The Potential of *Lantana Camara* Linn. as a Source of Quercetin, Gallic Acid, and Tannic Acid

Edy Parwanto¹*, David Tjahyadi², Husnun Amalia³, Hosea Jaya Edy⁴, Ashaolu Victoria Oladimeji⁵, Joey Joshua Vidova Tjahyadi⁶, Laurentia Gabrielle⁶

¹ Department of Biology, Faculty of Medicine, Trisakti University, Indonesia
² Department of Histology, Faculty of Medicine, Trisakti University, Indonesia
³ Department of Ophthalmology, Faculty of Medicine, Trisakti University, Indonesia
⁴ Study Program in Pharmacy, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
⁵ Department of Chemistry, Loyola Institute of Frontier Energy, Loyola College, Chennai, India
⁶ Study Program in Medical Education, Faculty of Medicine, Trisakti University, Indonesia

* Corresponding author: edyparwanto@trisakti.ac.id

Received: February 16, 2023 / Revised: March 19, 2023 / Accepted: April 9, 2023 / Published: May 31, 2023

Abstract: *L. camara* Linn. is an invasive and dangerous plant that contains active substances beneficial to health. Active substances contained in the leaves of *L. camara* Linn. include flavonoids, gallic acid, and tannic acid. The purpose of this study was to explore the content of quercetin, gallic acid, and tannic acid in *L. camara* Linn leaf extract. The methods of this study include leaf extract of *L. camara* Linn. were tested organoleptic, pH, quercetin equivalent flavonoid (QEF), gallic acid equivalent phenolic (GAEP), and tannic acid equivalent tannin (TAET). Measurement of quercetin equivalent flavonoid (QEF), gallic acid equivalent phenolic (GAEP), and tannic acid equivalent tannin (TAET) levels was carried out with a spectrophotometer. The QEF content of *L. camara* Linn. leaf extract is 0.428 ± 0.004 mg/g. The GAEP content of *L. camara* Linn. leaf extract is 0.288 ± 0.002 mg/g, while the content of TAET is 0.384 ± 0.009 mg/g. This study confirmed the presence of flavonoids, phenols, and tannins in *L. camara* Linn. leaf extract, either extracted with ethanol or with other solvents such as acetone or petroleum ether. The novelty of this study is that the variations in active substance levels can be used as an option in the exploration and use of *L. camara* Linn. Thus, *L. camara* Linn. is not only a wild plant that endangers the environment but can also be a source for exploration of QEF, GAEP, and TAET.

Keywords: *Lantana camara* Linn., organoleptic test, quercetin equivalent flavonoid, gallic acid equivalent phenolic, tannic acid equivalent tannin.
1. Introduction

Flavonoids are polyphenolic compounds found in various parts of plants. Eight classes of flavonoids exist: flavones, flavonols, flavanones, flavanonol, isoflavones, flavantriol, anthocyanidins, and chalcone [1]. The benefits of flavonoids in health include anti-cancer, anti-oxidative, anti-inflammatory, and stimulating bone formation [2]. Recent studies have shown that flavonoids have antiviral activity against SARS-CoV-2 [3]. Gallic acid is a phenol compound known under another name, 3,4,5-trihydroxybenzoic acid, with the chemical structure of \(\text{C}_{6}\text{H}_{2}(\text{OH})_{3}\text{COOH} \) [4]. The results of recent studies demonstrate that \(\text{Swietenia macrophylla} \) produces gallic acid [5]. In general, plants produce gallic acid [6]. The benefits of gallic acid in the health sector include antimicrobial, prooxidant, antioxidant, anti-inflammatory, anti-platelet, anti-dengue, anti-cancer, and anti-apoptotic [7]. Tannins are phenolic compounds found in plants. There are two groups of tannins, namely hydrolyzable and condensed tannins. Gallotannins are hydrolyzable tannins, while catechins and gallo catechins are condensed tannins [8]. Along with flavonoids and gallic acid, plants also produce tannins, \(\text{Hibiscus sabdariffa} \) tea [9], and \(\text{Dimocarpus longan} \) [10]. The biological activities of tannins include antimicrobial, antidiabetic, antioxidant, and cardioprotective [11].

The results of previous studies showed the content of flavonoids, gallic acid, and tannins in the following types of plants: QEF levels in methanol extract of \(\text{Melastoma malabathricum} \) fruit are 6,827 mg/g, while GAEP levels are 154,880 mg/g extract [12]. In addition, stem bark extract from \(\text{M. gigantea} \) contains flavonoids 25.2 mg/g [13]. It is interesting to note that the content of phenolic catechins is equivalent in various varieties of \(\text{Vitis sp.} \) classified as high enough (> 900 mg/L) [14]. The results of other studies showed that different extraction methods against \(\text{M. malabathricum} \) show variation in GAEP levels [15], which are in line with the results of research demonstrating that tannin content is different in various cultivars of \(\text{Vitis} \) species Red Wines measured by various measurement methods [14].

Previously, we measured QEF levels at various concentrations of \(\text{L. camara} \) Linn. leaf extract cream. \(\text{L. camara} \) Linn. leaf collection was obtained from Tanjakan Cino Mati, Pleret District, Bantul Regency, Special Region of Yogyakarta, Indonesia [16]. \(\text{L. camara} \) Linn. is an invasive plant [17] considered dangerous in Indonesia [18]. Several researchers in Indonesia have explored the active ingredients of \(\text{L. camara} \) Linn. to be used for health [19, 20]. One possible use of \(\text{L. camara} \) Linn. for health is utilizing the content of active substances, including flavonoids, gallic acid, and tannic acid.

Since \(\text{L. camara} \) Linn. is invasive and contains active substances that are beneficial for health, we hope that the plant can apply as a source of flavonoids, gallic acid, and tannic acid. Research is still necessary to explore the content of flavonoids, gallic acid, and tannic acid in \(\text{L. camara} \) Linn. leaf extract. We hope that the results of this study can apply as a reference option about the potential of \(\text{L. camara} \) Linn. as a source of active ingredients in the form of quercetin equivalent flavonoid (QEF), gallic acid equivalent phenolic (GAEP), and tannic acid equivalent tannin (TAET). Fig. 1 presents the structural formulas of flavonoids, gallic acid, and tannic acid.
Fig. 1 The structural formula of flavonoids, gallic acid, and tannic acid: A – Basic structure and classification of flavonoids [1]; B – Gallic acid (3,4,5-Trihydroxybenzoic acid) [4, 21]; C – The structure of tannic acid [22]

2. Material and Methods

2.1. Research Design

The design of this research is laboratory experimental research. Fig. 2 shows the main process of this research.

2.2. L. Camara Linn. Leaf Collection

Leaves of L. camara Linn. were collected from Tondano Kamangta Suluan street, Tombulu District, Minahasa Regency, North Sulawesi Province, Indonesia (1°21'46.6"N; 124°54'13.0"E) in December 2022. The location is available from http://goo.gl/maps/nc1SVYhFU39q8nMz8.

The collected leaves are washed under running water, covered with black cloth, and dried in the hot sun. Dried leaves of L. camara Linn. were ground into powder and then sifted to obtain a fine powder. The fine powder of L. camara Linn. leaves is extracted using 96% ethanol. L. camara Linn. leaf extract obtained in a viscous form, dark green color, is then put into sterile bottles and stored in a refrigerator. The extract is ready for testing.

2.3. The Organoleptic and pH Tests of L. Camara Linn. Leaf Extract

Organoleptic tests performed on L. camara Linn. leaf extracts included shape, smell, and color. In addition, pH measurements used L. camara Linn. leaf extracts [23, 24, 25].

2.4. Qualitative Test of Flavonoids, Phenolics, and Tannins in L. Camara Linn. Leaf Extract

2.4.1. The Qualitative Test of Flavonoids

We dissolved 50 mg of the sample in 5 mL ethanol in a test tube, heated for five minutes, added a few drops of concentrated HCl and 0.2 g of Mg powder. The onset of the dark red for 3 min indicates a positive result.

2.4.2. The Qualitative Test of Phenolics

We dissolved one milliliter of the sample in a test tube with methanol and then added 5% FeCl₃. A change in color to orange-brown indicates a positive result in the presence of phenolic compounds.

2.4.3. The Qualitative Test of Tannin

We put 50 mg of the sample into a test tube, added ethanol until submerging the sample, and then added 2-3 drops of 1% FeCl₃ solution. The formation of bluish-black or green indicates a positive result for tannin content.

2.5. The Quantitative Measurement of Phytochemicals in L. Camara Linn. Leaf Extract

2.5.1. The Measurement of Flavonoid Levels

Measurement of QEF levels used aluminum chloride colorimetric assay [26] using the UV-1800 spectrophotometer (Shimadzu Corp. 00787, serial No. 116351). The standard curve of QEF was duplicated with concentrations of 2, 4, 6, 8, and 10 μg/mL in 80% methanol solvent. One mL of each series of standard solution plus 4 mL distilled water was added to 0.30
mL 5% NaNO\textsubscript{3} and homogenized, then allowed to stand for 5 min. Next, we added 0.3 mL to 10% AlCl\textsubscript{3} and homogenized using a vortex mixer. After 5 min plus 2 mL of 1 M NaOH plus 2.4 mL of distilled water until a total volume of 10 mL. Absorbance readings for blanks and standard solutions were at a wavelength of 510 nm. We used the data obtained to create the standard curve of the flavonoid quercetin equivalent. To measure QEF levels in the samples, we made a sample solution of 1 mL of \textit{L. camara} leaf extract as a substitute for standard solutions. The sample solution reacted with the same reagents used in standard curve-making and absorbance readings. We calculated total QEF levels by comparing the absorbance of the sample against the standard quercetin curve, expressing the results as QEF in mg/g.

2.5.2. The Measurement of Gallic Acid Levels

The phenolic content measurement used the Folin-Ciocalteu assay [26, 27] using the UV-1800 spectrophotometer (Shimadzu Corp. 00787, serial No. 116351). Standard gallic acid curves were duplicated in a volumetric flask. The concentration of gallic acid used is 5, 10, 15, 20, and 25 μg/mL each in 9 mL of distilled water. The blank reagent is distilled water. 1 ml of Folin-Ciocalteu phenol reagent was added to each of the prepared standard solutions, homogenized, 5 min later added 2 mL of 7% Na\textsubscript{2}CO\textsubscript{3} solution and 3.6 mL distilled water, and incubated for 90 min at room temperature. Absorbance readings used a spectrophotometer at a wavelength of 650 nm. To measure GAEP levels in samples, we prepared a sample solution, namely 1 mL of \textit{L. camara} leaf extract, as a substitute for standard solutions. The sample solution reacted with the same reagents used on the standard curve and the absorbance readings. Total GAEP content was expressed in mg/g.

2.5.3. The Measurement of Tannic Acid Levels

Measurement of tannin content used the Folin-Ciocalteau assay [28] using the UV-1800 spectrophotometer (Shimadzu Corp. 00787, serial No. 116351). Standard tannic acid curves were duplicated in a volumetric flask. The concentration of tannic acid used are 10, 20, 40, 60, 80 μg/mL, each in 9 mL of distilled water. The blank reagent is distilled water. One mL of each standard solution was put into a flask container containing 7.5 mL of distilled water. We added 0.5 mL of Follin Denish reagent to the flask, allowed it to stand for 3 minutes, then 1 mL of saturated Na\textsubscript{2}CO\textsubscript{3} solution, and incubated for 15 minutes. Absorbance readings used a spectrophotometer at a wavelength of 740 nm. To measure TAET levels in samples, we prepared a sample solution which is 1 mL of \textit{L. camara} leaf extract instead of standard solutions. The sample solution reacted with the same reagents used on the standard curve and the absorbance readings. Total TAET content was expressed in mg/g.

2.6. Data Analysis

Descriptive analysis was conducted on phytochemical data of \textit{L. camara} leaf extract, namely QEF, GAEP, and TAET levels. The phytochemical content of \textit{L. camara} leaf extract is presented in table and graphic form using the Microsoft Excel.

3. Results

3.1. Leaves of \textit{L. Camara} Linn

Fig. 3 presents leaves of \textit{L. camara} collected from Tondano Kamangta Suluan street, Tombokulo District, Minahasa Regency, North Sulawesi Province, Indonesia (1°21'46.6"N; 124°54'13.0"E).

3.2. The Results of Organoleptic Test and pH Test of \textit{L. Camara} Linn. Leaf Extract

Table 1 presents test results of \textit{L. camara} leaf extract.

Table 2 presents the results of the qualitative examination of the active substance of \textit{L. camara} leaf extract.

3.3. Quercetin Equivalent Flavonoid

Fig. 4 presents the standard curve of quercetin equivalent flavonoid.
The standard curve used for the analysis of QEF levels in this study was \(Y = 0.1398q + 0.0668 \) (Fig. 4), where \(Y \) = absorbance; \(a = 0.1398; \) \(b = 0.0668; \) \(q \) = quercetin equivalent flavonoid (mg/L) levels. In addition, a standard solution with a concentration of 1.0-10.0 \(\mu \)g/mL obtained a coefficient of determination (\(R^2 \)) = 0.983. To calculate the total QEF (\(Q_{QEF} \)) per gram of \(L. \) camara Linn. leaf extract, we used the formula

\[
Q_{QEF} = q \times v \times (p/m)
\]

where \(q \) - QEF levels in the sample, \(v \) - sample volume, \(p \) - dilution, and \(m \) - sample mass/weight.

Table 3 presents QEF levels of \(L. \) camara Linn. leaf extract.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(Y)</th>
<th>(a)</th>
<th>(b)</th>
<th>(v, \text{L})</th>
<th>(p)</th>
<th>(M, g)</th>
<th>(Q_{QEF}, \text{mg/g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.661</td>
<td>0.1398</td>
<td>0.0668</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td>0.425036</td>
</tr>
<tr>
<td>2</td>
<td>0.659</td>
<td>0.1398</td>
<td>0.0668</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td>0.423605</td>
</tr>
<tr>
<td>3</td>
<td>0.673</td>
<td>0.1398</td>
<td>0.0668</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td>0.433319</td>
</tr>
<tr>
<td>4</td>
<td>0.669</td>
<td>0.1398</td>
<td>0.0668</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td>0.431107</td>
</tr>
<tr>
<td>5</td>
<td>0.661</td>
<td>0.1398</td>
<td>0.0668</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td>0.452520</td>
</tr>
<tr>
<td>6</td>
<td>0.664</td>
<td>0.1398</td>
<td>0.0668</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td>0.42712</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.428</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
</tr>
</tbody>
</table>

Notes: \(Y \) - absorbance at a wavelength \(\lambda = 510 \text{ nm} \), \(a \) - coefficient; \(b \) - constant; \(v \) - volume (liters); \(p \) - dilution; \(M \) - sample weight (gram); \(q \) - QEF levels; \(Q_{QEF} \) - total quercetin equivalent flavonoid; \(Q_{QEF}, \text{mg/L} \) - milligrams per liter; \(Q_{QEF}, \text{mg/g} \) - milligrams per gram; SD - standard deviation

3.4. Phenolic Equivalent Gallic Acid

The standard curve of GAEP used in this study is \(Y = 0.1634q + 0.025 \) (Fig. 5), where \(Y \) = absorbance; \(a = 0.1634; \) \(b = 0.025; \) \(q_{GAEP} \) = gallic acid equivalent phenolics (mg/L). In addition, a standard solution with...
concentration of 5.0–25.0 μg/mL obtained coefficient of determination \((R^2) = 0.995\). To calculate GAEP \((Q_{GAEP})\) per gram of \(L.\ camara\) Linn. leaf extract, we used the formula
\[
Q_{GAEP} = q \times v \times (p/m)
\]

where \(Q_{GAEP}\) - GAEP levels in the sample, \(v\) - sample volume, \(p\) - dilution, and \(m\) - sample mass/weight.

Table 4 presents the results of the analysis of gallic acid equivalent phenolic levels of \(L.\ camara\) Linn. leaf extract.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(a)</th>
<th>(b)</th>
<th>(v, L)</th>
<th>(p)</th>
<th>(m, g)</th>
<th>(Q_{GAEP}, \text{mg/g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.491</td>
<td>0.1634</td>
<td>0.025</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.499</td>
<td>0.1634</td>
<td>0.025</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.497</td>
<td>0.1634</td>
<td>0.025</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.496</td>
<td>0.1634</td>
<td>0.025</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.496</td>
<td>0.1634</td>
<td>0.025</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.495</td>
<td>0.1634</td>
<td>0.025</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
</tr>
</tbody>
</table>

The standard curve for TAET used in this study is \(Y = 0.00921q + 0.092\). The coefficient of determination \((R2)\) is 0.984 (Fig. 6). In the equation, \(Y\) = absorbance; \(a = 0.1661\); \(b = 0.0229\); \(q = TAET\) levels (mg/L). To calculate TAET \((Q_{TAET})\) per gram of \(L.\ camara\) Linn. leaf extract, we used the formula
\[
Q_{TAET} = q \times v \times (p/m)
\]

where \(q\) - TAET levels in the sample, \(v\) - sample volume, \(p\) - dilution, and \(m\) - sample mass/weight.

Table 5 presents tannic acid equivalent tannin levels in the \(L.\ camara\) Linn. leaf extract.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(Y)</th>
<th>(a)</th>
<th>(b)</th>
<th>(v, L)</th>
<th>(p)</th>
<th>(m, g)</th>
<th>(Q_{TAET}, \text{mg/g})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.124</td>
<td>0.00921</td>
<td>0.0890</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.125</td>
<td>0.00921</td>
<td>0.0890</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.125</td>
<td>0.00921</td>
<td>0.0890</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.124</td>
<td>0.00921</td>
<td>0.0890</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.125</td>
<td>0.00921</td>
<td>0.0890</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.123</td>
<td>0.00921</td>
<td>0.0890</td>
<td>0.001</td>
<td>10</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

The results of organoleptic tests on \(L.\ camara\) Linn. leaf extract in this study are similar to the results of our previous research, including the form is semi-solid, the smell is similar to the smell of \(L.\ camara\) Linn. leaves, and the color is slightly blackish green [16]. The pH of \(L.\ camara\) Linn. leaf extract is normal as it is in the range of 4.5-6.5. The pH of \(L.\ camara\) Linn. leaf extract is consistent with the pH of human skin [29]. Compared to the topical formula, the pH of \(L.\ camara\) Linn. leaf extract in this study was under the pH of topical preparations containing ibuprofen [30].

The content of flavonoids, phenols, and tannins in \(L.\ camara\) Linn. leaf extract in this study was the same as previous research, including the form is semi-solid, the smell is similar to the smell of \(L.\ camara\) Linn. leaves, and the color is slightly blackish green [16]. The pH of \(L.\ camara\) Linn. leaf extract is normal as it is in the range of 4.5-6.5. The pH of \(L.\ camara\) Linn. leaf extract is consistent with the pH of human skin [29]. Compared to the topical formula, the pH of \(L.\ camara\) Linn. leaf extract in this study was under the pH of topical preparations containing ibuprofen [30].
as the results of previous studies [20, 31, 32], [33] also shows flavonoid content in the leaves of *L. camara* Linn. in extraction using acetone. In addition, methanol extraction of *L. camara* Linn. leaves also showed flavonoid content [32]. In addition, the extract drying method of *L. camara* Linn. leaves also shows flavonoids and tannins [34]. The results of another study demonstrated that the leaves of *L. camara* Linn. extracted using petroleum ether (40°C), chloroform, and methanol also contain flavonoids and tannins [35].

The QEF levels of *L. camara* Linn. leaf extract in this study was lower than the results of other studies [31, 32, 36, 37]. The results of previous studies demonstrated that various varieties of *L. camara* Linn. have QEF content ranging from 16.14 ± 0.21 to 25.22 ± 2.59 mg/g extract [36]. The results of another study showed the QEF content in the dry extract of *L. camara* Linn. 12.44 ± 2.85 mg/g [37]. Another study showed that the methanol extract of *L. camara* Linn. leaves contained QEF 243.89 mg/g extract [31]. The results of another study demonstrated that several fractions of methanol extract of *L. camara* Linn. leaves contained QEF ranging from 19.85 to 97.56 mg/g samples [32]. The results of other studies also revealed that the QEF content of the methanol extract of aerial parts of *L. camara* Linn. from Nepal ranged from 1.87 ± 0.16 to 0 mg/g extract [38]. On the other hand, the results of other studies demonstrate that the ethanol extract of *L. camara* Linn. leaves contains low QEF, which is 0.2423 ± 0.0068 mg/g extract [39]. These results are lower than the QEF content in our study.

GAEP levels of *L. camara* Linn. leaf extract in this study were lower than the results of other studies [31, 32, 36-38]. Previous research demonstrated that various varieties of *L. camara* Linn. have GAEP content ranging from 55.57 ± 2.82 to 232.99 ± 15.97 mg/g extract [36]. Other research results also showed that the dry extract of *L. camara* Linn. contains GAEP 144.7 ± 1.34 mg/g [37]. Another study showed that the methanol extract of *L. camara* Linn. leaves contained GAEP 563.57 ± 2.49 mg/g extract, while the GAEP content in flower extract was 614.79 ± 1.54 mg/g extract [31]. The results of another study demonstrated that the GAEP content of *L. camara* Linn. leaf extract was 10.20±0.343 mg/g extract [38]. The results of another study demonstrated the GAEP content in various fractions of methanol leaf extract of *L. camara* Linn. ranging from 20.25 ± 0.41 to 98.81 ± 0.27 mg/g sample [32]. As a reference, the results of research on the content of GAEP in other plants turned out to vary, for example, *Ageratina adenophora* contains GAEP 4.70 ± 0.059 mg/g extract, while *Cupressus sempervirens* contains GAEP 4.31 ± 0.147 mg/g extract [38].

The TAET levels of *L. camara* Linn. leaf extract in this study were lower than the results of other studies. The study results demonstrated that the tannin content in *L. camara* Linn. leaf extract was 98.40 ± 6.88 mg/g [40]. The results of another study showed that the tannin content of *L. camara* Linn. extract was 0.860 ± 0.038 mg/g [41]. On the other hand, some research results demonstrate that the ethanol extract of *L. camara* Linn. leaves contains low tannins in extract, namely 0.2179 ± 0.0056 mg/g [39]. These results were lower than the tannin content in our study. Some studies also demonstrate that tannin levels from the methanol extract of *L. camara* Linn. collected from a semi-arid region of Brazil are not detected [42, 43].

Note the research results demonstrate that the content of GAEP and QEF in *L. rhodesiensis* extract is highest in the leaves and then the stem, while the least is found in the roots [44]. Other research results are the estimation of phenolics, flavonoids, and tannin contents in various solvent extracts of coconut. The results showed that the methanol fraction contained a total phenolic equivalent of gallic acid 822.60 ± 16.36 mg/g sample, a flavonoid equivalent of quercetin 103.30 ± 9.78 mg/g sample, and a tannic acid equivalent of tannin 663.50 ± 19.26 mg/g sample [45].

Based on the data above, there are variations in QEF, GAEP, and TAET levels influenced by variations in plants, environment, and solvents used for extraction. The research results showing that extraction conditions affect flavonoid levels [46] reinforce our statement. Based on the results of these studies as well as other studies [47], flavonoid content was measured in plant extracts [48, 49] and herbal preparations [50, 51, 52, and 53].

The limitations of this study include not examining the mineral content, which can affect the levels of active substances in *L. camara* Linn. leaf extract. Therefore, we suggest for research that it is necessary to measure mineral levels, especially Fe and Zn, which relate to the levels of substances in *L. camara* Linn. leaf extract. The levels of these two minerals affected the stability of QEF levels in *L. camara* Linn leaf extract cream [16].

5. Conclusion

The ethanolic extract of *L. camara* Linn. contains levels of QEF, GAEP, and TAET as well as 0.428 ± 0.004 mg/g extract, 0.288 ± 0.002 mg/g extract, and 0.384 ± 0.009 mg/g extract, respectively. The content of active substance levels can apply as a reference to explore *L. camara* Linn. as a source of quercetin, gallic acid, and tannic acid.

Based on the results of our research and other studies, and as described above, it turns out that the leaf extract of *L. camara* Linn. contains QEF, GAEP, and TAET, but levels vary. The type and place of life influence the variation of QEF, GAEP, and TAET levels in *L. camara* Linn. leaf extract. Nonetheless, we hope that the variations in QEF, GAEP, and TAET levels in *L. camara* Linn. can be used as an option in the exploration and use of *L. camara* Linn. Thus, *L. camara* Linn. is not only a wild plant that endangers
the environment but can also apply as a source of QEF, GAEP, and TAET exploration.

Funding
The Faculty of Medicine of Trisakti University supported this publication by funding (no. 0355/PUF/FK/2022-2023).

Acknowledgment
The authors are grateful to the Head of the Pharmacy Study Program as well as the Dean of the Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Indonesia, for providing the study facilities.

References
[22] CHENG Z., DEGRACIA K., and SCHIRALDI D. A. Sustainable, low flammability, mechanically-strong poly(vinyl alcohol) aerogels. Polymers, 2018, 10: 1102. DOI: 10.3390/polym10101102
1305-1309.
http://impactfactor.org/PDF/IJPCR/8/IJPCR_Vol8_Issue9_Article8.pdf

[45] OJHA S.B., ROY S., DAS S., and DHANGADAMAJHI G. Phytochemicals screening, phenolic estimation and evaluation for anti-oxidant, anti-inflammatory and anti-microbial activities of sequentially

參考文:
[16] PARWANTO M.L.E., TIJAHYADI D., EDY H.J.,

【38】KAPALI J. 和 SHARMA K.R. 尼泊爾生長的一些藥用植物的植物化學物質、抗氧化劑、抗糖尿病和鹽水蝦致死活性的估計。藥用植物學報。2021, 20(80): 102-116. DOI: 10.52547/jmp.20.80.102

【40】BHUVANESWARI E. 和 SAGAYA GIRI R. 马 lien 根提取物的植物化學物質、抗氧化劑、抗糖尿病和鹽水蝦致死活性的估計。藥用植物學報。2021, 20(80): 102-116. DOI: 10.52547/jmp.20.80.102

【41】NAZ R. 和 BANO A. 马 lien 在不同溶劑中的植物化學篩選。抗氧化劑和抗菌潛力。亞洲熱帶病雜誌。2013, 3(6): 480-486. DOI: 10.1016/S2222-1808(13)60104-8

【42】GOMES DE MELO J., DE SOUSA ARAÚJO T.A., THIJA NOIRE DE ALMEIDA E CASTRO V., LYRA DE VASCONCELOS CABRAL D., DO DESTERRO RODRIGUES M., CARNEIRO DO NASCIMENTO S.,

