Treadmill and Ergo cycle Exercises Increase Insulin-Like Growth Factor-1 Levels in Obese Female

Adi Pranoto,1 Zakaria Sendy Wardana,2 Misbakhul Munir,2,3 Hayuris Kinandita,2,3 Desiana Merawati,4 Sugiharto,4 Purwo Sri Rejeki2,3*

1Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
2Sport Health Science, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
3Department of Physiology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
4Sport Science Department, Faculty of Sport Science State University of Malang, Malang, Indonesia

Abstract: Obesity increases the risk incidence of metabolic disorders, including insulin resistance, causing an increase in blood glucose. Physical exercises, mediated by Insulin-Like Growth Factor-1 (IGF-1), contribute to improving insulin sensitivity and lowering blood glucose. IGF-1 increases insulin sensitivity and maintains glucose homeostasis by activating the Phosphoinositide 3-Kinase (PI3K) pathway and translocation of Glucose Transporter Protein-4 (GLUT-4). The purpose of the study was to analyze the effect of a moderate-intensity treadmill and ergo cycle exercises on the increasing IGF-1 levels in the obese female. This research was a true experimental study with the randomized pretest-posttest control group design. Subjects were 27 obese females aged 18-22. Subjects were randomly divided into three groups, that is CONT (n=9, group without intervention), ERGO-Exercise (n=9, Ergocycle Exercise), and TREAD-Exercise (n=9, Treadmill Exercise). Interventions for TREAD-Exercise and ERGO-Exercise were conducted continuously for 30 minutes, from 07.00-10.00 a.m. Blood samples were taken pre-exercise and 15 minutes post-exercise. IGF-1 levels were examined by the Enzyme-Linked Immunosorbent Assay (ELISA) method. Data were analyzed using ANOVA test and LSD post hoc test using Statistic Package for Social Science (SPSS). The research results showed that one session of a moderate-intensity treadmill and ergo cycle exercise for 30 minutes increases IGF-1 levels compared to the control. It is necessary to conduct advanced research to analyze chronic intervention (training) for increasing IGF-1 levels in obese females.

Keywords: IGF-1 levels, treadmill, ergo cycle, obese female

跑步机和人体工学循环运动可增加肥胖女性的胰岛素样生长因子-1 水平

摘要：肥胖会增加包括胰岛素抵抗在内的代谢异常的风险发生率，从而导致血糖升高。由胰岛素样生长因子-1（IGF-1）介导的体育锻炼有助于提高胰岛素敏感性和降低血糖。IGF-1通过激活磷酸肌醇3-激酶（PI3K）途径和葡萄糖转运蛋白4（GLUT-4）的易位来提高胰岛素敏感性并维持葡萄糖稳态。这项研究的目的是分析中等强度的跑步机和人体工学循环运动对肥胖女性中IGF-1水平升高的影响。这项研究是一项真正的实验研究，采用了随机的前测后测对照组设计。

受试者是27名18-22岁的肥胖女性。将受试者随机分为三组，即CONT（n = 9，无干预组），ERGO锻炼（n = 9，Ergocycle锻炼）和TREAD锻炼（n = 9，跑步机锻炼）。从上午07:00-10:00开始连续30分钟进行TREAD运动和ERGO运动的干预，在运动前和运动后15分钟采
1. Introduction

Obesity is a metabolic disease that has reached epidemic proportions [1]. Obesity is considered an epidemic, and recently, it has been a pandemic [2] and syndemic [3]. That is because obesity prevalence keeps rising from year to year [4]. It is estimated that 1.9 billion people above 18 years old suffer from obesity, 650 million are obese, 11% male, and 15% female [5]. Globally, more than a third of adult people suffer from obesity [6]. It is estimated that in 2025, obesity prevalence will become 18% male and 21% female [7]. According to [8], obesity prevalence for people above 18 years old in Indonesia was 21.8%. This number was higher than the obesity prevalence in 2013 (14.8%) and 2007 (10.5%). The high increase in obesity prevalence becomes a serious problem that will threaten human resource quality [9] and the health problem of countries worldwide [10].

Obesity is a disease that has a high risk in the incidence of a very serious health problem that will threaten the world’s public health [11, 12]. It is because obesity is one of many causes of disability and early death [6, 13], not only in adult people but also in children and teenagers around the world [1, 14]. Obesity triggers various health problems, such as increased incidence of cardiovascular diseases [15], type 2 diabetes mellitus, hypertension [12], stroke, some cancers, gallstone, osteoarthritis [16], respiratory disorders [1], muscle dysfunction [17], rheumatic diseases, metabolic syndrome [18] and metabolic disorders, including insulin resistance [19]. The cause of obesity is multifactorial. However, a general factor contributing to bodyweight increase is an imbalance between energy intake and energy expenditure [20–22]. Lifestyle modification is recommended for basic management in obesity treatment [12]. Lifestyle modification with an exercise-based non-pharmacological approach is the right strategy [23, 24]. Physical exercises are considered an effective and efficient method in preventing the increase in obesity prevalence [25, 26] because they increase energy expenditure and maintain glucose homeostasis mediated by Insulin-Like Growth Factor-1 (IGF-1) [10, 17].

IGF-1, also called somatomedin C, is mostly synthesized by the liver. It is regulated by Growth Hormone (GH), which plays the main role in cell growth, cell development, and energy homeostasis [17, 27]. Physical exercise was proven to increase IFG-1 levels in acute and chronic exercises [28–30]. It is because physical exercises stimulate the brain to activate the hypothalamus [31]. The hypothalamus secretes Growth Hormone Releasing Hormone (GHRH). This GHRH is transferred to the anterior pituitary [27, 32] and then stimulates GH secretion [29, 33]. GH modulates IGF-1 secretion from the liver to the blood circulation [17, 34]. IGF-1 in the circulation will bind to Insulin-Like Growth Factor Binding Protein 3 (IGFBP3) [17]. The binding of IGF-1 and IGFBP3 will affect energy balance, decrease body weight, and free fat mass [17]. It also affects muscle strength and muscle mass [27]. Previous research showed different results. As reported in [35], acute response from moderate-intensity exercise using ergo cycle for 20 minutes increased IGF-1 serum levels significantly in 20-29-year-old men. Nevertheless, exercise with an intensity above 80% of VO_{2max} decreased IGF-1 levels significantly [18]. It was concluded in [36] that acute exercise using an ergo cycle with moderate and high intensity for 15 minutes increased IGF-1 serum levels significantly in healthy women. Low-intensity aerobic training using an ergo cycle for 60 minutes decreased significantly by 9% of IGF-1 levels [37]. According to the previously mentioned research, it is still unclear whether exercise will decrease or increase IGF-1 levels. According to the background above, the objective of this research was to compare moderate-intensity treadmill and ergo cycle exercises to the increase of IGF-1 levels in obese female teenagers.

2. Materials and Methods

2.1. Experimental Design

This research was a true experimental study with the randomized pretest-post-test control group design. Subjects were 27 females, 18-22 year old, body mass index (BMI) 25.5-32.5 kg/m², percentage body fat (PBF) > 30%, fasting blood glucose (FBG) < 100 mg/dL
normal hemoglobin (Hb), normal blood pressure, and normal resting heart rate. Subjects were randomly divided into three groups, that is CONT (n=9, group without intervention), ERGO-Exercise (n=9, Ergocycle Exercise), and TREAD-Exercise (n=9, Treadmill Exercise). All subjects received information verbally or in writing about the research. Subjects filled out and signed informed consent before participating in the study. All procedures in this research were approved by the Health Research Ethics Committee, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia (309/EC/KEPK/FKUA/2019).

2.2. Exercise Protocol
The exercise program was applied and supervised by professionals at the Fitness Center of the Malang City Health Department, East Java, Indonesia. Treadmill exercise and ergo cycle exercise were conducted with moderate-intensity 60-70% of HR\text{max} for 40 minutes. It was consist of 5 minutes warming up (50-60% HR\text{max}), 30 minutes core exercise (60-70% HR\text{max}), and 5 minutes cooling down (50-60 HR\text{max}) [38, 39]. Treadmill exercises and ergo cycle exercises were done with the continuous method at 08.00 a.m. [40, 41]. Instruments used for this intervention were treadmill (Pulsar 4.0 HP Cosmos Sports & Medical, Nussdorf-Traunstein, Germany) and ergo cycle (Monark 828 E, Version 1010 Art. No: 7950-296, Vansbro, Sweden). Monitoring heart rate during exercise using a polar heart rate monitor (Polar H10 Heart Rate Sensor, Inc., USA).

2.3. Anthropometric Measurements
The body height of the subject was measured using a stadiometer (SECA, Chino, CA). Anthropometric measurements included body weight, BMI, PBF, fat mass (FM), free fat mass (FFM), muscle mass (MM), bone mass (BM). These measurements were conducted using TANITA (Body Composition Analyzer DC3607601(2)-1604 FA, TANITA Corporation of America, Inc).

2.4. Physiological Condition
Blood pressure was measured using an automated device (OMRON Model HEM-7130 L, Omron Co., JAPAN) at the non-dominant arm three times consecutively with a 1-2 minute interval between two measurements while the participants were in a seated position. Measurement of resting heart rate (RHR) using a Pulse Oximeter (PO 30 Pulse Oximeter, Beurer North America LP, 900 N Federal Highway, Suite 300, Hallandale Beach, FL 33009). Blood pressure and heart rate were monitored during exercise.

2.5. Blood Samples
Four milliliters of blood samples were taken from the cubital vein after 12-hour overnight fasting (pre-exercise) [36, 42]. At the time of drawing blood, the subject was in a sleeping position. Pre-exercise blood samples were taken 30 minutes after the intervention [42], whereas post-exercise blood samples were taken 15 minutes after the intervention [36]. Blood samples were centrifuged for 10 minutes at 3000 rpm [17]. Serum was collected and saved at –80°C to analyze IGF-1 levels on the next day [10].

2.6. IGF-1 Serum Levels Assessment
IGF-1 levels were examined using an Enzyme-Linked Immunosorbent Assay (ELISA) kit (Catalog No. E-EL-H0086; Elabscience, Inc., China, 2019) with a standard curve range 1.56–100 ng/mL and sensitivity up to 0.94 ng/mL. FBG was measured in mg/dL using ACCU-
CHEK (ACCU-CHEK® Performa, Mannheim, Germany). Hb was measured in g/dL using Easy Touch (Easy Touch GCHb, Taiwan).

2.7. Statistical Analysis

Data were analyzed by Statistic Package for Social Science (SPSS) Statistics for Windows, version 16 (SPSS Inc., Chicago, IL, USA). Normality was tested using the Shapiro-Wilk test, whereas Homogeneity was measured using the Levene test. Statistical differences were tested using the Paired Sample T-Test, ANOVA, and Least Significant Difference (LSD) post hoc test. All data were presented in mean±SD. All statistical analysis was conducted using the level of significance (P<0.05).

3. Research Results

The basic profiles of the subjects, including age, body weight, body height, body mass index, percentage body fat, fat mass, free fat mass, muscle mass, bone mass, resting heart rate, systolic blood pressure, diastolic blood pressure, fasting blood glucose, and hemoglobin are displayed in Table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>CONT (n = 9)</th>
<th>ERGO-Exercise (n = 9)</th>
<th>TREAD-Exercise (n = 9)</th>
<th>ANOVA P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>20.78±0.97</td>
<td>20.33±1.00</td>
<td>20.89±0.78</td>
<td>0.415</td>
</tr>
<tr>
<td>Body Weight (kg)</td>
<td>73.49±7.96</td>
<td>68.21±7.88</td>
<td>71.15±7.43</td>
<td>0.367</td>
</tr>
<tr>
<td>Body Height (m)</td>
<td>1.60±0.05</td>
<td>1.55±0.05</td>
<td>1.57±0.04</td>
<td>0.173</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>28.49±1.57</td>
<td>28.24±2.39</td>
<td>28.61±1.67</td>
<td>0.918</td>
</tr>
<tr>
<td>Body fat percentage (%)</td>
<td>42.92±2.43</td>
<td>43.48±4.01</td>
<td>43.72±2.67</td>
<td>0.857</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>34.19±6.44</td>
<td>30.60±5.25</td>
<td>33.31±4.50</td>
<td>0.381</td>
</tr>
<tr>
<td>Free fat mass (kg)</td>
<td>40.67±3.78</td>
<td>41.08±4.40</td>
<td>40.99±3.20</td>
<td>0.972</td>
</tr>
<tr>
<td>Muscle mass (kg)</td>
<td>38.28±3.47</td>
<td>38.64±4.02</td>
<td>38.57±2.93</td>
<td>0.973</td>
</tr>
<tr>
<td>Bone mass (kg)</td>
<td>2.39±0.31</td>
<td>2.43±0.38</td>
<td>2.42±0.27</td>
<td>0.956</td>
</tr>
<tr>
<td>Resting heart rate (bpm)</td>
<td>75.33±7.81</td>
<td>74.67±6.93</td>
<td>78.78±7.99</td>
<td>0.479</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>114.44±5.27</td>
<td>115.55±5.27</td>
<td>112.22±4.41</td>
<td>0.370</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>74.44±5.27</td>
<td>76.67±5.00</td>
<td>75.55±5.27</td>
<td>0.666</td>
</tr>
<tr>
<td>Fasting blood glucose (mg/dL)</td>
<td>90.22±7.90</td>
<td>90.67±4.21</td>
<td>88.22±8.23</td>
<td>0.737</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>15.03±0.93</td>
<td>14.42±1.32</td>
<td>14.89±1.46</td>
<td>0.567</td>
</tr>
</tbody>
</table>

Note: One way ANOVA. Data are presented as mean±SD. CONT: Control group; ERGO-Exercise: Ergocycle exercise group; TREAD-Exercise: Treadmill exercise group.

Data in Table 1 show the means of the subjects’ characteristics in each group. The ANOVA test results showed no difference in the subjects’ characteristics on all variables of each group (P>0.05). Analytical results on pre-exercise and post-exercise IGF-1 levels are presented in Figure 2.

The level of both forms of IGF-1 was assessed pre-exercise and post-exercise. The results of the Paired Sample T-Test in the CONT group showed that there was no significant difference in the mean IGF-1 levels between pre-exercise and post-exercise (9.75±1.74 vs. 9.45±2.44 ng/mL, (p-value=0.710)) (Figure 1). However, the ERGO-Exercise group showed a significant difference in mean IGF-1 levels between pre-exercise and post-exercise (9.75±2.63 vs. 14.98±2.84 ng/mL, (p-value=0.000)) (Figure 1). The results of the analysis of IGF-1 levels pre-exercise, post-exercise, and delta (Δ) post – pre in all groups can be seen in Figure 3.

(Figure 1). The results of the analysis of IGF-1 levels pre-exercise, post-exercise, and delta (Δ) post – pre in all groups can be seen in Figure 3.

![Fig. 2 IGF-1 levels pre-exercise vs. post-exercise. CONT: Control group; ERGO-Exercise: Ergocycle exercise group; TREAD-Exercise: Treadmill exercise group. Data are presented as mean±SD. p Value was obtained using Paired Sample T-Test to compare post-exercise and pre-exercise IGF-1 levels. *Significant vs pre-exercise (p<0.05)](image-url)
Post-Exercise -

GH modulates IGF secretion by GhRH, which then stimulates the brain to activate the hypothalamus [31]. The hypothalamus secretes GhRH and, then, GhRH stimulates GH secretion [32, 33]. GH modulates IGF-1 secretion from the liver to the blood circulation [34].

There was a significant difference in post-exercise IGF-1 levels between ERGO-Exercise with CONT (p=0.018). Likewise, delta (Δ) (post – pre) showed a significant difference in mean IGF-1 levels between TREAD-Exercise and CONT (p=0.013). It was similar to the research results reported in [36], revealing that acute ergo cycle exercise with moderate intensity increased IGF-1 serum levels significantly. As concluded in [35], the acute response from moderate-intensity exercise increased IGF-1 serum levels significantly. The increase of IGF-1 in ERGO-Exercise was possible because of increased energy needs for muscle contraction for exercise. When exercising, there is an increase in energy needs and glucose uptake for muscle contraction, so that energy stored in muscle decreases. This decrease, in turn, increases IGF-1 release to the blood circulation. The increase of IGF-1 secretion to the circulation activates Phosphoinositide 3-Kinase (PI3K) pathway and Glucose Transporter Protein-4 (GLUT-4) translocation for maintaining glucose homeostasis and energy balance during exercise [44].

GF-1, or somatomedin C, is mostly synthesized by the liver and regulated by GH, which plays the main role in cell growth, cell development, and energy metabolism [17, 27]. IGF-1 plays a role in body composition related to the alteration of lean body mass and fat mass [28]. IGF-1 also plays a role in increasing insulin sensitivity and maintaining glucose homeostasis [44]. Besides that, IGF-1 is significant for tissue homeostasis, anti-apoptotic, mitogenic, anti-inflammatory, antioxidant, metabolism, skeletal muscle plasticity, muscle strength and mass maintenance, and neural and cardiovascular protection [27, 45, 46]. IGF-1 can be synthesized through endocrine, paracrine, and autocrine mechanism [29]. Acute and chronic exercise both can increase IGF-1 levels in plasma and serum [28, 29]. Exercises induce IGF-1 secretion through activation of the hypothalamus [31]. The hypothalamus secretes GhRH, which then should be transferred to the anterior pituitary through hypothalamic-hypophyseal portal vessels [32]. GhRG stimulates GH secretion [33]. GH modulates IGF-1

Data in Figure 3 show no significant difference in pre-exercise IGF-1 levels in all groups (P>0.05). However, post-exercise and delta (Δ) (post – pre) IGF-1 levels differ significantly in all groups (P<0.05). LSD post hoc test showed that there was a significant difference between ERGO-Exercise and CONT IGF levels (p=0.018), as well as TREAD-Exercise and CONT (p=0.014); whereas, ERGO-Exercise and TREAD-Exercise IGF-1 levels showed no significant difference (p=0.919). Likewise, delta (Δ) (post – pre) showed a significant difference in mean IGF-1 levels between ERGO-Exercise and CONT (p=0.013), TREAD-Exercise with CONT (p=0.010). In contrast, ERGO-Exercise with TREAD-Exercise did not show a significant difference (P>0.05).

4. Discussion

This research aimed to analyze the difference between treadmill and ergo cycle exercise to increase IGF-1 levels in obese females. The results showed no significant difference in pre-exercise IGF-1 levels among all groups (p=0.999). Therefore, the three groups in this research had the same characteristics before the treadmill and ergo cycle intervention.

Results from this research showed that there was a significant difference in post-exercise IGF-1 levels between TREAD-Exercise and CONT (p=0.014). Likewise, delta (Δ) (post – pre) showed a significant difference in mean IGF-1 levels between TREAD-Exercise with CONT (p=0.010). It was similar to the result from the research conducted in [28] concluded that treadmill exercise with intensity 60% of VO₂max increased IGF-1 mRNA levels significantly. As reported in [43], moderate-intensity exercise increased IGF-1 levels. The IGF-1 levels possibly increased in TREAD-Exercise because of the effect of exercise. Physical exercises stimulate the brain to activate the hypothalamus [31]. The hypothalamus secretes GhRH and, then, GhRH stimulates GH secretion [32, 33]. GH modulates IGF-1 secretion from the liver to the blood circulation [34].

![IGF-1 Levels Graph](image-url)

Fig. 3 IGF-1 levels pre-exercise, post-exercise, and delta (Δ) post-pre. CONT: Control group; ERGO-Exercise: Ergo cycle exercise group; TREAD-Exercise: Treadmill exercise group. Data are presented as mean±SD. p-Values were obtained using one way ANOVA, followed by an LSD post hoc test compare pre-exercise, post-exercise, delta (Δ) post-pre IGF-1 level in the group.

*Significant vs control group (CONT) (p<0.05).
secretion from the liver to the blood circulation[34]. IGF-1 in the circulation will bind to IGFBP3[17]. The binding of IGF-1 and IGFBP3 will affect energy balance, decrease body weight, free fat mass [17], and the maintenance of muscle strength and mass [27].

There was no significant difference in post-exercise IGF-1 levels between TREAD-Exercise with ERGO-Exercise (p=0.999). Likewise, delta (Δ) (post – pre) there was no significant difference in IGF-1 levels between TREAD-Exercise with ERGO-Exercise (p=0.897). The limitations of applying this research results cannot be applied to the elderly and people who have a high risk, such as hypertension, coronary heart disease (CHD), stroke, respiratory disorders, etc. Other than that, the limitation of this study is that we only analyzed one dependent variable, namely the IGF-1 level. The intervention given in this study was only acute exercise. It is necessary to conduct advanced research to analyzed chronic intervention (training) in obese female teenagers with the addition of several dependent variables, such as growth hormone (GH), Growth Hormone Releasing Hormone (GhRH), Insulin-Like Growth Factor Binding Protein 3 (IGFBP3), blood glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR). Hopefully, the results of these future research will benefit from perfecting optimal exercise programs for obesity treatment in the future.

6. Conclusion

This research showed that one session of the moderate-intensity treadmill and ergo cycle exercises for 30 minutes increases IGF-1 levels compared to the control.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Acknowledgment

No financial support was provided for this project. We would like to express our gratitude to the Faculty of the Sports Science State University of Malang that has provided facilities in the screening process of a prospective research subject. We are thankful to the Fitness Center of the Malang City Health Department that has provided facilities. Also, we greatly appreciate and wish to thank Palang Merah Indonesia (PMI) Blood Transfusion Unit (UTD) Malang that has assisted the blood sampling and blood centrifuge processes. Our gratitude includes but is not limited to all the parties of to Physiology Laboratory Faculty of Medicine Universitas Brawijaya Malang, who have helped the analysis process of IGF-1 level and all volunteers who have participated in this study.

References

MAGNOKS F. 深度增加在

万参与者。柳叶刀,

135

-200

3

35

实验): 2016

204

个国家

医学, 2019

791

92

2019

风险

KAKINAKA M. 至

等。

6

临。和

。和

https://doi.org/10.3389/fendo.2019.00027

FERDOUS H.S. 谢

https://doi.org/10.1530/EJE

https://doi.org/10.1016/j.metabol.2018.09.005

[8] RISKESDAS。国家基本卫生研究报告。雅加达：卫生

[18] MAJORCZYK M.和 SMOLA G.在预防文明疾病的背景下，体育锻炼对IGF-1和 IGFBP 水平的影响。Rocz Panstw Zkl Hig, 2016, 67 (2): 105-111。
[26] BOSTROMP.，WU J.，JEDRYCHOWSKI M.P.等。PGC1α 依赖性肌动蛋白，可导致白色脂肪细胞和生物。自然, 2012, 481 (7382): 463-468。https://doi.org/10.1038/nature10777。A。
[32] MARKS D.B., MARKS A.D. and MARKS C.M. 基础医学生物化学：一种临床方法。雅加达：EGC。2014。
[34] CLEMMONS D.R. 生长激素和 IGF-1 在控制胰岛素敏感性中的相对作用。临床研究杂志, 2004, 113 (1): 96-105。
[40] NYGAARD H., NYGAARD H., SLETTALOKKEN G. 等。单次剧烈的耐力运动和沉重的力量训练后，血液中的鸢尾素会短暂增加。公共卫生学报, 2015, 10 (3): 1-12。https://doi.org/10.1371/journal.pone.0121367。