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Abstract: Image semantic segmentation is one of the recently researched topics due to the rise in visual 

deep learning-based applications. These applications work on the meaningful segments of the visual scene created 

by the application base. The literature identifies the current research status and highlights the existing problems of 

image semantic segmentation algorithms. These problems include the handling of complex images. Complex 

images can be of form high/low pixel intensities or dense structure regions of the image. Existing state-of-the-art 

deep learning algorithms fail to segment complex images semantically. For semantic segmentation of complex 

images, deep learning algorithms are proposed to be accompanied by pixel abstraction algorithm. The pixel 

abstraction algorithm creates atomic segments of the visual scene called super-pixels.  Super-pixels generate feature 

vectors supporting the same regions. These feature vectors reduce the computational complexity to create semantic 

segments of the visual scene. The pixel abstraction algorithms lack functionality due to different aspects, one of 

which is the initial hand-crafted seed from the user to create super-pixels that do not work for all types of visual 

scenarios to create accurate semantic segments. The second aspect that limits pixel abstraction algorithms' 

functionality is the distance measure used for super-pixel (cluster) creation. The distance measures employed in 

existing algorithms do not capture content-aware information of visual scene; instead, end-up creating super-pixels 

based on Euclidean distance, which is based on straight line distance. Hence, the created pixels are distorted and 

irregular. For proving the flawed functionality of the existing super-pixel creation algorithm, detailed visual analysis 

is presented, uncovering the indicators for future research towards the development of a novel algorithm creating 

continuous and regular super-pixels. For creating content-aware super-pixels, the article describes an automatic 

super-pixel creation algorithm based on the idea of capturing image information in relevance to the content present 

in it. For example, we illustrate the proposed framework in detail as two modular approaches to improve the 

resulting super-pixels' quality. Firstly, to automate the entire process, the probability density function is proposed to 

initialize the cluster centers such that hand-crafted seed is not required from the user. Secondly, to retrieve fine-

grained object boundaries, a novel distance measure with induced content-aware nature and complex image 

handling is proposed. The novel algorithm has the potential to tackle the problem of discontinuity and irregularity of 

retrieved segment boundaries. 

Keywords: Super-Pixels, Simple Linear Iterative Clustering, Distance Measures. 
 

用于图像语义分割的新型内容感知像素抽象 
 

摘要：由於基於視覺深度學習的應用程序的興起，圖像語義分割是最近研究的主

題之一。這些應用程序在應用程序庫創建的視覺場景的有意義的部分上工作。文獻確

定了當前的研究現狀，並突出了圖像語義分割算法存在的問題。這些問題包括複雜圖

像的處理。複雜圖像可以具有圖像的高/低像素強度或密集結構區域的形式。現有的

最新深度學習算法無法在語義上分割複雜的圖像。對於復雜圖像的語義分割，提出了

深度學習算法和像素抽象算法。像素抽象算法會創建視覺場景的原子片段，稱為超級

像素。超像素生成支持相同區域的特徵向量。這些特徵向量降低了創建視覺場景語義

段的計算複雜度。像素抽象算法由於不同方面而缺乏功能，其中之一是用戶最初手工

製作的種子，這些種子是用戶創建的超級像素，不適用於所有類型的視覺場景以創建

準確的語義段。限制像素抽象算法功能的第二個方面是用於創建超像素（群集）的距

離度量。現有算法中採用的距離度量不能捕獲視覺場景的內容感知信息；相反，最終
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會根據基於直線距離的歐幾里得距離創建超像素。因此，創建的像素失真且不規則。

為了證明現有超像素創建算法的功能存在缺陷，本文進行了詳細的視覺分析，揭示了

開發新型連續和規則超像素算法的研究指標。為了創建可識別內容的超像素，本文介

紹了一種基於捕獲與其中存在的內容相關的圖像信息的想法的自動超像素創建算法。

例如，我們將提出的框架詳細說明為兩種模塊化方法，以提高所得超像素的質量。首

先，為了使整個過程自動化，提出了概率密度函數來初始化聚類中心，這樣就不需要

用戶手工製作的種子了。其次，為了獲取細粒度的對象邊界，提出了一種具有感應內

容感知特性和復雜圖像處理的新型距離度量。該新算法具有解決檢索段邊界不連續性

和不規則性的潛力。 

关键词：超像素，簡單線性迭代聚類，距離測度。 
 

Introduction 

 

Image semantic segmentation is the process of 

recognizing and understanding the image data at a 

pixel level. Pixel-level understanding creates a raster 

mask of the visual scene. This raster mask represents 

different scene segments with the predefined class 

labels for each pixel [1]. The entire process of 

semantic image segmentation is automated due to 

advancements and the merger of Computer Vision 

(CV) and Deep Learning (DL) [2]. The recent 

advancements of the Deep Convolutional Neural 

Networks (DCNNs) have steered the application of 

image semantic segmentation towards more effective 

and dense predictive labels of the visual scene [2], 

[3], [4]. However, the existing techniques still suffer 

to create correct raster masks with object class labels 

for complex scenarios. The complex scenarios result 

in complex images having high/low pixel intensities 

(semi-dark images) and dense structure regions 

(multi-object images). If accompanied by pixel 

abstraction algorithms, the existing DCNNs used for 

semantic segmentation can result in accurate semantic 

segments [5], [6], [7]. Pixel abstraction algorithms 

reside in the early image segmentation techniques 

where the input is an image, and the output is regions 

or structures. The output regions created by pixel 

abstraction algorithms are called Super-pixels [5]. 

The accurate super-pixels generated by pixel-

abstraction algorithms fed to DCCNs for further 

processing can generate accurate semantic segments 

in complex images, i.e., classify and recognize a 

specific object even if provided with complex images. 

Pixel abstraction algorithms are of two types: 

clustering-based and graph-based. These algorithms 

process the image and generate regions based on 

gradient information or color information [5, 8]. 

Clustering-based algorithms are recommended in the 

literature for their performance accuracy in terms of 

regularity, efficiency, boundary recall, and 

compactness [8], [9]. However, clustering-based 

algorithms are also limited in functionality to 

segment complex images. More efficient and content-

aware pixel abstraction algorithms that capture fine-

grained details from the complex scenes are required 

because inaccurate super-pixels can severely affect 

the final segmented results of DCNNs [5]. The 

desired properties of super-pixel algorithms include 

adherence of super-pixels for object boundaries, 

regularity, i.e., how close the created super-pixel is to 

the actual image content and efficiency in terms of 

reduced computational complexity as these 

algorithms are used as preprocessing step [8, 9]. 

Similarly, these properties apply to complex images. 

None of the super-pixel algorithms have been 

explicitly analyzed for complex images to the best of 

our knowledge. In this work, we have mainly focused 

on the problem of segmentation for complex images. 

We have proposed a novel pixel abstraction algorithm 

with integral content-aware nature for segmenting 

complex images. The content-aware nature is 

integrated in terms of using the relevant distance 

measures for the creation of super-pixels. The 

existing algorithms result in distortions in object 

boundaries and irrelevance to the image content. 

These problems lead to the formulation of research 

objectives to improve the results of segmented 

regions.  

1. To investigate the factors that dominate the 

performance of pixel abstraction algorithms for 

segmentation of images 

2. To identify mechanisms to automate the 

initialization process of super-pixels creation and 

label creation for semi-dark and multi-object images. 

3. To propose an effective content-aware strategy 

for the creation of super-pixel in complex images.  

The paper is organized as follows: Section 2 

describes related work of the state-of-the-art pixel 

abstraction algorithms and analyzes their limitation, 

section 3 presents a proposal of a novel pixel 

abstraction algorithm, section 4 presents the tested 

results of the most recent super-pixel algorithm to 

prove the functionality flaw in existing approach, and 
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finally, section 5 concludes by discussing 

contribution and future directions.  

 

1 Related Work 

 

With the continuous advancements in Machine 

Learning (ML) and Deep Learning (DL) technology, 

the entire process of segmenting and recognizing 

objects is automated. However, this automation does 

not support the segmentation schemes for complex 

images. Researchers are now considering the merger 

of traditional image semantic segmentation 

techniques with innovative deep learning techniques 

for accurate semantic segmentation. The traditional 

segmentation/pixel abstraction techniques are a crude 

method for creating atomic regions based on features 

like appearance and homogeneity because of human 

intervention in the process [3]. The atomic regions 

support the feature-based segmentation in relevance 

to the region-based features than the entire local 

window. The challenge with pixel abstraction 

algorithms, i.e., super-pixel algorithms, is to reduce 

the complexity and fetch the concrete homogenous 

information recognizing the intensity boundaries of 

the objects present in the images encompassing all 

types of visual scenarios. Super-pixel algorithms are 

divided into different categories based on different 

criteria. According to [8], [10], super-pixel 

algorithms are categorized into two categories, 

namely constrained and unconstrained algorithms 

based on the consideration of the function of an 

object concerning the compactness or not. Another 

study [11] categorizes super-pixel algorithms based 

on the super-pixel generation and names the 

categories as bottom-up or top-down approaches. The 

study [9] divides these algorithms as clustering-based 

and gradient-ascent based algorithms. The power of 

super-pixel lies in its representation of the scene's 

accurate information lies in its stability. The existing 

algorithms are designed to tackle different purposes, 

so they lack in one or other aspects, including control 

over super-pixel size, number, and compactness. In 

the presented study, we have categorized super-pixel 

algorithms in two types, namely: Graph-based and 

clustering-based algorithms. Graph-based algorithms 

represent image considering nodes as pixels and 

minimize the cost function defined on the graph. 

Clustering-based algorithms groups image regions to 

create homogenous clusters and iteratively refines 

them till convergence criteria are met [12].   

 

1.1. Graph-based Algorithms 

 

These algorithms represent the image as graph 

G={V,E}, V being set of pixels/regions, and E 

representing edges connecting pixels/ regions to 

reflect the similarity. After representation, some 

optimization function is employed to create segments 

representing the grouped local features [13].  

Normalized cuts [14] segment image regions by 

splitting the affinity graph. The algorithm tries to 

minimize global image information by recursively 

partitioning a given graph using contour and texture 

cues. The global cost function defined for edges is 

minimized in every iteration. The process is 

computationally expensive, and the performance for 

complex images is not analyzed. Felzenszwalb and 

Huttenlocher (GS04) [15] perform agglomerative 

clustering of pixel nodes, using the shortest spanning 

tree of pixels. The algorithm is faster than normalized 

cuts but provides no control over the number of 

super-pixels. Super-pixel lattice [16] generates 

optimal vertical/horizontal paths that cut the image. 

The horizontal or vertical paths are used as strips of 

pixels over the image, which provides control over 

the size, number, and super-pixel compactness. 

However, still dependent on the precomputed 

boundary maps. Pseudo-Boolean super-pixels [17] 

generate segmentation results as a multi-label 

problem. Here half overlapping horizontal strips are 

used. Each pixel might get assigned one of the latent 

strips. The strip decides the class or label. The super-

pixel creation speed is independent of the number of 

pixels being generated, which is one of the problems 

present in other algorithms.   The entropy rate super-

pixel [18] handles super-pixel creation as a 

maximization problem on the graph. The image graph 

denotes pairwise similarities. The objective is 

selecting subset edges from the images graph 

resulting in K-connected graphs (K is the number of 

super-pixels). The working mechanics makes it 

highly dependent on the number of super-pixels to be 

generated, supplied in hand-crafted seed from the 

user. All these graph-based algorithms have their pros 

and cons, but one aspect is common: they have not 

been analyzed for the segmentation of complex 

images.  

 

1.2. Clustering-based Algorithms 
 

Clustering-based algorithms represent an image as 

a feature vector and apply feature space analysis 

methods. These methods include parametric and non-

parametric approaches to create clusters in the feature 

space. The feature space is created on the local 

features, which drives these methods to have complex 

dependency over local statistics, which serve as the 

basis to segment image into a large number of small 

regions [13]. Watershed [19] performs gradient ascent 

from local minima in the image feature vector space 

to obtain watersheds, i.e., lines that separate 

catchment basins. This algorithm's short version 
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applies graph-cuts to the graph build based on priorly 

created super-pixels by watershed. This is also named 

as pixel queuing. Turbopixels [20] dilates the number 

of seeds iteratively in image feature space using 

level-set based geometric information. The method 

relies on the local image gradient and evenly 

distributes super-pixels over the image plane. The 

method is constrained in its functionality to result in 

uniform size compactness and adherence to object 

boundaries, and it has a slow running time [9]. 

Meanshift [21] is one of the modes seeking 

algorithm. The algorithm recursively moves the 

kernel to the smoothed centroid for a data point in 

feature space. The input kernel can vary the size of 

the created super-pixels. The algorithm is limited in 

functionality by providing no control over the 

number, size, or super-pixel compactness. Quickshift 

[22] is another mode-seeking algorithm that tries to 

move each point in feature space to the nearest 

neighbor, increasing the parzen's density estimates. 

The algorithm results in numerous errors [5]. SLIC 

[5] identifies the maximum possible distance between 

two colors of feature space. The spatial distance in 

the xy plane depends on the size of the image. The 

algorithm uses a normalized form of Euclidean 

distance. The algorithm has unsatisfactory 

performance for complex color images [5],[23], along 

with constrained boundary recall [24] and poor 

performance for noisy images [25]. Structured 

Sensitive Super-pixels [26] employ geometric flow to 

compute the distance between pixels. Over-

segmentation is adjusted using energy function, 

which inherently integrates color homogeneity, 

structure density, and compactness. The algorithm 

uses density function for analysis of similarity among 

pixels.  Manifold SLIC [12] employs simplicity of 

SLIC and the content-aware nature of structure 

sensitive super-pixel. The proposed algorithm focuses 

on capturing boundaries in relevance to the object 

boundaries present in the scene. All the discussed 

clustering-based methods have different features to 

offer; however, none of the mentioned algorithms are 

analyzed for complex images. These super-pixel 

algorithms are probable to speed up the entire process 

of semantic segmentation via DL techniques.   

 

1.3. Issue of inadequate Pixel Abstraction 

causing inefficient Image Semantic 

Segmentation  

According to the conducted study, clustering-

based algorithms have been the most promising 

option for creating super-pixels. The super-pixels 

result in the enhanced boundaries via clustering 

principle, i.e., regions or segments based on the color 

proximity and the distance. The created super-pixels 

result in pixel abstraction, which is then used by deep 

neural networks to create pixel-level masks of the 

image. The concerning issue is improper creation of 

the super-pixels, which generates improper pixel-

level masks of the segmented image. The reason for 

improper results is a significant functionality flaw of 

super-pixel creation algorithms. For the conducted 

research, clustering-based algorithms are focused 

mainly on Simple Linear Iterative Clustering (SLIC). 

The SLIC algorithm used for super-pixel creation is 

fast and straightforward in execution. However, the 

distance measure used for the pixel cluster is 

inadequate in terms of no relevance to the actual 

content present in the image. Instead, the algorithm 

just blindly finds Euclidean distance, which is a 

straight line distance. At the same time, it is 

impossible to have uniform super-pixels for all the 

image regions. This functionality flaw results in the 

distorted super-pixels, and finally, the masks created 

by deep neural networks are also erroneous.   

2 Methodology 
 

Accurate segmentation as the additional 

information for further processing a complex scene 

by a Deep Convolutional Neural Network (DCNN) is 

crucial. The current state-of-the-art DCNNs work on 

per-pixel primitives to create semantic segments of 

images. The presented study proposed locally 

grouped primitives of the scene for further processing 

by the DCNNs. The proposed framework divides the 

entire digital enhancement preprocessing stage into 

two different modules. The first module handles the 

Image labeling process so that normal images are 

dropped out of the process immediately and passed to 

DCNN for further processing. This module makes 

sure that the images get the proper label of a semi-

dark or multi-object image by using the thresholding 

process on the feature space. The thresholding 

process includes comparing two different threshold 

values with their relevant measure, i.e., pixel values 

and density estimate of the given input image. As the 

image consists of two-dimensional integer arrays 

representing individual components of the image, the 

pixel intensities are used to identify the darker or 

brighter image based on the threshold value for 

identifying semi-dark images. Simultaneously, for 

identifying multi-object images, the image's density 

estimates are employed because the density of image 

contents differs in different parts of the image, 

inferencing multi-object images by analyzing 

similarity measure among pixel values. After that, 

image processing techniques are applied to process 

the complex input images. Finally, the enhanced and 

labeled image is passed to the subsequent module. 

The second module maps this enhanced input image 

on a low dimensional manifold to reduce 

computational power consumption. 
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Manifolds create empirical mappings to retain 

topological properties of the image, making the entire 

process of learning accessible to handle in capacity 

limited Neural Networks.  Further creates Centroidal 

Voronoi Tessellation (CVT) over the manifold, now 

having mass centroids. A Voronoi diagram partition 

the manifold with 'n' points into a convex polygon 

having only one generating point. Every point of the 

polygon is supposed to be at the least distance from 

its generating point.  After that, initial cluster points 

are identified based on Parzen's Density Estimates of 

the CVT this way. The hand-crafted seed is not 

required from the user. Parzen's Density function is 

one of the non-parametric approaches of estimating 

probability density function, depicting class-

conditional densities without any prerequisite 

knowledge of primary distribution. Finally, the 

iterative clustering process is initialized based on the 

image label with relevant distance measure for each 

pixel's cluster assignment. The iterative process is 

continued until the clusters become stable satisfy the 

condition for residual error.  
 

2.1 Novel Pixel Abstraction Algorithm 

The pixel abstraction takes M*N enhanced pixel 

grid and maps it on a manifold, which is a topological 

space resembling Euclidean space near each point. 

The 2D manifold is created in such a way that the 

self-intersection of objects does not take place. This is 

a process of hypothesizing the real scenarios' high 

dimensional data, over manifolds of lower dimension 

embedded in high-dimensional space to reduce 

computational resource usage. After that, Voronoi 

regions are created for the manifolds such that every 

point in high-dimensional space of manifolds is 

closest to generator w.r.t the generator. All the 

generators are supposed to be connected through 

Voronoi edges (line/half-line segment). The proposed 

abstraction module chooses to create Centroidal 

Voronoi Tessellations (CVTs), which has an 

additional mass centroid constraint as a Voronoi 

generator for the corresponding Voronoi region. For a 

reason, CVTs are more organized than the normal 

Voronoi tessellations. With its novel architecture, the 

proposed system removes the need for seed 

requirement from the user for cluster initialization 

and automates the entire process. The automation is 

made possible by applying Parzen's Density 

Estimates over feature space to find initial points for 

cluster creation. After cluster initialization, the 

subsequent pixel assignment process to a cluster is 

based on the relevant distance measure identified by 

the label created by the previously used image 

labeling module. The distance measure for cluster 

assignment is supposed to be different for multi-

object and semi-dark images, discussed in detail in 

the upcoming section. Finally, clusters' stability is 

iteratively checked until the created clusters become 

stable, and the residual error condition is satisfied.  
 

 

2.1.1 Distance Measure 

The Euclidean distance used in the SLIC algorithm 

for cluster pixel assignment has some significant 

functionality flaws, resulting in irrelevance to the 

image contents, leading to discontinuous and 

irregular segments [26]. The witnessed functionality 

flaw is the result of constant distance measure, which 

remains the same regardless of whether there is a path 

along which the appearance transits smoothly. For 

avoiding this, Geodesic distance is proposed in which 

distance increases for the image point if the local 

density increases and vice versa. Usually, Geodesic 

distance has the shortest path; however, perturbation 

of the geodesic curve increases its length. Geodesic 

distance results in minimum distortions by calculating 

the shortest path between two points of a mesh graph 

where the length of an edge is associated with 

weights. The calculation of geodesic distance is based 

on the solution of the eikonal equation [27]. This way, 

content sensitivity is integrated into the novel pixel 

abstraction module.  The geodesic distance for a color 

image is defined as  
𝐼�𝑥: Ψ → 𝑅𝑑  

 
where d=3 for color images 

 

Considering binary region for simplicity,  

 
Ψ → 𝑅2

 
 

is supposed to be continuous. Given a binary mask 

‘M’ 
𝑀�𝑥 𝜖 0,1 , ∀ 𝑥𝜖Ψ 

 
is associated with a seed (object) region.   

Ω = 𝑥𝜖Ψ: M�x = 0 
 

and the unsigned geodesic distance transform is 

defined as  
𝐷0�•; 𝑀▽𝐼  

 
assigns each pixel 'x' its geodesic distance from Ω, 

and geodesic distance is defined as  

 
𝐷0�𝑥; 𝑀,▽𝐼  = min

{𝑥 ′ |𝑀�𝑥 ′  =0}
𝑑(𝑥, 𝑥′) 

 
with 

𝑑�𝑎, 𝑏 = inf
Γ𝜖Ρ𝑎,𝑏

  1 +  𝛾2(▽𝐼�𝑠 • Γ′(𝑠))2𝑑𝑠,
Γ

0

 

 
where Ρ(a,b) is set of all possible differentiable paths 

in Ψ between the points a and b, 

Γ(s): R→R^2 indicates a path parameterized by arc 

length. The spatial derivative  

 
Γ′�𝑠 = 𝑑𝛤(𝑠)/𝑑𝑠 
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is the unit vector tangent to the direction of the path, 

dot product ensures maximum influence of gradient 

▽I when it is parallel to path Γ, and γ is the geodesic 

factor weighing the contribution of image gradient 

versus spatial distance. Fig 1. shows a more intuitive 

elaboration of the entire concept of how Euclidean 

distance result in distortions and geodesic distance 

capture content-aware information of the image. 
 

 

Fig.1 Difference between geodesic distance and Euclidean 

distance [27] 

Moreover, for accurate segmentation of semi-dark 

images, geodesic distance is proposed to accompany 

the city block distance. It finds distance from a set of 

all black pixels targeting the dark pixel intensities in 

the image, employing four connected neighbors. The 

value of the distance always results in values zero and 

onwards. For similar points, the resultant is zero and 

higher values for a point which have less similarity. 

Again, for simplicity, consider a binary image. City 

blocks distance each point i,j of an image from a set 

of all black pixels and is defined as  

 

𝐵 = {�𝑖, 𝑗 : 𝑎𝑖𝑗 = 1} 

and  

𝑑𝑖,𝑗 =  min
�𝑥,𝑦 𝜖𝐵

  𝑖 − 𝑥 +  𝑗 − 𝑦   0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 

Finally, for multi-object images, geodesic distance is 

proposed to accompany chessboard distance. It finds 

maximum differences between pixels targeting dark 

pixel intensities, employing eight connected 

neighbors targeting small object boundaries. For an 

image having arbitrary points 'i' and 'j' with 

coordinates (x1, y1) and (x2, y2), chessboard distance 

is defined as:  

𝑑𝑖,𝑗 = max⁡( 𝑥2 − 𝑥1 ,  𝑦2 − 𝑦1  ) 
 

The novel solution is likely to overcome segment 

discontinuity and irrelevance for the present image 

content. Fig.2. shows the proposed framework's 

details for accurate semantic segmentation of 

complex images followed by the algorithm steps, 

which gives detailed insights into the proposed 

framework. The green color in the Fig.2. shows the 

significant contribution of the proposed framework.  



M. M. Memon et al.：Novel Content Aware Pixel Abstraction for Image Semantic Segmentation 

 

 

Fig.2 Detailed Pixel Abstraction Framework 

The framework initializes with the RGB image 

having M*N Pixels. The input image is passed to the 

thresholding unit in the Image labeling module, 

which is the first module, where two different 

features of an image are analyzed for further 

processing. Suppose pixel intensities are identified to 

be greater than the threshold. In that case, the labeling 

unit labels the image as a semi-dark image and 

applies contrast stretching to normalize the image 

contents. Suppose the density estimates surpass the 

threshold fixed for intensities' density values. In that 

case, the labeling unit labels the image as a multi-

object image and applies the LOG filter to identify 

immediate areas of change relevant to the object 

boundaries. Whereas, if the image is identified as a 

normal image based on the thresholding values, it is 

passed to the existing DNNs. The enhanced and 

labeled pixel grid is passed to the low-level super-

pixel segmentation module. The pixel grid overlays 

on a 2D manifold, and the Centroidal Voronoi 

diagram having mass centroids is created for the pixel 

grid retaining its topological contents. The initial 

points for the iterative clustering process are 

identified based on Parzen's Density Estimates. The 

iterative process uses relevant distance measures 

based on the previously created label, i.e., semi-dark 

or multi-object. The stability of the relevant clusters 

is checked iteratively until stable clusters in the form 

super-pixels are created. Finally, an enhanced image 

with stable super-pixels is ready to be passed to the 

DNNs for further Semantic Segmentation.  

Algorithm 

Input: An image 𝐼 of M*𝑁 pixels, the threshold for 

pixel values, the threshold for density estimates, and 

the convergence threshold 𝜀.  
Output: 𝐾 Super-pixels of similar sizes. 

STEP 1: Define RGB image as CIELAB color map  

STEP 2: Identify image labels based on pixel values 

and density estimates 

If Pixel value > Threshold  

 Set label as Semi-dark 

 Apply Contrast Stretching  

𝐼𝑜𝑢𝑡 = �𝐼𝑖𝑛 − 𝐶  
𝑏 − 𝑎

𝑑 − 𝑐
 + 𝑎 

 
Where (a,b) are lower and upper limit of image type 

and its relevant data value (such as for RGB 8-bit, the 

limits are 0-255)  

(c,d) are the lowest and highest pixel values in the 

provided image.  

Elseif Density Estimates >Threshold 

 Set label as Multi-object 

 Apply LoG filter  

 LoG Function centered on zero &      Gaussian 
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Standard deviation δ has the form  

𝐿𝑜𝐺�𝑥, 𝑦 = −
1

𝜋δ4
[1 −

𝑥2 + 𝑦2

2δ2
]𝑒

𝑥2+𝑦2

2δ2  

 
   Where 

δ = 1.4 
 

Else Pixel value & Density Estimates ≈ Threshold  

 Set label as Normal 

 Pass to existing DCNN 

End if  

STEP 3: Map enhanced image (M*N pixel grid) on 

the 2D manifold   

STEP 4: Create CVT 

Given a set of Voronoi regions, 
{𝑉𝑖}𝑖=1

𝑘
 

 
the mass centroid ‘Ci’ over a region with probability 

density p(y) and y is the vector in feature space 

defined as 

𝐶𝑖 =
�𝑉𝑖  𝑦 𝑝(𝑦)𝑑𝑦

�𝑉𝑖  𝑝(𝑦) 𝑑𝑦
 

 
STEP 5: Initialize Cluster centers in feature space 

using Parzen’s Density Estimates 

STEP 6: Check the label  

If label = Semi-dark 

  For each cluster center, do  

                          Assign the best matching pixels 

around the center based on distance measure i.e.  

Geodesic + City Blocks Distance 

                    End For 

Elseif label = Multi-object 

  For each cluster center, do  

                      Assign the best matching pixels around 

the center based on distance measure i.e.  

 Geodesic + Chessboard Distance 

                    End For 

 End if 

STEP 7: Compute new clusters until stable and 

residual error 𝜀<Threshold  

STEP 8: Enforce Connectivity  

 

3 Evaluation Criteria 
 

The segmentation task is complex; it requires an 

adequately followed protocol for obtaining images 

and their relevant ground truth segmentations. Most 

of the time, only one ground truth segmentation, and 

researchers tend to work with multiple ground truth 

segmentations. In the study [8], the researchers 

attempted to work with five different ground truth 

segmentations per image. 

Similarly, the evaluation criteria have also been 

evolving with the addition of new imagery 

manipulation methods. The evaluation criteria for 

super-pixels include coherence, compactness, and 

efficiency. In the literature, there have been many 

performance metrics used for the segmentation 

analysis. According to the study [8], these 

performance metrics are divided into three categories: 

segmentation quality evaluation, super-pixel quality, 

and computing efficiency. Segmentation quality 

measures access segmentation results over the 

adherence property for the boundaries and the pixel 

variations to generate the final segmentation. In this 

category, four different quality metrics can be used. 

Precision recall [28] identifies the boundary detection 

and segmentation as evaluative criteria by measuring 

the precision-recall curve. Variation of information 

[29] calculates the segmentations' averaged distance 

as the average conditional entropy based on the 

mutual segmentation information. Probabilistic Rand 

Index [28] checks the compatibility of cluster 

assignments between a pair of pixels assigned the 

same clusters.  Segmentation Covering [8] identifies 

the intersection of the two segmentations. The second 

category is super-pixel quality performance, metrics 

residing in this category access super-pixels to retain 

image information as possible through coherence, 

compactness, and regularity. In this category, six 

different metrics can be used. Under-segmentation 

error [30] checks leakage of a super-pixel with the 

ground-truth segment. Sum-of-squared error [31] 

sums up the squared differences between each 

cluster’s pixels and the cluster mean identifying 

variation in a cluster. Achievable segmentation 

accuracy assigns labels in relevance with the ground 

truth label, computed by the maximum fraction of 

correctly labeled pixels in the ground-truth. 

Compactness [32] identifies how well regular 

boundaries can be presented. Explained Variation 

identifies how well the color variation of the image is 

captured by the super-pixel, i.e., the difference 

between original pixels and super-pixels. The 

regularity index identifies the ratio of the area of the 

super-pixel and expected super-pixel area. The 

proposed super-pixel algorithm is expected to be 

evaluated using the mentioned performance metrics 

to identify further performance improvement to create 

super-pixels in complex images.  
 

4 Experimental Deductions 
 

The proposed novel algorithm is based on the SLIC 

[5] super-pixel algorithm. There are some major 

functionality flaws with the algorithm for the 

segmentation of semi-dark and multi-object images. 

For proving the flaws in the existing process flow, 

experiments are conducted implementing the SLIC 

algorithm for complex images. SLIC requires an 

initial seed to get the algorithm started, and the 
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segment size is to be mentioned by the user. Segment 

size identification is a very crucial step for the later 

phases of the entire super-pixel creation scenario. 

Such size should be chosen so that the further process 

does not consume much of the computational 

resources while creating redundant segments. It 

should fetch at all the required object boundaries 

creating accurate super-pixels. The experimental 

study uncovering SLIC operating features' 

functionality flaws is conducted by using python 

programming and the skimage package's 

implementation of the SLIC algorithm.  

The experimental protocol followed includes the 

variant size of input images having different complex 

scenarios, including multi-object and semi-dark 

images. The analysis's scope is focused on identifying 

the functional constraints of operating, for handling 

RGB images of a different resolution targeting the 

semi-dark and multi-object images. The purpose of 

using variant resolution images is to determine the 

effect of image resolution on the resulting super-

pixels in terms of distortions.  

Table 1. shows the experimental analysis of SLIC 

super-pixels containing the original image with the 

processed segments segment size 100, 200, 300.  

Table 1 Experimental analysis depicting complex algorithm initialization and content irrelevant super-pixels 

 

Cas

e 

Original Images of 

variant sizes 

Processed Image with segment 

size 100 

Processed Image with 

segment size 200 

Processed Image with segment 

size 300 

1 

    

2 

    

3 

    

4 

    

5 

    

6 
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7 

    

8 

  
  

 

All the cases presented in Table 1 show that 

segment sizes significantly impact creating final 

super-pixel segmentation results. Cases 1-4 present 

semi-dark images and their relevant results. For case 

1, the generated super-pixels are somewhat accurate 

in terms of boundary recall. However, with the 

increased segment size, a lot of redundant super-

pixels are witnessed. Moreover, for some of the 

image portions, the super-pixels generated are 

irrelevant to the actual content. For case 2, semi-dark 

image poor boundary recall is witnessed, and this 

poor boundary recall does not change with increasing 

the segment sizes. For case 3, relatively better 

performance is witnessed in boundary recall, 

compactness, and other performance measures. 

However, segment size remains a crucial feature to 

select for proper operational functionality. In contrast, 

case 4 presents the worst-case scenario where the 

algorithm abruptly creates square super-pixels even in 

circular object boundaries depicting the restricted 

functionality while dealing with semi-dark images. 

Cases 5-8 present multi-object images. For segment 

size, 300 redundant super-pixels are generated, 

whereas for segment size 100, most of the significant 

object boundaries are skipped. For cases 5 and 8, a 

public place's crowded image is taken for super-pixel  

creation, and for different segment sizes, different 

performance is witnessed. However, one of the 

common patterns witnessed is poor boundary recall 

for all the segment sizes and somewhat irrelevant and 

distorted super-pixels. For case 6, the countryside 

image of crowded nature in many boats present in the 

scene is taken. Moreover, the image has less 

resolution as compared to other images used for the 

tests. The performance does not seem to change or 

get better or worse results as the computational power 

required to process such images is less, but no evident 

effect is seen. For case 7, an image crowded with 

bicycles is taken, and there are many circular objects 

in the scene. The performance is unsatisfactory in 

terms of capturing the content relevant information 

from the scene. These results are directed towards the 

need for a novel pixel abstraction algorithm for the 

segmentation of complex images.  
 

5 Conclusion and Future Work 
 

The presented research formulates an automated 

pixel abstraction framework that fetches fine-grained 

details from the complex input images. The proposed 

framework makes sure none of the additional 

computational resources are consumed to process 

normal images with a novel framework as such 

images can be accurately processed and segmented 

by the existing solutions. The proposed algorithm 

extends Manifold SLIC [12] by adding content-aware 

nature to the segmentation of complex (semi-dark, 

multi-object) images. The enhancement is in the form 

of identification of normal or complex images based 

on pixel intensities and density estimates of pixels. 

Moreover, two different distance measures for cluster 

assignments of pixel values of complex images are 

presented.  

The future work includes the identification of 

threshold values for label creation of semi-dark and 

multi-object images. After that, the proposed 

framework would be implemented and analyzed for 

performance comparison with the state-of-the-art 

super-pixel algorithms. 
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