable µ, which is 

obtained by the formula: 

𝝁 =   
𝑰(𝒊, 𝒋)

𝑴.𝑵

𝑵

𝒋=𝟏

𝑴

𝒊=𝟏

 

                                           (1) 

where i = 1,2,3, ..., M and j = 1,2,3, ..., N are the row 

and column coordinates of the pixels in the input image 

I. Then a convolution operation, as described in [22],  

is performed between the input image I and the average 

filter of 3x3 size as follows: 

𝝎 =  

𝟏/𝟗 𝟏/𝟗 𝟏/𝟗
𝟏/𝟗 𝟏/𝟗 𝟏/𝟗
𝟏/𝟗 𝟏/𝟗 𝟏/𝟗

  
 

which will produce an average image, Imean with the 

following equation: 

𝐼𝑚𝑒𝑎𝑛 (𝑖, 𝑗) =   𝜔 𝑑𝑥,𝑑𝑦 𝐼(𝑖 + 𝑑𝑥, 𝑗 + 𝑑𝑦)

1

𝑑𝑦=−1

1

𝑑𝑥=−1

 
            (2) 

where i, j is the coordinate of a pixel in the image I; dx, 

and dy is a distance between the center and the edge of 

the neighborhood window. 

Furthermore, each pixel in the image Imean is 

selected, whose value is <0.5µ to detect dark areas of 

filler particles. This operation will produce a binary 

image, Ibw, with a value of 1 for the fill particle area 

and 0 for the area other than the fill particle area. Next, 

the brightness of the image Imean is decreased by 

multiplying each pixel by 0.5, that expressed as: 

𝐼′𝑚𝑒𝑎𝑛 = 0.5𝐼𝑚𝑒𝑎𝑛                                              (3) 

Suppose each grey value of pixels in Imean is 

multiplied by the binary image Ibw. It will produce an 

image with a grey value of 0.5 from the pixel value of 

the image Imean in the selected area called Iselect. 

Meanwhile, the greyscale of the selected pixels in the 

input image I is taken by operating the dot product 

between I and the inverse of Ibw. This result is an image 

Inonselect that resembles the input image I but with the 

black particle.  Moreover, finally, the grayscale of the 

image Inonselect is added to the grayscale of the image 

Iselect that will result in an image with a darker particle 

region so that the particle will be easier to distinguish 

from the matrix. 

 
Fig. 2 Before and after noise reduction 

 

In making polymer composites, there is a stirring, 

mixing, and grinding process that results in the 

destruction of filler particles into more delicate flakes 

or dust. These fragments are difficult to distinguish 

from dust or dirt and become noise in microscopic 

images, as shown in Fig. 2.  So the next enhancement 

step aims to remove noise or small lines while 

maintaining the detail of the filler particle area [18] 

using the hybrid speckle-noise reduction method 

proposed by Hermawati et al. [23]. The step begins 
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with decomposition by applying the process, namely 

wavelet transformation, on the image of n-levels. The 

multiresolution wavelet approach offers advantages in 

eliminating noise at several levels of resolution in 

different image components. At each level, this 

decomposition process will produce one sub-image 

with an approximation component from the input 

image and three sub-images with a detailed part with 

horizontal, vertical, and diagonal directions. Starting 

from the n-th decomposition level, a sub-image is taken 

with an approximation component. This sub-image was 

processed using bilateral filters. 

Meanwhile, the three sub-images with detailed 

elements at the same level were processed by soft-

thresholding then processed by the anisotropic 

diffusion method. The process results on the four sub-

images are recombined by applying an inverse wavelet 

transformation that will produce an approximate image 

at the n-1 level. The process is repeated until it reaches 

level=1. 

Fig. 2 shows that noise is lost after the noise 

reduction process, and scratches on the lamina’s 

surface due to treatment before image capture with a 

microscope can also be minimized. The noise reduction 

method’s advantage is still preserving the object’s edge 

to facilitate the next step’s edge detection process. 

 

2.2. Image Segmentation 

After improving the processed microstructure image 

quality, a segmentation algorithm is performed to 

separate the polymer matrix area's filler particle area. 

We applied the fuzzy entropy-based multi-level 

thresholding method proposed by Sarkar et al. [18] to 

obtain the filler area layers. This method will segment 

the input image's grayscale as much as n-level starting 

from the darkest color (black) to the lightest color 

(white). Suppose the image I is segmented in n-level 

segments, the threshold value T at level i is defined as: 

𝑇𝑖 =
𝑙𝑏𝑖 + 𝑢𝑏𝑖−1

2
 

                                            (4) 

where lbi is the lower bound of trapezoidal fuzzy 

membership function for i-segment and ubi-1 is the 

upper bound of trapezoidal fuzzy membership function 

for the i-1 segment. 

The filler particles in the form of bottom ash on the 

surface (first layer) of the matrix will have the darkest 

color and will fade become grey if it is in the matrix’s 

base layer. In contrast, the color of the matrix tends to 

be bright or whitish. By applying this multi-level 

thresholding method, for example, with n = 4 as shown 

in Fig. 3(a), we will get four areas with different grey 

levels. They are the brightest matrix area, the deepest 

filler particle layer, the filler on the second layer, and 

the filler particle layer located in the uppermost layer 

(surface). At this stage, the particle area will be 

processed in different layers starting from the top layer. 

From each layer, a binary image with a value of 1 is the 

particle area. Fig. 3(b) presents a binary image for 

particle area in the surface layer. 

 
(a)         (b) 

Fig. 3 (a) Segmented regions for number level = 4; (b) Segmented 

particle region in the surface layer 

 

2.3. Agglomerated Particle Splitting 

After the segmentation process, for each particle 

area in the binary image, the detection and separation 

of clumped or stacked particles are carried out. Stacked 

areas are indicated by the size of the particle area that is 

greater than 500 pixels. The bounding box of the 

particle area in the binary image plus 20 pixels on the 

left, top, right, and bottom is used as a mask to get the 

particle area in the input image. 

The procedure for separating and identifying the 

agglomerating particles consists of several steps, as 

shown in Fig. 4. The first step is to improve particle 

image quality using the image enhancement algorithm. 

This step is to smooth and to level grey values in the 

particle area. The splitting process's primary stage 

begins with the edge detection process to get the 

particle boundary's shape. The next step is the gap-

filling to get the edge lines that separate the regions in 

the clumping particle image. The splitting area has 

obtained by the difference between the hole filling area 

of the boundary and the boundary itself. 

Region Filling 

Noise Reduction 

and smoothing

Edge Detection

Edge Linking

Splitting 

 
Fig. 4 Block diagram of the proposed segmentation method for 

particle splitting 

 

2.3.1. Region Filling 

The first step is region filling. Proper preliminary 

processing is needed to improve the accuracy of the 

particle filler fillings of these polymer composites. One 

of the problems is the presence of voids on the lamina's 
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surface. It is due to the air being captured in the process 

of lamina making. These voids are usually brighter 

areas in the microscopic image of the lamina's surface 

with sizes that can be small and can be large, as can be 

seen in the example in Fig. 5(a). If there is a void on 

the layer of particles that will be detected, it will cause 

holes in the segmentation results, as in Fig. 5(b), so that 

the results of segmentation become imperfect. 

     
(a)       (b) 

Fig. 5 (a) Void in a grayscale image; (b) Void in a binary image 

 

The region filling is used to fill the void area with a 

grey value similar to its neighbors' average intensities 

— the outline of the region filling steps as in Fig. 6. 

The region filling process begins with thresholding to 

obtain the area of the filling particles. The threshold 

value to get a binary image is equal to the maximum 

grey level value minus the minimum grey level value, 

divided by two. The holes in the particle area in the 

thresholding result's binary image are filled using the 

hole filling method. A mask can be obtained by 

subtracting the hole filling results with the thresholding 

results. The dilation process uses a 3x3 square 

structuring element to get the hole's intensities in the 

mask image. Furthermore, the average of grayscales in 

the mask area obtained in the input image is used to 

replace the mask area's grey value. 

Thresholding (T)
Hole filling of 

Binary Image (H)

Get mask = H - T

Mask dilation

Mask Filling with 

average of intensities 

in mask

 
Fig. 6 Block diagram of the region filling step 

 

2.3.2. Edge Detection 

The edge detection step is used to get the boundary 

of objects and the borderline between overlapping 

items. There are several types of operators used in edge 

detection, including Canny, Prewitt, and Sobel. In their 

research, Muhammad Umair et al. [24] used the Canny 

operator to detect rough sea horizon lines. However, in 

this study, we apply the Prewitt operator since it does 

not require two threshold values like the Canny 

operator. The Prewitt operator is used to get the first 

derivative image in the horizontal direction and vertical 

direction. The edge image is obtained from the two 

derivatives' magnitudes that meet specific threshold 

values, as shown in Fig. 7(a). The magnitude image 

with a dark background contains non-zero grey level 

values, which are the image's edges. By taking a grey 

level value that is greater than the threshold, we will 

get an edge image as in Fig. 7(b).   

        
(a)     (b) 

Fig. 7 The magnitude image and the thresholding result 

 

After obtaining the edge image, removing unwanted 

objects outside the particle objects will be separated in 

the image. The process can be carried out using the 

'open' morphological operator to eliminate objects 

smaller than the specified size threshold, for example, 

objects smaller than 900 pixels. Another way is to 

select an object with the most significant area property. 

 

2.3.3. Edge Linking 

The edge linking process connects pixels in the edge 

image to get a boundary line from the object. It is a 

process to fill a small gap that might occur at the edge 

image. The gap pixels are zero values that appear 

between the value of one in the edge image, as in Fig. 

8. 

 
Fig. 8 Gap and ending pixels of the edge image 

 

The algorithm of the gap-filling process can be seen 

in the flowchart of Fig. 9. Firstly, we have to find the 

pixels at the end of the line by checking the number of 

transitions or crossings between zero and one of the 

neighbors, measuring 3x3 each edge pixel. 

Furthermore, a pixel at the end of the line, a circular 

mask is placed. The mask has a radius equal to the gap 

of 1 divided by 2. The final step of the gap-filling 

process is to carry out a thinning process to get the 

resulting line. 
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Find ending and junction pixels in 

edge image

Place a circular mask in every 

ending and juction pixels

Thinning 

 
Fig. 9 Gap connection process 

 

2.3.4. Splitting 

After the edge's connecting process is carried out, 

the next step is to separate between two or more areas 

bounded by the edge lines. The stages of separation can 

be seen in Fig. 10. Firstly, we apply a Gaussian filter to 

smooth the edge image. The smoothing process aims to 

ease and widen the line and fill gaps at the previous 

stage. After that, we implement the thresholding step to 

get the binary image from the smoothed edge image 

with the threshold value is equal to zero. The hole 

filling process is used to obtain the whole particle area. 

The difference between the entire particle area and the 

edge image will result in the splitting region. 

Smoothing using Gaussian 

filter

Get binary edge image from 

smoothing edge
Hole filling

Difference between hole 

filling image and binary edge 

image

 

Fig. 10 Block diagram of splitting step 

 

2.4. Index Dispersion Analysis 

After all particle areas in one layer have been 

processed, incorporation and detection of the particle 

center are performed. The separated particle areas are 

then recombined to the position of the particle in the 

original image. Then look for the center point of each 

particle area. The particle center point information is 

used in the last step to calculate the dispersion index. 

The mean distance between the center points of the 

particles in the image is calculated. It is the dispersion 

index, which shows the degree of distribution of the 

filler particles in the polymer matrix, which is 

expressed as [8]: 

𝒅𝑳𝟐 𝑮,𝑼 =   (𝑮 𝒙 − 𝑼 𝒙 )𝟐
𝑴

𝒙=𝟏

 

                   (5) 

U(x) is a function of uniform distribution of pixels 

in the input image; G(x) is a normal distribution 

expressed as the particle center points' Gaussian 

density function. M is the spatial resolution of the input 

image. 

 

3. Results and Discussion 
 

3.1. Data Collection 
The materials needed for the manufacture of 

composite polymers are thermoplastic polymers 

(polypropylene) and coal ash with 200 and 250 mesh 

with a concentration of 2% and 5%. Polypropylene 

polymer, which has been weighed with a certain 

weight, is put into a container (stirrer) heating, heated 

to a temperature of 170oC. This temperature 

corresponds to the melting temperature of 

polypropylene. After 100% melting, which takes 

almost 2 hours to weigh 300 grams of polypropylene, a 

weighted coal ash powder is added and has a specific 

mesh particle size. After all the fillers have entered, stir 

for 30 minutes at a certain speed. The composite 

material mixture is ready to be printed into a 

rectangular mold, 10 mm thick, 20 mm wide, and 200 

mm long after the mixing. With a pressure of 20 kg / 

mm2, and let stand for 5 minutes. After cooling, the 

composite material is ready to be removed from the 

mold.  

Microstructural images were obtained from 

composite sheets (lamina), which had a bottom ash 

content of 2% and 5% by weight of the mixture using a 

Dino-lite digital microscope with minimal 

magnification 60 times. Fig. 11 shows that the bottom 

ash particle has a dark color, and the polypropylene 

matrix has a brighter color. Fig. 11 also shows the 

bottom ash particle's position in the surface layer and 

spread in the deeper layers indicated by different grey 

levels. The farther from the observation's surface, the 

greyscale of the bottom ash is larger or brighter. The 
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samples of agglomeration bottom ash image can be 

seen in Fig. 12. In the experiment for the agglomeration 

particle segmentation method, we used 121 images of 

filler particles. 

 
Fig. 11 Microstructure image of polymer composite reinforced by 

bottom ash particles 

 

 
Fig. 12 Sample of the agglomeration particle 

 

3.2. Performance Evaluation  

To measure the proposed splitting algorithm's 

performance, we implemented the region-based 

performance measurements, i.e., precision as in 

Equation 6, accuracy as in Equation 9, sensitivity as in 

Equation 7, specificity as in Equation 8, and Dice 

similarity as in Equation 10. Region-based metrics, as 

defined in [25], were chosen as a way to assess the 

precision and accuracy of different segmentation 

methods for splitting the agglomerative particle. For 

example, RSR   shows the segmentation results region, 

and RGT is the ground truth described by experts. All 

area-based metrics are given as percentages, i.e. 

1.  Precision P is the accuracy of experts' 

segmentation results with the system's segmentation 

results. P characterizes the number of regions that is 

common in both RSR and RGT divided by the total 

number of area in the combined RSR and RGT as 

follows: 

𝑃 =
 𝑅𝑆𝑅 ∩ 𝑅𝐺𝑇 

 𝑅𝑆𝑅 ∪ 𝑅𝐺𝑇 
 

                                           (6) 

2. Accuracy is defined as the closeness level 

between the segmentation result and the actual region 

assessed by the True Positive (TP) and True Negative 

(TN) calculation of each method. True Positive Rate 

(TPR) is the quotient of the total number of the actual 

area that is covered by the segmentation technique and 

represents delineation sensitivity, defined as: 

𝑇𝑃𝑅 =
 𝑅𝑆𝑅 ∩ 𝑅𝐺𝑇  

 𝑅𝐺𝑇  
 

                                     (7) 

True Negative Rate (TNR) is the quotient of the 

total area in the reference region that is not the actual 

area and excluded from the segmented area. It states 

the delineation specificity and is defined as: 

𝑇𝑁𝑅 =
 (𝑅𝑆𝑅 ∪ 𝑅𝐺𝑇)

𝑐 

 (𝑅𝐺𝑇)
𝑐 

 
                             (8) 

where (.)c shows the complement of a reference region 

set. From both TP and TN, measurements accuracy can 

be calculated with the following equation:  

𝐴𝑐𝑐 =
 𝑇𝑃 + |𝑇𝑁|

 𝑂𝐺𝑇 +  (𝑂𝐺𝑇)
𝑐 
 

                            (9) 

3.  Dice similarity D provide indications of 

overlapping between RSR and RGT that is defined as 

follow: 

𝐷 =
2 𝑅𝑆𝑅 ∩ 𝑅𝐺𝑇 

 𝑅𝐺𝑇 + |𝑅𝑆𝑅|
 

                                  (10) 

 

3.3. Experiments 

In this section, we will present the result and 

performance of our proposed method. The research 

results' scope includes the results of the image 

enhancement method, the performance of the proposed 

particle splitting method, and the results of filler 

dispersion quantification. 

Firstly, we compared the segmentation result with 

our enhancement technique versus without the 

enhancement step, as shown in Fig. 13. Fig. 13(b) 

presents the input image's enhancement result in Fig. 

13(a). Fig. 13(c) and Fig. 13(d) are the segmented 

image of the original image in Fig. 13(a) and the 

segmented image of the enhanced image in Fig. 13(b), 

respectively. As shown in Fig. 13(c), the segmentation 

results without the enhancement process resulted in an 

incomplete particle area, which would complicate the 

next step's dispersion analysis process. 
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(a)                                                                (b) 

  
(c)                                                                      (d) 

Fig. 13 (a) Image input; (b) Enhanced image; (c) Segmentation result of image input; (d) Segmentation result of enhanced image 

 
Clumping particle image Splitting result of 

the proposed method 
Splitting result of 
the watershed transform 

 

  
 

 

  

Fig. 14 Comparison of the splitting particle result 

 

Next, we compare the performance of our proposed 

particle splitting method with the watershed method 

[14]. In this study, we set the parameter for the 

threshold of edge detection is equal to 8, the gap size is 

the same as 5, the Gaussian filter size is 3x3 with a 

standard deviation of 0.2. The example of segmentation 

results using the proposed method and the watershed 

method is presented in Fig. 14. From Fig. 14, we can 

see that the proposed method more precise than the 

watershed method. 

 
Table 1 Average of performance measurement 

 
Measurement Proposed 

Method 

Watershed 

Method 

Precision 0.824 0.726 

Accuracy 0.910 0.857 

Sensitivity 0.840 0.765 

Specificity 0.980 0.948 

Dice similarity 0.902 0.817 

 

Table 1 shows that overall, the performance of the 

proposed segmentation method for particle splitting is 

better than the watershed method, where the accuracy 

of the proposed method reaches 91%. For segmentation 

of objects with irregular shapes as in this study, the 

proposed method also gives a reasonably high precision 

value of 82.4% and a sensitivity that indicates a 

sufficiently high level of True Positive that reaches 

84%. This distinctive depiction achieves 98%, which 

means that segmentation results are mostly in the 

ground truth area. This value shows that the size of the 

segmented area is smaller than the ground truth area. In 

contrast, the common overlapping area between the 

segmentation area and the ground truth area reaches 

90.2%.
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(a)                                                           (b) 

   
(c)                                                      (d) 

Fig. 15 (a) Splitting result using proposed method; (b) Particles distribution using the proposed method; (c) Splitting result using watershed 

method; (d) Particles distribution using the watershed method   

 

Finally, we compared all particles' segmentation 

results in the whole image after the splitting process 

and the particles' distribution. Fig. 15 present the 

comparison of the segmentation result with our 

proposed splitting method and watershed method. As 

we know that the watershed method uses the principle 

of measuring the distance from the edge of the object to 

the center, where the object's center is determined using 

a distance transformation. It will produce multiple 

centers if the object's shape is asymmetrical or 

irregular, as in our problem. This property will cause 

over-segmentation and cause particles not to separate 

according to the actual particle shape, as shown in Fig. 

15(c). So that in the analysis of particle distribution, it 

will cause a high number of particles in the splitting 

area using the watershed method. Meanwhile, our 

proposed method can separate particles according to 

their shape because we apply an edge detection-based 

approach, as present in Fig. 15(a). 

 

4. Conclusion 

An automatic method for detecting and analyzing 

the filler particle distribution using image processing 

techniques was successfully applied in the bottom ash 

reinforced polymer composite. The image enhancement 

was conducted to improve particle sharpness and 

remove noises with the same properties as the particles. 

Implementation of the image enhancement can ease the 

particle analysis at the following step. The particle 

splitting algorithm had a better performance than the 

watershed method, with an accuracy of 91%, sensitivity 

84%, specificity 98%, and dice similarity of 90.2%. In 

practice, the proposed method could quantize the filler 

particle dispersion in a matrix to find out the polymer 

composite material's strength easily and faster. 

This method's drawback is that the segmented area's 

size is smaller than the actual area, likely the thinning 

process at the gap joining stage. For this reason, it is 

necessary to develop a better method of connecting 

holes without reducing the size of the area produced. 

Also, it is required to establish a method for evaluating 

the material's strength based on the particle distribution 

calculation in the future. 
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