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Abstract: Image semantic segmentation is one of the recently researched topics due to the rise in visual
deep learning-based applications. These applications work on the meaningful segments of the visual scene created
by the application base. The literature identifies the current research status and highlights the existing problems of
image semantic segmentation algorithms. These problems include the handling of complex images. Complex
images can be of form high/low pixel intensities or dense structure regions of the image. Existing state-of-the-art
deep learning algorithms fail to segment complex images semantically. For semantic segmentation of complex
images, deep learning algorithms are proposed to be accompanied by pixel abstraction algorithm. The pixel
abstraction algorithm creates atomic segments of the visual scene called super-pixels. Super-pixels generate feature
vectors supporting the same regions. These feature vectors reduce the computational complexity to create semantic
segments of the visual scene. The pixel abstraction algorithms lack functionality due to different aspects, one of
which is the initial hand-crafted seed from the user to create super-pixels that do not work for all types of visual
scenarios to create accurate semantic segments. The second aspect that limits pixel abstraction algorithms'
functionality is the distance measure used for super-pixel (cluster) creation. The distance measures employed in
existing algorithms do not capture content-aware information of visual scene; instead, end-up creating super-pixels
based on Euclidean distance, which is based on straight line distance. Hence, the created pixels are distorted and
irregular. For proving the flawed functionality of the existing super-pixel creation algorithm, detailed visual analysis
is presented, uncovering the indicators for future research towards the development of a novel algorithm creating
continuous and regular super-pixels. For creating content-aware super-pixels, the article describes an automatic
super-pixel creation algorithm based on the idea of capturing image information in relevance to the content present
in it. For example, we illustrate the proposed framework in detail as two modular approaches to improve the
resulting super-pixels' quality. Firstly, to automate the entire process, the probability density function is proposed to
initialize the cluster centers such that hand-crafted seed is not required from the user. Secondly, to retrieve fine-
grained object boundaries, a novel distance measure with induced content-aware nature and complex image
handling is proposed. The novel algorithm has the potential to tackle the problem of discontinuity and irregularity of
retrieved segment boundaries.
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Introduction

Image semantic segmentation is the process of
recognizing and understanding the image data at a
pixel level. Pixel-level understanding creates a raster
mask of the visual scene. This raster mask represents
different scene segments with the predefined class
labels for each pixel [1]. The entire process of
semantic image segmentation is automated due to
advancements and the merger of Computer Vision
(CV) and Deep Learning (DL) [2]. The recent
advancements of the Deep Convolutional Neural
Networks (DCNNs) have steered the application of
image semantic segmentation towards more effective
and dense predictive labels of the visual scene [2],
[3], [4]. However, the existing techniques still suffer
to create correct raster masks with object class labels
for complex scenarios. The complex scenarios result
in complex images having high/low pixel intensities
(semi-dark images) and dense structure regions
(multi-object images). If accompanied by pixel
abstraction algorithms, the existing DCNNs used for
semantic segmentation can result in accurate semantic
segments [5], [6], [7]. Pixel abstraction algorithms
reside in the early image segmentation techniques
where the input is an image, and the output is regions
or structures. The output regions created by pixel
abstraction algorithms are called Super-pixels [5].
The accurate super-pixels generated by pixel-
abstraction algorithms fed to DCCNs for further
processing can generate accurate semantic segments
in complex images, i.e., classify and recognize a
specific object even if provided with complex images.
Pixel abstraction algorithms are of two types:
clustering-based and graph-based. These algorithms
process the image and generate regions based on
gradient information or color information [5, 8].
Clustering-based algorithms are recommended in the
literature for their performance accuracy in terms of
regularity, efficiency, boundary recall, and
compactness [8], [9]. However, clustering-based

algorithms are also limited in functionality to
segment complex images. More efficient and content-
aware pixel abstraction algorithms that capture fine-
grained details from the complex scenes are required
because inaccurate super-pixels can severely affect
the final segmented results of DCNNs [5]. The
desired properties of super-pixel algorithms include
adherence of super-pixels for object boundaries,
regularity, i.e., how close the created super-pixel is to
the actual image content and efficiency in terms of
reduced computational complexity as these
algorithms are used as preprocessing step [8, 9].
Similarly, these properties apply to complex images.
None of the super-pixel algorithms have been
explicitly analyzed for complex images to the best of
our knowledge. In this work, we have mainly focused
on the problem of segmentation for complex images.
We have proposed a novel pixel abstraction algorithm
with integral content-aware nature for segmenting
complex images. The content-aware nature is
integrated in terms of using the relevant distance
measures for the creation of super-pixels. The
existing algorithms result in distortions in object
boundaries and irrelevance to the image content.
These problems lead to the formulation of research
objectives to improve the results of segmented
regions.

1. To investigate the factors that dominate the
performance of pixel abstraction algorithms for
segmentation of images

2. To identify mechanisms to automate the
initialization process of super-pixels creation and
label creation for semi-dark and multi-object images.

3. To propose an effective content-aware strategy
for the creation of super-pixel in complex images.

The paper is organized as follows: Section 2
describes related work of the state-of-the-art pixel
abstraction algorithms and analyzes their limitation,
section 3 presents a proposal of a novel pixel
abstraction algorithm, section 4 presents the tested
results of the most recent super-pixel algorithm to
prove the functionality flaw in existing approach, and
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finally, section 5 concludes by discussing
contribution and future directions.

1 Related Work

With the continuous advancements in Machine
Learning (ML) and Deep Learning (DL) technology,
the entire process of segmenting and recognizing
objects is automated. However, this automation does
not support the segmentation schemes for complex
images. Researchers are now considering the merger
of traditional image semantic segmentation
techniques with innovative deep learning technigues
for accurate semantic segmentation. The traditional
segmentation/pixel abstraction techniques are a crude
method for creating atomic regions based on features
like appearance and homogeneity because of human
intervention in the process [3]. The atomic regions
support the feature-based segmentation in relevance
to the region-based features than the entire local
window. The challenge with pixel abstraction
algorithms, i.e., super-pixel algorithms, is to reduce
the complexity and fetch the concrete homogenous
information recognizing the intensity boundaries of
the objects present in the images encompassing all
types of visual scenarios. Super-pixel algorithms are
divided into different categories based on different
criteria.  According to [8], [10], super-pixel
algorithms are categorized into two categories,
namely constrained and unconstrained algorithms
based on the consideration of the function of an
object concerning the compactness or not. Another
study [11] categorizes super-pixel algorithms based
on the super-pixel generation and names the
categories as bottom-up or top-down approaches. The
study [9] divides these algorithms as clustering-based
and gradient-ascent based algorithms. The power of
super-pixel lies in its representation of the scene's
accurate information lies in its stability. The existing
algorithms are designed to tackle different purposes,
so they lack in one or other aspects, including control
over super-pixel size, number, and compactness. In
the presented study, we have categorized super-pixel
algorithms in two types, namely: Graph-based and
clustering-based algorithms. Graph-based algorithms
represent image considering nodes as pixels and
minimize the cost function defined on the graph.
Clustering-based algorithms groups image regions to
create homogenous clusters and iteratively refines
them till convergence criteria are met [12].

1.1. Graph-based Algorithms

These algorithms represent the image as graph
G={V,E}, V being set of pixels/regions, and E

representing edges connecting pixels/ regions to
reflect the similarity. After representation, some
optimization function is employed to create segments
representing the grouped local features [13].
Normalized cuts [14] segment image regions by
splitting the affinity graph. The algorithm tries to
minimize global image information by recursively
partitioning a given graph using contour and texture
cues. The global cost function defined for edges is
minimized in every iteration. The process is
computationally expensive, and the performance for
complex images is not analyzed. Felzenszwalb and
Huttenlocher (GS04) [15] perform agglomerative
clustering of pixel nodes, using the shortest spanning
tree of pixels. The algorithm is faster than normalized
cuts but provides no control over the number of
super-pixels. Super-pixel lattice [16] generates
optimal vertical/horizontal paths that cut the image.
The horizontal or vertical paths are used as strips of
pixels over the image, which provides control over
the size, number, and super-pixel compactness.
However, still dependent on the precomputed
boundary maps. Pseudo-Boolean super-pixels [17]
generate segmentation results as a multi-label
problem. Here half overlapping horizontal strips are
used. Each pixel might get assigned one of the latent
strips. The strip decides the class or label. The super-
pixel creation speed is independent of the number of
pixels being generated, which is one of the problems
present in other algorithms. The entropy rate super-
pixel [18] handles super-pixel creation as a
maximization problem on the graph. The image graph
denotes pairwise similarities. The objective is
selecting subset edges from the images graph
resulting in K-connected graphs (K is the number of
super-pixels). The working mechanics makes it
highly dependent on the number of super-pixels to be
generated, supplied in hand-crafted seed from the
user. All these graph-based algorithms have their pros
and cons, but one aspect is common: they have not
been analyzed for the segmentation of complex
images.

1.2. Clustering-based Algorithms

Clustering-based algorithms represent an image as
a feature vector and apply feature space analysis
methods. These methods include parametric and non-
parametric approaches to create clusters in the feature
space. The feature space is created on the local
features, which drives these methods to have complex
dependency over local statistics, which serve as the
basis to segment image into a large number of small
regions [13]. Watershed [19] performs gradient ascent
from local minima in the image feature vector space
to obtain watersheds, i.e., lines that separate
catchment basins. This algorithm's short version
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applies graph-cuts to the graph build based on priorly
created super-pixels by watershed. This is also named
as pixel queuing. Turbopixels [20] dilates the number
of seeds iteratively in image feature space using
level-set based geometric information. The method
relies on the local image gradient and evenly
distributes super-pixels over the image plane. The
method is constrained in its functionality to result in
uniform size compactness and adherence to object
boundaries, and it has a slow running time [9].
Meanshift [21] is one of the modes seeking
algorithm. The algorithm recursively moves the
kernel to the smoothed centroid for a data point in
feature space. The input kernel can vary the size of
the created super-pixels. The algorithm is limited in
functionality by providing no control over the
number, size, or super-pixel compactness. Quickshift
[22] is another mode-seeking algorithm that tries to
move each point in feature space to the nearest
neighbor, increasing the parzen's density estimates.
The algorithm results in numerous errors [5]. SLIC
[5] identifies the maximum possible distance between
two colors of feature space. The spatial distance in
the xy plane depends on the size of the image. The
algorithm uses a normalized form of Euclidean
distance. The algorithm has unsatisfactory
performance for complex color images [5],[23], along
with constrained boundary recall [24] and poor
performance for noisy images [25]. Structured
Sensitive Super-pixels [26] employ geometric flow to
compute the distance between pixels. Over-
segmentation is adjusted using energy function,
which inherently integrates color homogeneity,
structure density, and compactness. The algorithm
uses density function for analysis of similarity among
pixels. Manifold SLIC [12] employs simplicity of
SLIC and the content-aware nature of structure
sensitive super-pixel. The proposed algorithm focuses
on capturing boundaries in relevance to the object
boundaries present in the scene. All the discussed
clustering-based methods have different features to
offer; however, none of the mentioned algorithms are
analyzed for complex images. These super-pixel
algorithms are probable to speed up the entire process
of semantic segmentation via DL techniques.

1.3. Issue of inadequate Pixel Abstraction

causing inefficient Image Semantic

Segmentation

According to the conducted study, clustering-
based algorithms have been the most promising
option for creating super-pixels. The super-pixels
result in the enhanced boundaries via clustering
principle, i.e., regions or segments based on the color
proximity and the distance. The created super-pixels
result in pixel abstraction, which is then used by deep
neural networks to create pixel-level masks of the

image. The concerning issue is improper creation of
the super-pixels, which generates improper pixel-
level masks of the segmented image. The reason for
improper results is a significant functionality flaw of
super-pixel creation algorithms. For the conducted
research, clustering-based algorithms are focused
mainly on Simple Linear Iterative Clustering (SLIC).
The SLIC algorithm used for super-pixel creation is
fast and straightforward in execution. However, the
distance measure used for the pixel cluster is
inadequate in terms of no relevance to the actual
content present in the image. Instead, the algorithm
just blindly finds Euclidean distance, which is a
straight line distance. At the same time, it is
impossible to have uniform super-pixels for all the
image regions. This functionality flaw results in the
distorted super-pixels, and finally, the masks created
by deep neural networks are also erroneous.

2 Methodology

Accurate  segmentation as the additional
information for further processing a complex scene
by a Deep Convolutional Neural Network (DCNN) is
crucial. The current state-of-the-art DCNNs work on
per-pixel primitives to create semantic segments of
images. The presented study proposed locally
grouped primitives of the scene for further processing
by the DCNNs. The proposed framework divides the
entire digital enhancement preprocessing stage into
two different modules. The first module handles the
Image labeling process so that normal images are
dropped out of the process immediately and passed to
DCNN for further processing. This module makes
sure that the images get the proper label of a semi-
dark or multi-object image by using the thresholding
process on the feature space. The thresholding
process includes comparing two different threshold
values with their relevant measure, i.e., pixel values
and density estimate of the given input image. As the
image consists of two-dimensional integer arrays
representing individual components of the image, the
pixel intensities are used to identify the darker or
brighter image based on the threshold value for
identifying semi-dark images. Simultaneously, for
identifying multi-object images, the image's density
estimates are employed because the density of image
contents differs in different parts of the image,
inferencing multi-object images by analyzing
similarity measure among pixel values. After that,
image processing techniques are applied to process
the complex input images. Finally, the enhanced and
labeled image is passed to the subsequent module.
The second module maps this enhanced input image
on a low dimensional manifold to reduce
computational power consumption.
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Manifolds create empirical mappings to retain
topological properties of the image, making the entire
process of learning accessible to handle in capacity
limited Neural Networks. Further creates Centroidal
\oronoi Tessellation (CVT) over the manifold, now
having mass centroids. A Voronoi diagram partition
the manifold with 'n' points into a convex polygon
having only one generating point. Every point of the
polygon is supposed to be at the least distance from
its generating point. After that, initial cluster points
are identified based on Parzen's Density Estimates of
the CVT this way. The hand-crafted seed is not
required from the user. Parzen's Density function is
one of the non-parametric approaches of estimating
probability density function, depicting class-
conditional densities without any prerequisite
knowledge of primary distribution. Finally, the
iterative clustering process is initialized based on the
image label with relevant distance measure for each
pixel's cluster assignment. The iterative process is
continued until the clusters become stable satisfy the
condition for residual error.

2.1 Novel Pixel Abstraction Algorithm

The pixel abstraction takes M*N enhanced pixel
grid and maps it on a manifold, which is a topological
space resembling Euclidean space near each point.
The 2D manifold is created in such a way that the
self-intersection of objects does not take place. This is
a process of hypothesizing the real scenarios' high
dimensional data, over manifolds of lower dimension
embedded in high-dimensional space to reduce
computational resource usage. After that, Voronoi
regions are created for the manifolds such that every
point in high-dimensional space of manifolds is
closest to generator w.rt the generator. All the
generators are supposed to be connected through
Voronoi edges (line/half-line segment). The proposed
abstraction module chooses to create Centroidal
Voronoi  Tessellations (CVTs), which has an
additional mass centroid constraint as a \oronoi
generator for the corresponding Voronoi region. For a
reason, CVTs are more organized than the normal
\oronoi tessellations. With its novel architecture, the
proposed system removes the need for seed
requirement from the user for cluster initialization
and automates the entire process. The automation is
made possible by applying Parzen's Density
Estimates over feature space to find initial points for
cluster creation. After cluster initialization, the
subsequent pixel assignment process to a cluster is
based on the relevant distance measure identified by
the label created by the previously used image
labeling module. The distance measure for cluster
assignment is supposed to be different for multi-
object and semi-dark images, discussed in detail in
the upcoming section. Finally, clusters' stability is

iteratively checked until the created clusters become
stable, and the residual error condition is satisfied.

2.1.1 Distance Measure

The Euclidean distance used in the SLIC algorithm
for cluster pixel assignment has some significant
functionality flaws, resulting in irrelevance to the
image contents, leading to discontinuous and
irregular segments [26]. The witnessed functionality
flaw is the result of constant distance measure, which
remains the same regardless of whether there is a path
along which the appearance transits smoothly. For
avoiding this, Geodesic distance is proposed in which
distance increases for the image point if the local
density increases and vice versa. Usually, Geodesic
distance has the shortest path; however, perturbation
of the geodesic curve increases its length. Geodesic
distance results in minimum distortions by calculating
the shortest path between two points of a mesh graph
where the length of an edge is associated with
weights. The calculation of geodesic distance is based
on the solution of the eikonal equation [27]. This way,
content sensitivity is integrated into the novel pixel
abstraction module. The geodesic distance for a color
image is defined as

I(x:¥ > R%)

where d=3 for color images
Considering binary region for simplicity,

Y R2

is supposed to be continuous. Given a binary mask
‘M’
M(x)e{0,1},V xe¥
is associated with a seed (object) region.
O =xe¥:Mx) =0

and the unsigned geodesic distance transform is
defined as
Do(; M V1)

assigns each pixel X' its geodesic distance from Q,
and geodesic distance is defined as

Do(; M,V 1) = }d(x,x')

{x’ Il‘glréﬁlcn)=0

with

r
d(a,b) = rilqu J. \/1 + Y2(VI(s) o ' (5))2ds,
€Pab 0

where P(a,b) is set of all possible differentiable paths
in ¥ between the points a and b,

I'(s): R—R”2 indicates a path parameterized by arc
length. The spatial derivative

I'(s) = dr(s)/ds
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is the unit vector tangent to the direction of the path,
dot product ensures maximum influence of gradient
M when it is parallel to path T, and vy is the geodesic
factor weighing the contribution of image gradient
versus spatial distance. Fig 1. shows a more intuitive
elaboration of the entire concept of how Euclidean
distance result in distortions and geodesic distance
capture content-aware information of the image.

\,\7 -——-- Geodesic distance
------ Euclidean distance

Fig.1 Difference between geodesic distance and Euclidean
distance [27]

Moreover, for accurate segmentation of semi-dark
images, geodesic distance is proposed to accompany
the city block distance. It finds distance from a set of
all black pixels targeting the dark pixel intensities in
the image, employing four connected neighbors. The
value of the distance always results in values zero and
onwards. For similar points, the resultant is zero and
higher values for a point which have less similarity.
Again, for simplicity, consider a binary image. City
blocks distance each point i,j of an image from a set
of all black pixels and is defined as

B={(j)a; =1}
and

di;= minf{li—x|+|j—yl}0<ij<n-1

(x,y)eB
Finally, for multi-object images, geodesic distance is
proposed to accompany chessboard distance. It finds
maximum differences between pixels targeting dark
pixel intensities, employing eight connected
neighbors targeting small object boundaries. For an
image having arbitrary points 'i' and '

i,J

i i with
coordinates (x1, y1) and (x2, y2), chessboard distance
is defined as:

d;j = maxifix, — xq1, [y —1l)

The novel solution is likely to overcome segment
discontinuity and irrelevance for the present image
content. Fig.2. shows the proposed framework's
details for accurate semantic segmentation of
complex images followed by the algorithm steps,
which gives detailed insights into the proposed
framework. The green color in the Fig.2. shows the
significant contribution of the proposed framework.
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Fig.2 Detailed Pixel Abstraction Framework

The framework initializes with the RGB image
having M*N Pixels. The input image is passed to the
thresholding unit in the Image labeling module,
which is the first module, where two different
features of an image are analyzed for further
processing. Suppose pixel intensities are identified to
be greater than the threshold. In that case, the labeling
unit labels the image as a semi-dark image and
applies contrast stretching to normalize the image
contents. Suppose the density estimates surpass the
threshold fixed for intensities' density values. In that
case, the labeling unit labels the image as a multi-
object image and applies the LOG filter to identify
immediate areas of change relevant to the object
boundaries. Whereas, if the image is identified as a
normal image based on the thresholding values, it is
passed to the existing DNNs. The enhanced and
labeled pixel grid is passed to the low-level super-
pixel segmentation module. The pixel grid overlays
on a 2D manifold, and the Centroidal Voronoi
diagram having mass centroids is created for the pixel
grid retaining its topological contents. The initial
points for the iterative clustering process are
identified based on Parzen's Density Estimates. The
iterative process uses relevant distance measures
based on the previously created label, i.e., semi-dark
or multi-object. The stability of the relevant clusters
is checked iteratively until stable clusters in the form

super-pixels are created. Finally, an enhanced image
with stable super-pixels is ready to be passed to the
DNNs for further Semantic Segmentation.

Algorithm

Input: An image I of M*N pixels, the threshold for
pixel values, the threshold for density estimates, and
the convergence threshold «.
Output: K Super-pixels of similar sizes.
STEP 1: Define RGB image as CIELAB color map
STEP 2: Identify image labels based on pixel values
and density estimates
If Pixel value > Threshold

Set label as Semi-dark

Apply Contrast Stretching

b—a
oyt = (i =€) (ﬁ) +a

Where (a,b) are lower and upper limit of image type
and its relevant data value (such as for RGB 8-bit, the
limits are 0-255)
(c,d) are the lowest and highest pixel values in the
provided image.
Elseif Density Estimates >Threshold

Set label as Multi-object

Apply LoG filter

LoG Function centered on zero & Gaussian
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Standard deviation § has the form

1 x2+y? x4yl
= —— _ 268
LoG(x,y) p—— [1 >52 e 252
Where
6=14

Else Pixel value & Density Estimates ~ Threshold
Set label as Normal
Pass to existing DCNN
End if
STEP 3: Map enhanced image (M*N pixel grid) on
the 2D manifold
STEP 4: Create CVT
Given a set of Voronoi regions,
Vit
the mass centroid ‘Ci’ over a region with probability
density p(y) and y is the vector in feature space
defined as
_[ViypOdy
Y [Vip()dy
STEP 5: Initialize Cluster centers in feature space
using Parzen’s Density Estimates
STEP 6: Check the label
If label = Semi-dark
For each cluster center, do
Assign the best matching pixels
around the center based on distance measure i.e.
Geodesic + City Blocks Distance
End For
Elseif label = Multi-object
For each cluster center, do
Assign the best matching pixels around
the center based on distance measure i.e.
Geodesic + Chessboard Distance
End For
End if
STEP _7: Compute new clusters until stable and
residual error e<Threshold
STEP 8: Enforce Connectivity

3 Evaluation Criteria

The segmentation task is complex; it requires an
adequately followed protocol for obtaining images
and their relevant ground truth segmentations. Most
of the time, only one ground truth segmentation, and
researchers tend to work with multiple ground truth
segmentations. In the study [8], the researchers
attempted to work with five different ground truth
segmentations per image.

Similarly, the evaluation criteria have also been
evolving with the addition of new imagery
manipulation methods. The evaluation criteria for

super-pixels include coherence, compactness, and
efficiency. In the literature, there have been many
performance metrics used for the segmentation
analysis. According to the study [8], these
performance metrics are divided into three categories:
segmentation quality evaluation, super-pixel quality,
and computing efficiency. Segmentation quality
measures access segmentation results over the
adherence property for the boundaries and the pixel
variations to generate the final segmentation. In this
category, four different quality metrics can be used.
Precision recall [28] identifies the boundary detection
and segmentation as evaluative criteria by measuring
the precision-recall curve. Variation of information
[29] calculates the segmentations' averaged distance
as the average conditional entropy based on the
mutual segmentation information. Probabilistic Rand
Index [28] checks the compatibility of cluster
assignments between a pair of pixels assigned the
same clusters. Segmentation Covering [8] identifies
the intersection of the two segmentations. The second
category is super-pixel quality performance, metrics
residing in this category access super-pixels to retain
image information as possible through coherence,
compactness, and regularity. In this category, six
different metrics can be used. Under-segmentation
error [30] checks leakage of a super-pixel with the
ground-truth segment. Sum-of-squared error [31]
sums up the squared differences between each
cluster’s pixels and the cluster mean identifying
variation in a cluster. Achievable segmentation
accuracy assigns labels in relevance with the ground
truth label, computed by the maximum fraction of
correctly labeled pixels in the ground-truth.
Compactness [32] identifies how well regular
boundaries can be presented. Explained Variation
identifies how well the color variation of the image is
captured by the super-pixel, i.e., the difference
between original pixels and super-pixels. The
regularity index identifies the ratio of the area of the
super-pixel and expected super-pixel area. The
proposed super-pixel algorithm is expected to be
evaluated using the mentioned performance metrics
to identify further performance improvement to create
super-pixels in complex images.

4 Experimental Deductions

The proposed novel algorithm is based on the SLIC
[5] super-pixel algorithm. There are some major
functionality flaws with the algorithm for the
segmentation of semi-dark and multi-object images.
For proving the flaws in the existing process flow,
experiments are conducted implementing the SLIC
algorithm for complex images. SLIC requires an
initial seed to get the algorithm started, and the
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segment size is to be mentioned by the user. Segment
size identification is a very crucial step for the later
phases of the entire super-pixel creation scenario.
Such size should be chosen so that the further process
does not consume much of the computational
resources while creating redundant segments. It
should fetch at all the required object boundaries
creating accurate super-pixels. The experimental
study uncovering SLIC operating features'
functionality flaws is conducted by using python
programming and the skimage  package's
implementation of the SLIC algorithm.

The experimental protocol followed includes the
variant size of input images having different complex
scenarios, including multi-object and semi-dark
images. The analysis's scope is focused on identifying
the functional constraints of operating, for handling
RGB images of a different resolution targeting the
semi-dark and multi-object images. The purpose of
using variant resolution images is to determine the
effect of image resolution on the resulting super-
pixels in terms of distortions.

Table 1. shows the experimental analysis of SLIC
super-pixels containing the original image with the
processed segments segment size 100, 200, 300.

Table 1 Experimental analysis depicting complex algorithm initialization and content irrelevant super-pixels

Cas Original Images of Processed Image with segment Processed Image with  Processed Image with segment
e variant sizes size 100 segment size 200 size 300
1 - \ AR |+ BNSNBELS\YREW|
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All the cases presented in Table 1 show that
segment sizes significantly impact creating final
super-pixel segmentation results. Cases 1-4 present
semi-dark images and their relevant results. For case
1, the generated super-pixels are somewhat accurate
in terms of boundary recall. However, with the
increased segment size, a lot of redundant super-
pixels are witnessed. Moreover, for some of the
image portions, the super-pixels generated are
irrelevant to the actual content. For case 2, semi-dark
image poor boundary recall is witnessed, and this
poor boundary recall does not change with increasing
the segment sizes. For case 3, relatively better
performance is witnessed in boundary recall,
compactness, and other performance measures.
However, segment size remains a crucial feature to
select for proper operational functionality. In contrast,
case 4 presents the worst-case scenario where the
algorithm abruptly creates square super-pixels even in
circular object boundaries depicting the restricted
functionality while dealing with semi-dark images.
Cases 5-8 present multi-object images. For segment
size, 300 redundant super-pixels are generated,
whereas for segment size 100, most of the significant
object boundaries are skipped. For cases 5 and 8, a
public place's crowded image is taken for super-pixel
creation, and for different segment sizes, different
performance is witnessed. However, one of the
common patterns witnessed is poor boundary recall
for all the segment sizes and somewhat irrelevant and
distorted super-pixels. For case 6, the countryside
image of crowded nature in many boats present in the
scene is taken. Moreover, the image has less
resolution as compared to other images used for the
tests. The performance does not seem to change or
get better or worse results as the computational power
required to process such images is less, but no evident
effect is seen. For case 7, an image crowded with
bicycles is taken, and there are many circular objects
in the scene. The performance is unsatisfactory in
terms of capturing the content relevant information
from the scene. These results are directed towards the

need for a novel pixel abstraction algorithm for the
segmentation of complex images.

5 Conclusion and Future Work

The presented research formulates an automated

pixel abstraction framework that fetches fine-grained
details from the complex input images. The proposed
framework makes sure none of the additional
computational resources are consumed to process
normal images with a novel framework as such
images can be accurately processed and segmented
by the existing solutions. The proposed algorithm
extends Manifold SLIC [12] by adding content-aware
nature to the segmentation of complex (semi-dark,
multi-object) images. The enhancement is in the form
of identification of normal or complex images based
on pixel intensities and density estimates of pixels.
Moreover, two different distance measures for cluster
assignments of pixel values of complex images are
presented.
The future work includes the identification of
threshold values for label creation of semi-dark and
multi-object images. After that, the proposed
framework would be implemented and analyzed for
performance comparison with the state-of-the-art
super-pixel algorithms.
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