Open Access Article

Zoning Design for the Protected Conservation Area of Pinang, Siumat and Simanaha Waters (PISISI) in Simeulue District, Aceh

Muhammad Irham¹,²,* Fauzan Aulia³, Muhammad Rusdi⁴, Tarmizi Tarmizi⁵, Anwar Delli⁶, Indra Indra⁷, Muhammad Authar ND⁸

¹ Laboratorium Geografik Informasi Sistem, Fakultas Kelautan dan Perikanan, Universitas Syiah Kuala, Banda Aceh, Indonesia
² Pusat Penelitian Lingkungan Hidup dan Sumber Daya Alam (PPLH-SDA), Universitas Syiah Kuala, Banda Aceh, Indonesia
³ Program Studi Magister Pengelolaan Sumberdaya Pesisir Terpadu, Universitas Syiah Kuala, Banda Aceh, Indonesia
⁴ Jurusan Ilmu Tanah, Fakultas Pertanian, Universitas Syiah Kuala, Banda Aceh, Indonesia
⁵ Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Syiah Kuala, Banda Aceh, Indonesia
⁶ Jurusan Sosila Ekonomi Pertanian, Fakultas Pertanian, Universitas Syiah Kuala, Banda Aceh, Indonesia
⁷ Fauna & Flora International, Aceh Marine Programme, Indonesia
⁸ Program Studi Agribisnis, Fakultas Pertanian, Universitas Malikussaleh, Lhokseumawe, Indonesia

Abstract: Simeulue District has several conservation areas, including the Pinang, Siumat, Simanaha (PISISI) marine conservation area. To maximize the management of the marine protected area (MPA) of PISISI, which has been reserved by the Government of Aceh, it is necessary to analyze the management and zoning plan, especially in determining the location of the core zone (no-take zone). The core zone determination is the most important part in planning to protect coastal areas as a manifestation of sustainable management of fish resources and the environment. The research purpose is to determine the location of the no-take zone based on conservation targets that have high biodiversity value, analyze the optimum size of the no-take zone, and determine the zoning design in the MPA of PISISI, Simeulue District. Therefore, the Marxan model was used in this study, which is the most widely used MRA zoning design and planning tool. However, Marxan was unable to determine the priority location of conservation areas and the optimum size of the no-take zone. For this reason, a combination of Marxan and the MPA Size Optimization Tool was used. The study at the MPA of PISISI is an example of how the information generated by these two tools becomes a reference or a model that will be applied to other MRAs that have not yet compiled a zoning plan. The zoning results lead to a no-take zone proposal divided into eight sections with a size of 3 km which was obtained from the consideration of the home ranges of 55 high-economic fish species found in the MPA of PISISI. Based on the results of the analysis of the two instruments, the proposed core zone area is 5.14%, which meets the requirements of Marine and Fisheries Ministerial Regulation Number 30 Year 2010 stating that each marine conservation area must have a core zone with an area of at least 2% of the total area.

Keywords: marine conservation areas, Marxan model, MPA Size Optimization Tool, core zone, no-take zone.

亚齐西穆卢区皮南、苏马特和西马尼亚哈水域保护区（PISISI）的分区设计

Received: 12 October 2020 / Revised: 11 November 2020 / Accepted: 3 December 2020 / Published: 29 January 2021

About the authors: Muhammad Irham, Laboratorium Geografik Informasi Sistem, Fakultas Kelautan dan Perikanan, Universitas Syiah Kuala, Banda Aceh, Indonesia; Fauzan Aulia, Program Studi Magister Pengelolaan Sumberdaya Pesisir Terpadu, Universitas Syiah Kuala, Banda Aceh, Indonesia; Muhammad Rusdi, Jurusan Ilmu Tanah, Fakultas Pertanian, Universitas Syiah Kuala, Banda Aceh, Indonesia; Tarmizi Tarmizi, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Syiah Kuala, Banda Aceh, Indonesia; Anwar Delli, Jurusan Sosila Ekonomi Pertanian, Fakultas Pertanian, Universitas Syiah Kuala, Banda Aceh, Indonesia; Indra Indra, Fauna & Flora International, Aceh Marine Programme, Indonesia; Muhammad Authar ND, Program Studi Agribisnis, Fakultas Pertanian, Universitas Malikussaleh, Lhokseumawe, Indonesia

Corresponding author Muhammad Irham, irham@unsyiah.ac.id
1. Introduction

The Indonesian Government’s commitment to establishing 20 million hectares of marine protected area (MPA) throughout Indonesia by 2020 was presented by the President of the Republic of Indonesia at the World Ocean Conference (WOC) event in Manado in 2009. At the 2018 Our Ocean Conference in Bali, the Ministry of Marine and Fisheries will continue to increase marine conservation area to 30 million hectares by 2030.

In Aceh, the Qanun (Law) of Zoning Plan for Coastal and Small Island (RZWP3K) Aceh states that Simeulue District has four MPAs, namely, South Teupah MPA, West Simeulue MPA, Central Simeulue MPA, Simeulue Cut and Salang, and Pinang, Simat, and Simanaha (PISISI) MPA. The decision of the Regent of Simeulue under No. 523/340/2014 announced the Establishment of the PISISI Conservation Area Management Board with an area of 44,404.10 ha.

In the MPA of PISISI area, most people are fishermen who use the waters to find fish, fish farming, sea transport, and marine tourism [1]. The high level of exploitation by the community is believed to disrupt biodiversity and ecosystem resources because the potential threat will always exist where people exploit these resources for the survival of their lives [2]. Furthermore, small-scale fisheries are also an important part of coastal communities’ economy, in this case, traditional fishermen. Small-scale fishing is an alternative employment opportunity [3] and an integral part of coastal culture [4].

Conservation areas of PISISI are extensively large; therefore, it needs to have a high selectivity method and is effective in determining the catch zone and/or core zone [1]. To optimize the proposed MPA of PISISI, it is necessary to have strategies integrated into the management plan in particular to determine the catch zone or core zone. Determining the core zone or catch zone is the most important part of planning to protect coastal areas as sustainable governance of fisheries resources. The MPA of PISISI is one of the MPAs that already has ecological data surveyed by Fauna & Flora International (FFI), so it is more ready to be managed than other MPAs in Simeulue District.

Efforts that need to be made to minimize threats to coastal ecosystems are to place the MPA in the right location [5]. For MPAs to be managed effectively, the Government also recommends to provide many benefits such as increasing size, abundance, diversity, and biomass of fish [6, 7], increasing fishery stocks through scattered larvae [8, 9] as well as an increase in coral reef capabilities to recover [10, 11]. Currently, the MPA is one of the most effective methods used when resources are limited, and the pressure on coastal ecosystems is
beginning to concern. Furthermore, the MPA is also created as a strategy to restore small-scale fisheries to increase production outcomes in the medium to long term [12] and to restore fish populations [13].

Systematic conservation planning is one of the approaches used to design a conservation area that meets biodiversity targets [14, 15]. The application of this approach in practice is supported by many software packages, one of which is Marxan (Marine Reserve Design Using Spatially Explicit Annealing). This suite of tools has been used in more than 180 countries to design conservation areas both on land and at sea [16], including Indonesia [17, 18]. Marxan is the most widely used planning software for conservation area zoning design in the world [19]. Marxan-based geospatial information system is recognized and trusted to design zoning based on conservation criteria according to its allocation. Marxan is also used as a decision support tool that can provide several zoning options for biodiversity conservation and minimize negative social impacts by accommodating socio-economic aspects. Marxan has also been used to design conservation areas in Marine Parks in Europe [12] and Indonesia [20].

Marxan is one of the supporting tools in determining the core zone. Marxan contributes to the MPA managing agency intending to find out which sites are suitable and comply with the objectives of the management area. However, in practice, sometimes area designers still have difficulty determining the ideal size and area in a conservation area that complies with the characteristics of the available resources [21]. The No Take Zone Size Optimization Model (MPA Size Optimization Tool) is a recently developed tool to provide information that can help consider suitable site characteristics in the MPA of PISISI. The combination of these two tools is still not widely used to design no-take zones. The study on the MPA of PISISI is expected to provide an example of how the information generated by these two tools becomes a reference or a model that will be applied to other MPAs.

This research was conducted in the MPA of PISISI from April 2019 to June 2020. The study area can be seen in Fig. 1.

The tools needed in the analysis process in this study are GPS and others related to marine sampling. The software used is ArcGis, QGIS with the addition of the Qmarxan plugin, and the MPA Size Optimization Tool. The materials used in this research are 1:50,000 maps, the MPA of PISISI maps, data on the distribution of coastal ecosystem habitats, high biodiversity or High Conservation Value (HCV), data on river estuaries, port areas, and shipping lanes.

![Fig. 1 The orientation map of the study area](image)

2. Materials and Methods

2.1. Research Location, Time, Tools, and Materials

This research was conducted in the MPA of PISISI from April 2019 to June 2020. The study area can be seen in Fig. 1.

The tools needed in the analysis process in this study are GPS and others related to marine sampling. The software used is ArcGis, QGIS with the addition of the Qmarxan plugin, and the MPA Size Optimization Tool. The materials used in this research are 1:50,000 maps, the MPA of PISISI maps, data on the distribution of coastal ecosystem habitats, high biodiversity or High Conservation Value (HCV), data on river estuaries, port areas, and shipping lanes.

2.2. Preparation and Data Collection

The data and information used as the material in this research were collected from various related agencies, which include spatial data and attributes as follows:

- The 1:50,000 map and administrative boundary maps in digital form are used as the basic material for making map layers.
- Data on the distribution of coastal ecosystem habitats in digital form.
- Descriptive data presented editorial or tabulated in the form of reports.
- High biodiversity data based on the results of studies that have been conducted.

To be more precise, the data used in the study were divided into two groups, the conservation feature group and the second is feature group (Table 1). The research method used in this research was applying the secondary data analysis. Secondary data include those obtained from various sources and literature and the latest data that can be accessed. This research was conducted in several stages of activities: data preparation and collection, Marxan analysis, analysis of the optimum size of the no-take zone, and field activities.

2.3. The Marxan Model
The Marxan was used as a designer tool in determining the zone. The data used by Marxan is in the form of spatial data on conservation targets, costs, and planning units, which was used as Marxan input data according to the needs and requirements to determine the core zone or no-take zone [22, 23].

<table>
<thead>
<tr>
<th>Data</th>
<th>Year</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia RBI Data</td>
<td>2017</td>
<td>Geospatial Information Agency</td>
</tr>
<tr>
<td>Coral Reef Distribution Data</td>
<td>2007, 2009</td>
<td>Geospatial Information Agency</td>
</tr>
<tr>
<td>Mangrove Distribution Data</td>
<td>2009, 2015</td>
<td>Reef Health Monitoring Survey (Fauna Flora International)</td>
</tr>
<tr>
<td>Fish Abundance Data</td>
<td>2017</td>
<td>Reef Health Monitoring Survey (Fauna Flora International)</td>
</tr>
<tr>
<td>Fish Diversity Data</td>
<td>2018</td>
<td>Reef Health Monitoring Survey (Fauna Flora International)</td>
</tr>
<tr>
<td>Fish Biomass Data</td>
<td>2018</td>
<td>Reef Health Monitoring Survey (Fauna Flora International)</td>
</tr>
<tr>
<td>Coral Cover Data</td>
<td>2018</td>
<td>Reef Health Monitoring Survey (Fauna Flora International)</td>
</tr>
<tr>
<td>Coral Recruitment Data</td>
<td>2018</td>
<td>Reef Health Monitoring Survey (Fauna Flora International)</td>
</tr>
<tr>
<td>Rubble Cover Data</td>
<td>2018</td>
<td>Reef Health Monitoring Survey (Fauna Flora International)</td>
</tr>
<tr>
<td>Shipping Lane</td>
<td>2018</td>
<td>Aceh RZWP-3-K Document</td>
</tr>
<tr>
<td>Harbor Area</td>
<td>2018</td>
<td>Aceh RZWP-3-K Document</td>
</tr>
<tr>
<td>Estuarial Area</td>
<td>2018</td>
<td>Digitation on Screen</td>
</tr>
</tbody>
</table>

Note: 1 Conservation feature and 2 Cost feature

2.3.1. Planning Unit or Area of Interest (AOI)

The planning unit is divided into several small areas covering the entire area of the research location. This planning unit was created to delineate the area that would be analyzed by Marxan. The shapes contained in this planning unit are triangular, rectangular, and hexagon shapes [24]. The planning unit is also the basis for Marxan calculations to determine the no-take zone after inputting the unit into conservation target and cost data. In this study, the form of the planning unit to be used is a square with a unit size of 200 m² (Fig. 2).

![Fig. 2 Map of the MPA of PISISI planning unit with the rectangular grid](image)

2.3.2. Conservation Targets

Conservation targets are important habitats contained in the MPA. Therefore, the Marxan input used was the ecological parameters that will be protected or those considered important. This parameter was in the form of important habitat distribution for coastal ecosystems (mangroves and coral reefs) because it can increase fish catches up to 80% "Maximum Sustainable Yield" and at least export larvae to other fishing locations [25]. Furthermore, High Conservation Value (HCV) is an important indicator and a priority target in determining no-take locations. These HCVs are areas that have the highest ecological value among other locations. There are seven priority targets needed, including high hard coral cover, high fish biomass, and a high fish abundance which are priority targets because they have many fish, high fish diversity, and high coral recruitment. The HCV value above is a very important consideration, so it must be conserved.
2.3.3. The Costs

The costs for Marxan input were in the form of social data relating to population, resource use patterns, area use, and the data that can increase management costs. According to [24], a cost value is based on the level of reasonableness and human influence in the planning unit. The cost in this study consists of three criteria: (1) areas that have high coral fracture cover because they will produce many algae so that coral larvae do not stick, (2) shipping lanes which are the use of environmental services that can harm the ecosystem and (3) the river estuary which is an area that often occurs sedimentation caused by discharge from the upstream. This sedimentation will cover the coral colonies so that the coral reefs die. This spatial approach is made by calculating the distance from the river mouth and port to the sea. The simple assumption is that the farther the reach from high coral reef cover, shipping lanes, ports, and river estuaries, the less it will affect the coastal ecosystem, and vice versa.

2.3.4. No-Take Zone Design Scenarios

No-take zone design scenarios are a solution or recommendation offered based on the results of Marxan calculations. In this study, the authors made a scenario as shown in Table 2. For conservation targets, coastal habitats (mangroves and coral reefs) receive a protection target of 20-30%, which is a conservation target recommended by the IUCN (International Union for Conservation of Nature) to contribute to global conservation targets. Based on the research results, protecting 20-30% of coastal habitats will increase fish catches by more than 80% and at least export 30% of larvae to fishing locations [25]. Furthermore, HCV (High Conservation Value) gets a protection target of 100% and a critical area of 30%. Furthermore, the cost variable (high coral fracture cover, shipping lanes, ports, river estuaries) received a weight of 100%. Determining the no-take zone later, Marxan did not choose an area that contained this cost variable.

2.4. Modeling MPA Size Optimization Tool

This tool is used to consider the size of the no-take zone according to the fish resources in the marine conservation area. This tool will consider some information such as the specific characteristics of fish species in the form of mean home range, density (abundance of fish species per square meter found in potential conservation areas and fish length (maximum length of certain fish species) can also be used as a value or number in predicting how effective the size of the no-take zone is at each level of protection [25]. This protection level is generally divided into two categories: partial protection (50% and 75%) and full protection (95%).

The list of fish species inhabiting the no-take zone candidate in the MPA of PISISI will be used as data in the MPA size optimization tool to provide recommendations for the no-take zone size. This measure will later be used as a reference for the length (along the coastline at the reef edge) of the no-take zone. The size of the no-take zone is following the geomorphology of each potential area.

The stages of the study were done step by step based on the research interest. The stages, in brief, can be seen in the flow chart as shown in Fig. 3.

3. Results and Discussion

3.1. Analysis of No Take Zone Locations in the MPA of PISISI

The study area used in the analysis to determine the no-take zone is 44,404.10 ha. This area includes coral reef habitats and seagrass habitats. In Fig. 4, the brown color shows the distribution of coral reefs, and the pink color shows the distribution of mangroves. Most of the mangrove habitat is in the mainland area; therefore, they do not include the study area. The coral reef habitat area in the MPA of PISISI is 6748.55 ha, and the mangrove area is 50.08 ha.

3.2. Coastal Habitats (Coral Reefs and Mangroves)

The study area used in the analysis to determine the no-take zone is 44,404.10 ha. This area includes coral reef habitats and seagrass habitats.
color shows the distribution of coral reefs, and the pink color shows the distribution of mangroves. Most of the mangrove habitat is in the mainland area; therefore, they do not include the study area. The coral reef habitat area in the MPA of PISISI is 6748.55 ha, and the mangrove area is 50.08 ha.

3.3. Locations of High Biodiversity or High Conservation Value

In addition to important coastal habitat data, data from the results of an ecological survey conducted by FFI in 2018 at the MPA of PISISI, totaling 17 observation points in the Marxan analysis, are shown in Fig. 5. According to the no-take zone design scenario in this study, this ecological survey is intended to determine which locations have high biodiversity values (Table 2).

The data that has been taken in this study are only locations that have high biodiversity value. They were found in Asa, Jawi, Putih, Bengkalak Island, Pinang Island, Simanaha Island, and Talam Island (Fig. 6) for high fish abundance.

![Fig. 4 Distribution of important coastal habitats based on the study of the Geospatial Information Agency (GIA) of Indonesia](image1)

![Fig. 5 Distribution of coastal habitat data based on FFI ecological survey location in 2018](image2)

Table 2 No-take zone design scenario at the MPA of PISISI used for MARZAN model

<table>
<thead>
<tr>
<th>Data</th>
<th>Factor</th>
<th>Parameter</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Targets</td>
<td>Habitat</td>
<td>Mangrove</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seagrass</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coral reefs</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>High Biodiversity or High Conservation Value (HCV)</td>
<td>High hard coral cover</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High coral recruitment</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High fish biomass</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The high abundance of fish</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High fish diversity</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High fish capital</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High fish uniformity</td>
<td>100</td>
</tr>
</tbody>
</table>

![Cost](image3)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High rubble cover</td>
<td>100</td>
</tr>
<tr>
<td>Shipping lane</td>
<td>100</td>
</tr>
<tr>
<td>Harbor/Port</td>
<td>100</td>
</tr>
<tr>
<td>Estuary</td>
<td>100</td>
</tr>
</tbody>
</table>

Meanwhile, high fish biomass was only found in four locations, namely Air Manis, Jawi, Simanaha Island, and Talam Island (Fig. 10). Locations that have a high biodiversity value or High Conservation Value are briefly presented in Table 3.
Fig. 6 Location of high fish abundance

Fig. 7 Location of high fish diversity

Fig. 8 Location of high coral cover

Fig. 9 High coral recruitment locations

Fig. 10 Location of high fish biomass

<table>
<thead>
<tr>
<th>Location Name</th>
<th>Category</th>
<th>Fish Abundance</th>
<th>Fish Diversity</th>
<th>Coral Cover</th>
<th>Coral Recruitment</th>
<th>Fish Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Manis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasie kabau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batee Dua</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asa</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jawi</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palama</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The cost value in the MPA of PISIS is presented in Figure 11, which concerns aspects of shipping lanes, estuaries, and rubble cover. The shipping channel is obtained from the Aceh RZWP3K (Coastal Zone and Small Islands Zoning Plan) document in 2018. This shipping lane is a channel used for the benefit of passenger and cargo ports which is also one of the human activities that have an impact on the survival of larvae and juvenile marine biota, which can be disturbed by ocean waves generated by ships and carried by ship water ballasts [26-28]. Furthermore, river estuaries, as one of the producers of sedimentation, can cause damage to an ecosystem. This sedimentation resulted in the death of stony corals during the coral recruitment process [1]. Sedimentation can also make coral polyps closed so that zooxanthellae in symbiosis with corals do not get chlorophyll intake which will make the coral die. The sedimentation area is obtained from the results of the on-screen digitization that has been done. Additionally, the highest coral cover was found in Sambai, Batee Dua, Air Manis, Pinang Island, Babi Island, and Gabui Island. Coral fracture is one of the effects generated by waves and currents and cannot be used as a substrate for new coral recruitment.

3.4. The No Take Zone Locations

Based on the Marxan analysis results following the scenario that has been made (Table 2), the blue color in Figure 12 is the best solution, which indicates that the selected area is the best location. The area designated based on the results of the Marxan was 733.97 ha, all of which were divided into eight parts.

In general, Marxan has met the targets according to the initial planning in the scenario (Table 2), both in terms of habitat area and priority HCV locations. The area selected by Marxan is evenly distributed from the western region to the eastern region of the study area. Then in the process of this analysis, Marxan has performed 100 times iteration where these results get the same results (steady state).

3.5. Analysis of the No-Take Zone Optimum Size in the MPA of PISIS

In total, in the PISIS area, 343 fish species were found obtained from the FFI survey results in 2018. However, only 55 species were included in this analysis; these species have a high economic value from the family Caesionidae, Carangidae, Haemulidae, Serranidae, Lutjanidae, and Serranidae. The proposed optimum size...
for a no-take zone in the MPA of PISISI is 3 km obtained from the species entered in the MPA Size Tool modeling. This calculation is based on the results of the home range and the maximum length of the fish.

The result of modeling the no-take zone size is 3 km which can protect 80% of fish species having economic value identified in the MPA of PISISI (Fig. 13). The length of the no-take zone is parallel to the coastline (Fig. 14). The area of the no-take zone from this modeling is 5,474 ha from the total area of the MPA of PISISI, which is 44,404.10 ha, meaning that if a percentage on the size of the proposed no-take zone is 10.60%. With an area of 5474 ha, it has a protected coral reef habitat of 2,009.95 ha from 6,748.55 ha of coral reef habitat in the MPA of PISISI with a percentage of 29.78%. It also protects mangrove habitat of 16.8 ha from 50.08 ha mangroves indicated in the MPA of PISISI with a percentage of 33.55%. In terms of habitat proportion, the no-take zone that has been selected has filled 20-30% of the total habitat in the MPA of PISISI.

Table 4 The proportion of habitat area in no-take zones

<table>
<thead>
<tr>
<th>Proposed Core Zone (ha)</th>
<th>Proportion</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral Reefs</td>
<td>596.28</td>
<td>320.24</td>
<td>304.52</td>
<td>372.73</td>
<td></td>
</tr>
<tr>
<td>Mangrove</td>
<td>5.86</td>
<td>5.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The results of the model above, the authors try to re-layout according to government regulations regarding donation (Fig. 16) and display the area of each zone (Table 5). The core zone and the use, zone are the results of the Marxan analysis and analysis of the optimum size of the no-take zone, while the other zones are taken from locations with high coral cover where the allocation is for rehabilitation, and the sustainable fisheries zone is a zone outside the core zone, the use zone, and other zones.

3.6. Proposed Zoning Design in the MPA of PISISI

Based on the results of the Marxan analysis and the analysis of the optimum size of the no-take zone in the MPA of PISISI, the authors propose two categories (Fig. 15). Category 1 consists of four zones (I, II, III, and IV), and category 2 also in four zones (A, B, C, and D). Category 1 is the proposal for the core zone, while category 2 is for the use zone. Category 1 protects the coral reef habitat of 1593 ha with a percentage of 23.62% and protects the mangrove habitat of 11.33 ha with a percentage of 22.62%. Meanwhile, the category 2 proposal protects the coral reef habitat of 416.18 ha with a percentage of 6.17%, then protecting 4.47 ha of mangrove habitat with a percentage of 10.92%. This proposal has achieved all of the targets specified in the scenario, namely protecting high-diversity coastal habitats. For more details, the proportion of the habitat area that has been protected in the zone can be seen in Table 4.

Table 5 Proposed Utilization Zone (ha)

<table>
<thead>
<tr>
<th>Proposed Utilization Zone (ha)</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral Reefs</td>
<td>133.08</td>
</tr>
<tr>
<td>Mangrove</td>
<td>4.05</td>
</tr>
</tbody>
</table>

Fig. 15 Zoning proposed in the MPA of PISISI of Simeulue District

Fig. 16 Zoning layout according to government regulations regarding donation
The zoning design proposals that have been made have overall achieved the conservation targets through the scenarios in Table 2. This scenario is in line with the MPA's objectives as a method to protect biodiversity and fisheries resources for local communities in particular. Protected ecosystem conditions can still provide fisheries benefits. The combination of conservation area design tools has helped managers determine locations to be managed or used as no-take zones. This zoning design is expected to be one of the models in determining no-take zones in the reserved MPA, but there is no zoning management plan in Aceh in particular. The two tools used in this study are only supporting tools to determine a better MPA management plan.

6. Conclusions

The location of the no-take zone in the MPA of PISISI Simeulue District is divided into eight parts. The model results optimize that the no-take zone size is 3 km with 80% protection of the 55 high-economic fish species contained in the MPA of PISISI. Meanwhile, the proposed zoning design in the MPA of PISISI consists of a core zone with an area of 5.14%, a sustainable fishery zone with an area of 88.26%, a utilization zone of 5.45%, and another zone with an area of 1.15%.

Acknowledgment

This research was funded by the Directorate of Community Service Research through the 2020 Masters Thesis Research Scheme. We thank Syiah Kuala University for the facility support at the Geospatial Laboratory of Marine and Fisheries Faculty of Syiah Kuala University.

References

94: 373-379.

参考文献:
[15] COSTA M. 和 BARLETTA M. 南美鱼类和水生环境中养方面的特殊挑战。鱼生物学杂志，2016，89：4-11。
[17] DARMAWAN D. R. D. 和 ANNA A. N. 基于陆海连通性，确定马鲁古省沿海地区和小岛屿保护的优先地点。泗水穆罕默迪亚大学，2018。
[18] ANGGRAENI D.，HANDAYANI C. N.，DANIEL D.，WAHYUDI A.等。南部苏拉威西省东南部九个海洋保护区的确定区域。沿海海洋学报，2018，1（2）：53-62。
[23] FERSON S. 和 BURGMAN M. （编辑）保护生物学的定量方法：施普林格科学与商业媒体，2006。
[27] HANDAYANI C. N. N.，ESTRADIVARI E.，DANIEL D.，HADIAN O.等。根据陆海连通性确定印度尼西亚的保护重点位置。沿海海洋学报，2017，1（2）：13-26。
[28] NAINGGOLANP。廖内群岛红树林海湾海草的空间分布和管理。论文，IPB。茂物，2011。