The Effect of Fintech Funding on Bank Profitability: A Case of ASEAN-5

Tien Phat Pham1*, Sinh Duc Hoang2, Le Ngoc Thuy Trang3, Hanh Thi My Ly3

1 School of Economics, Can Tho University, Vietnam
2 Ho Chi Minh City University of Foreign Languages and Information Technology, Vietnam
3 FAME, Tomas Bata University in Zlin, Czech Republic

* Corresponding author: pptien@ctu.edu.vn

Received: February 6, 2023 • Revised: March 3, 2023 • Accepted: March 18, 2023 • Published: April 28, 2023

Abstract: Many reports on fintech prospects in ASEAN predict that fintech plays a critical role in the digital economy and significantly influences the banking industry, attracting many scholars. However, an investigation of the effect of fintech on bank performance across countries has not yet been conducted. Besides, the reports showed that fintech funding had been dramatically rising in recent years, accelerating fintech startup development. Therefore, the authors are concerned about the “How is the effect of fintech funding on bank performance, especially regarding profitability?” These are the motives for conducting the study. Using a sample of 57 banks and data on fintech funding from 2017 to 2021 in Malaysia, Philippines, Thailand, Indonesia, and Vietnam, the dynamic panel model is estimated by Panel Corrected Standard Error. The findings show that the growth of fintech funding negatively influences bank profitability, but its lag effect is positive. The results are mostly validated through multiple additional tests (in the context of Covid-19, sorted by country and bank size), and a robustness check by an alternative estimator (Generalized Least Square). Besides, the authors explored some interesting exceptions. In detail, fintech funding does not influence bank profitability in Malaysia and Indonesia, but it negatively links with ROA in Vietnam, and large banks are not sensitive to the growth of fintech funding.

Keywords: fintech funding, bank profitability, ASEAN-5.

© 2022 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Introduction

Following the works [1-3] on the prediction of fintech in ASEAN, the authors agree that the fintech factor has been playing a critical role in the ASEAN economy, which directly affects the incumbents of the finance industry. In a specific country, the question “how does fintech influence banks?” has attracted many scholars to find the answer. For example, Phan et al. [4] found a negative effect of growing fintech companies on bank performance in Indonesia. Using a Google search to measure the fintech variables, Pham et al. [5] found a mixed impact of fintech on specific bank stock returns in Vietnam. In detail, fintech does not influence bank stock return by the vector autoregression estimator, but by the ordinary least square estimator, the mobile payment and peer-to-peer lending segments of fintech are negative and positive with the stock return, respectively. Using panel data from 2009 to 2016 in Malaysia, Muda et al. [6] explored the negative effect of fintech on banks’ income. Islamic banks are more strongly affected by fintech than others. Based on the available data on FAS and the Global Findex database, Banna and Alam [7] developed and calculated the digital financial inclusion index (DFI) used to estimate the relationship with banking stability for Indonesia, Malaysia, the Philippines, and Thailand. The findings show that DFI is not only an acceleration factor of banking stability but also reduces default risk. Besides, other publications researched the link between fintech and banks in various ways in the specific countries in ASEAN, such as [8,9] in Indonesia, [10, 11] in Thailand, [12,13] in the Philippines, [14-16] in Vietnam, etc. However, these existing publications have not yet considered the effect of fintech on bank performance measured by profitability in cross-countries. The authors argue that the international investigation of the impact of fintech on bank profitability will provide meaningful evidence, which enriches the knowledge in this interesting field of the relationship.

According to a 2022 report by UOB [17], ASEAN has emerged as a hub for the digital economy, with fintech are a particularly vibrant sector. As of 2022, there are 4,030 operating fintech companies in Indonesia, Thailand, Philippines, Vietnam, Malaysia, and Singapore, representing a 54.29% increase from the 2,612 companies in 2018. Fintech has experienced significant growth, with approximately US$3.5 billion invested in fintech companies during the first nine months of 2021, triple the amount raised in 2020. The payment segment received the most funding with US$1.9 billion, followed by investment tech (US$457 million) and cryptocurrency (US$356 million). The report also notes that fintech has had a significant impact on changing the financial behavior of customers in the Southeast Asia region. Many people have adopted finance apps for their daily activities, such as shopping, paying bills, and transferring money. Overall, the report confirms that Southeast Asia is the most dynamic market for the fintech industry globally.

The UOB report [17] highlights several indicators of fintech company development in ASEAN, including the amount of fintech funding, which reflects the attention of investors on fintech companies. Based on this report, the authors plan to collect figures on fintech funding to measure fintech variables. Additionally, drawing on studies by [8,18] on the impact of fintech funding on bank performance, the authors contend that fintech funding can serve as a proxy for the fintech variable and estimate its effect on bank performance in ASEAN.

This study examines the impact of fintech funding on bank profitability in ASEAN, an emerging market in the fintech industry. By exploring the relationship between fintech and bank performance across countries, this study will generate new insights into the effect of fintech on bank performance. Additionally, given that fintech companies offer alternative financial products that can disrupt incumbents in the finance industry, the authors plan to apply both customer and disruptive innovation theories to explain the effect of fintech funding on bank profitability. As a result, the study will contribute to empirical evidence on the application of these theories in the case of ASEAN-5.

The rest of the study consists of a literature review, Methodology, Results and Discussion, and Conclusion. The literature review section reports relevant studies of the effect of fintech on bank performance and provides the customer and disruptive innovation theories used for the hypothesis. The methodology section reveals the research model, data collection, and analysis. The results and discussion section report and discuss the estimation results using various data analysis methods. The conclusion section presents the brief main points of the study and limitations and directions for further research.
1. Literature Review

1.1. Related Literature

The existing publications reveal that the effect of fintech on bank performance is an interesting topic that has attracted vast numbers of scholars. On the one hand, many scholars stated that its effect is negative. For example, the study by Phan et al. [4] used the ratio of net interest income to assets, return on assets, return on equity, and yield on earning assets for proxying bank performance in Indonesia over the period 1998 to 2017 and used the annual number of fintech companies registered for measuring fintech variables. Based on the conventional model of performance determinants, the authors described a dynamic panel model for estimating the effect of fintech on bank performance. Then, the two-step Generalized method of moments (GMM) system dynamic panel estimator is employed to estimate the proposed models. The estimation results of original models and multiple additional tests (sorted by market value, bank age, ownership, and global financial crisis) showed that the growing number of fintech companies is a negative factor in bank performance. In China, from 2013 to 2018, Zhao et al. [19] investigated the effect of fintech on bank performance. Based on the database of Fintech Beta, the authors self-constructed a fintech index for analysis. Besides, patents are also used for proxying fintech variables. Bank performance is measured by capital adequacy, asset quality, management efficiency, earning power, and liquidity ratio. The estimation results by two-step GMM showed that fintech negatively influences bank profitability and asset quality. However, fintech enhances capital adequacy and management efficiency for large state-owned banks. Furthermore, small banks collaborate with fintech innovation with fintech companies. Other scholars have found a negative effect of fintech on bank performance, such as [20-25].

On the other hand, some scholars found a positive effect of fintech on bank performance. Lee, Li, Yu, and Zhao [26] applied the stochastic metafrontier model and principal component analysis for measuring bank cost efficiency and fintech variables, respectively. The ingredients for measuring bank efficiency consist of inputs (labor, physical capital, and borrowed funds) and outputs (total loans, other earning assets, and non-interest revenue). The fintech variables are calculated by the number of fintech companies, total registered capital, financing events, and degree of fintech development. Based on the panel data of 676 firms from 2003 to 2017 and applying the estimator like the study by [4, 26] provide that fintech is a positive factor in enhancing bank cost efficiency and leveling up bank technology systems. Following that, the effect of fintech on bank profitability is positive in the case of China, the second-largest economy and the best dynamically developed fintech market worldwide. Li et al. [18] collected funding from fintech startup companies and investigated its effect on the stock return of 47 US retail banks from 2010 to 2016. Based on the three-factor model of Fama and French [27], panel models of the effect of fintech funding on bank stock return were developed. The estimation results showed that the growth in fintech funding (value and deals) increases bank stock return. Bashayreh and Wadi [28], Dwivedi et al. [29], Mustapha [30], Rega [31], Safiuallah and Paramati [32], and Singh et al. [33] also found the evidence of the negative effect of fintech on bank performance.

Other studies also provide significant references about the effect of fintech on bank performance. Chen et al. [34] self-designed questionnaires to survey bank employees and customers. The authors used perceived usefulness and perceived difficulty of use for proxying the fintech variable, while bank performance is presented by customer satisfaction, expectation of assistance, service quality, and work efficiency. Based on the responses of 307 customers and 93 employees, the estimation results showed that the perceived usefulness of fintech products increases customer satisfaction, service quality, and employee work efficiency but decreases the expectation of bank employee assistance, and the perceived difficulty of use of fintech products reduces customer satisfaction. The risk spillovers between two entities investigate the relationship between fintech and banks. Li et al. [35] collected the daily stock returns data of fintech firms and banks in the USA and investigated the risk spillover between two entities from January 2011 to June 2018. The estimation results by the VAR estimator and Granger causality showed that when the risk spillover is higher, the association between the two entities is stronger in the case of downside-to-downside. Besides, fintech risk spillover has a positive effect on banks, especially on bank system risk. Furthermore, studies by Agboola et al. [36], Al-Matari et al. [37], Ky et al. [38], Pu et al. [39], and Stulz [40] provided significant multidimensional perspectives about the effect of fintech on bank performance.

These studies reveal that the effect of fintech on bank performance is heterogeneous. Its effect is both positive and negative. The heterogeneous effect might be due to various variable measurements (e.g., fintech firms, fintech funding, self-constructed fintech index, etc.) and dataset analysis methods (regarding kinds of dataset: panel, time-series, and cross-section) or even due to the investigation environment (e.g., macroeconomic and bank characteristics). Therefore, the authors argue that further research is encouraged to enrich the knowledge in this field. This is also the motive for conducting the study.
1.2. Hypothesis Development

Fintech startup companies provide alternative financial products, penetrating the pie of incumbents in the finance industry, especially in the retail banking market. Fintech companies apply disruptive technologies to deliver products to customers anywhere, anytime. Fintech products on the decentralized peer-to-peer platforms (e.g., lending, payments, etc.) meet the customers’ requirements and are appreciated as more advanced in convenience than traditional financial products [41-44]. Based on that, the authors argue that the consumer theory by Aaker and Keller [45] and the disruptive innovation theory by Christensen [46] are applied for explanation in the study.

The customer theory states that with the same needs, the new products might replace the old ones in the market because the new products bring more benefits and experience than the old ones. The disruptive innovation theory states that new entrants quickly apply disruptive technologies to reduce cost and enhance performance; thus, it creates high competition pressure against incumbents in the market. Following two theories, the authors argue that fintech funding is the promotive factor that facilitates fintech companies in expanding their business scale and launching new products to bring the best experiences to customers. Thus, it might be possible that many bank customers switch to using the fintech product instead of maintaining the banking product, which might lead to decreased bank profit.

Besides, following the studies by Almulla and Aljughaiman [20], Elsaid [47], and Yudaruddin [48], the customer and disruptive innovation theories are highly appreciated for explaining the effect of fintech on bank performance. In line with the main content of the theories, the growth of fintech startup companies through fintech funding will be a threat and negatively influence bank performance.

Consequently, following these arguments above, in this study, the authors expect a negative effect of fintech funding on bank profitability in the ASEAN region.

2. Methodology

The main steps of the research process are summarized in Fig. 1. First, the research gap and hypothesis were proposed based on a review of existing publications. Second, the research model was developed. Third, the data were gathered on the basis of the availability of data and the ability to collect it. Fourth, suitable methods were employed for estimation. Finally, the estimation results were combined with the hypothesis for discussion.

2.1. Model

Following the study by Lee et al. [26], Phan et al. [4], Wu and Yuan [25], and Zhao et al. [19], the authors describe the dynamic panel model including the fintech variable, which illustrates the fintech effect and its lag effect on bank profitability. The models are proposed

\[
\begin{align*}
PRO_{it} &= \alpha_i + \beta_1 FIN_{t} + \gamma PRO_{i,t-1} + \delta BANK_{it} + \theta MAR_{t} + \epsilon_{it} \\
PRO_{it} &= \alpha_i + \beta_2 FIN_{t-1} + \gamma PRO_{i,t-1} + \delta BANK_{it} + \theta MAR_{t} + \epsilon_{it}
\end{align*}
\]

Here, \(PRO_{it} \) is bank-level dependent variables that comprise return on total assets and return on equity of bank \(i \) at time \(t \). \(FIN_{t} \) is the fintech variable that proxies fintech funding at time \(t \). \(BANK_{it} \) are the set of bank-level variables that play the control variables proxied by size, leverage, loans, and deposits of bank \(i \) at time \(t \). \(MAR_{t} \) is the macroeconomic condition that consists of the growth rate of gross domestic production and the consumer price index at time \(t \). \(\epsilon_{it} = \mu_i + \sigma_{it} \) is the bank-specific effect and idiosyncratic error term.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROA</td>
<td>Bank profitability (PRO)</td>
<td>Return on assets</td>
</tr>
<tr>
<td>ROE</td>
<td>Return on equity</td>
<td>Financial statements</td>
</tr>
<tr>
<td>FIN</td>
<td>Fintech funding</td>
<td>The logarithm of the value of funding deals</td>
</tr>
<tr>
<td>SIZE</td>
<td>Bank characteristics (BANK)</td>
<td>The logarithm of total assets (million US dollars)</td>
</tr>
<tr>
<td>LEV</td>
<td>The ratio of liability to equity</td>
<td></td>
</tr>
</tbody>
</table>
Since early 2020, COVID-19 has spread worldwide, which has affected many social and economic aspects [49-51]. Bao and Huang [52] and Demirgüç-Kunt et al. [53] provided that COVID-19 significantly influences the fintech and banking industry; thus, in this study, the COVID-19 effect is considered to investigate the relationship between fintech funding and bank profitability, which follows the models:

\[PR_{it} = \alpha_i + \beta_1 F I N_{it} + \beta_2 \text{COV}_{it} + \beta_3 F I N_{it} \times (1 - \text{COV}) + \gamma PR_{it-1} + \delta \text{BANK}_{it} + \theta \text{MAR}_i + \epsilon_{it} \]

(3)

\[PR_{it} = \alpha_i + \beta_1 F I N_{it-1} \times \text{COV} + \beta_2 F I N_{it-1} \times (1 - \text{COV}) + \gamma PR_{it-1} + \delta \text{BANK}_{it} + \theta \text{MAR}_i + \epsilon_{it} \]

(4)

Here, COV is a dummy variable that equals 1 if the year is after 2020 and 0 otherwise.

All variables are defined and denoted in detail in Table 1.

The estimation result of \(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \) and \(\beta_6 \) will be used for discussing the effect of fintech funding on bank profitability and its effect in the context of the Covid-19 pandemic, which is the main task of this study. Following this hypothesis, \(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \) and \(\beta_6 \) are expected to be negative (<0). Besides that, the values of pair-coefficients of \(\beta_2 \) and \(\beta_4 \) and \(\beta_5 \) and \(\beta_6 \) are used for comparison. The difference between these coefficients reveals the impact of fintech on bank profitability pre- and during COVID-19.

2.2. Data Collection

The amount of fintech funding in millions of US dollars is obtained from the UOB Group [54], which illustrates the fintech funding in ASEAN-6, including Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam from 2017 to 2021.

Bank-level data are collected from audited financial statements, which are disclosed on the bank website. Based on the data collection capability and data availability, the authors initially obtained data from ASEAN-6, which holds over 80% of the total assets of the ASEAN banking industry [55]. However, Singapore is a developed country, where the financial market is dramatically higher than others, which might produce bias estimation results in the sample [7]. Hence, the sample for investigation includes 5 countries, called ASEAN-5, including Indonesia, Malaysia, Philippines, Thailand, and Vietnam (excluding Singapore). Furthermore, regarding the bank size variable, to ensure data uniformity, the authors used the currency exchange rate on Google on 24th May 2022 (UTC 13:45-13:50) to convert the national currency unit to USD before analysis. In detail, USD/VND (Vietnam) = 23,220.01; USD/THB (Thailand) = 34.14; USD/PHP (Philippines) = 52.33; USD/MYR (Malaysia) = 4.40; USD/IDR (Indonesia) = 14,645.10.
The macroeconomic data are collected from the World Bank database.

The characteristics of the variables are illustrated in Table 2.

2.3. Data Analysis

We apply the correlation matrix for the multicollinearity test of the baseline models. Table 3 shows that the absolute maximum correlation value between pairs of variables is 0.7993 (less than a threshold of 0.8), belonging to two dependent variables of the regression model; hence, the authors can conclude that the baseline models do not have the multicollinearity issue [56]. All variables are eligible for the next analysis.

<table>
<thead>
<tr>
<th>Variable</th>
<th>ROA</th>
<th>ROE</th>
<th>FIN</th>
<th>SIZE</th>
<th>LEV</th>
<th>LOAN</th>
<th>DEPO</th>
<th>GDP</th>
<th>INF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROA</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROE</td>
<td>0.7993</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIN</td>
<td>0.0148</td>
<td>-0.1738</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td>0.2331</td>
<td>0.1912</td>
<td>-0.0310</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEV</td>
<td>-0.3369</td>
<td>0.2078</td>
<td>-0.3175</td>
<td>-0.0450</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOAN</td>
<td>0.2103</td>
<td>0.1808</td>
<td>-0.1408</td>
<td>0.2071</td>
<td>0.0049</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPO</td>
<td>-0.2417</td>
<td>-0.1367</td>
<td>0.1173</td>
<td>0.0191</td>
<td>0.1819</td>
<td>0.0444</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>0.0368</td>
<td>0.1240</td>
<td>-0.2167</td>
<td>-0.1196</td>
<td>0.1944</td>
<td>-0.0009</td>
<td>-0.0666</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>INF</td>
<td>0.0402</td>
<td>0.1121</td>
<td>-0.0145</td>
<td>-0.2687</td>
<td>0.1892</td>
<td>-0.2753</td>
<td>0.1062</td>
<td>0.5301</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Next, following Gujarati and Porter [57], the authors apply the fixed effect approach (FE) and random effect approach (RE) to examine the effect of fintech funding on bank profitability. Additionally, through the Hausman test, the estimation results of all models by FE are more appreciated than by RE. However, the estimation results by FE have heteroskedasticity and autocorrelation issues, which are confirmed by the Wald and Wooldridge tests, respectively. Based on Beck and Katz [58], to overcome these issues, the Panel Corrected Standard Error method (PCSE) is applied to provide evidence of the effect of fintech funding on bank profitability. Furthermore, according to Blackwell [59] and Parks [60], the Generalized least squares (GLS) is also applied as an alternative estimator, which is considered the robustness check.

3. Results and Discussion

3.1. Effect of Fintech Funding on Bank Profitability Sorted by Country

The existing publications showed that the effect of fintech on bank performance is heterogeneous, which might be caused by the distinction between the investigation scope (between countries). Based on this, further analysis is conducted to examine the effect of fintech on bank profitability sorted by country. Table 5 presents the value and P-value of fintech coefficients, which show the effect of fintech funding on bank profitability in a specific country. The regression models take the following form:

$$ PRO_{it} = \alpha_i + \beta_1 FIN_{it} + \gamma PRO_{it-1} + \delta_1 SIZE_{it} + \delta_2 LEV_{it} + + \delta_3 LOAN_{it} + \delta_4 DEPO_{it} + \theta_1 GDP_{it} + \theta_2 INF_{it} + \epsilon_{it} $$

In the regression, PRO is measured by ROA and ROE; the control variables are mentioned above. The estimation method is Panel Corrected Standard Errors. The table shows the values of β_1, β_2, β_4, β_5, and β_6. The authors’ elaboration)
Some interesting findings were obtained. First, all β_{Malaysia} and $\beta_{\text{Indonesia}}$ are insignificant; thus, there is no evidence to conclude the relationship between fintech funding and bank profitability in Malaysia and Indonesia, which is different from the study by [4, 7], the authors discuss that it might be explained by the fintech funding value being very small compared with the scale of banks in Malaysia and Indonesia, or the inefficient fintech funding investment could not influence the banks.

Second, the authors find the excellent reaction of the Philippines banks to the rise of fintech, which is confirmed by the most significant positive of ROA and measured by ROA and 0 to 2021, starting in 2022 as the Covid strategy (Vietnam applied the Zero Covid strategy).

The authors argue that at the time pre-Covid-19, banks focused on technology investment, increasing cost, and reduced profit. Besides, the authors find that the fintech effect plays a role less critical than its lag effect ($\beta_{\text{Philippines}^{t-1}} > \beta_{\text{Philippines}^{t}}$) in the Philippines.

Third, the signs of β_{Thailand} are similar with $\beta_{\text{ASEAN-5}}$; thus, the authors discuss that Thailand mirrors the effect of fintech funding on bank profitability in ASEAN-5, which might be explained as mentioned above. Most β_{Vietnam} are negative significant, which supports the hypothesis of the negative effect of fintech funding on bank profitability. However, $\beta_{\text{Vietnam}^{t}}$ is a positive significant, which might be explained by the effectiveness of the Zero-Covid strategy (Vietnam applied the Zero-Covid strategy from 2020 to 2021, starting in 2022 as the Non-Zero-Covid). Vietnamese commercial banks gained more profits during the lockdown [61].

3.2. Effect of Fintech Funding on Bank Profitability Sorted by Bank Scale

Haller and Siedschlag [62], Phan et al. [4], and Scott et al. [63] stated that smaller firms are more sensitive to transformation costs with technology innovation than larger firms. Based on that, in the high pressure of fintech development, the authors argue that the effect of fintech on the profitability of small banks is stronger than that of large banks. Therefore, further analysis is conducted to examine the effect of fintech on profitability between small and large banks. The estimation results are reported in Table 6.

A large bank is defined by the top half of banks measured by total assets (median is 18,217 million US dollars), and a small bank belongs to the bottom half.

The regression models take the following form:

$$\text{PRO}_{it} = \alpha_i + \beta_{1} \text{FIN}_{it} + \gamma \text{PRO}_{it-1} + \delta_1 \text{SIZE}_{it} + \delta_2 \text{LEV}_{it} + \delta_3 \text{LOAN}_{it} + \delta_4 \text{DEPO}_{it} + \theta_1 \text{GDP}_{it} + \theta_2 \text{INF}_{it} + \epsilon_{it}$$ (9)

$$\text{PRO}_{it} = \alpha_i + \beta_{2} \text{FIN}_{it-1} + \gamma \text{PRO}_{it-1} + \delta_1 \text{SIZE}_{it} + \delta_2 \text{LEV}_{it} + \delta_3 \text{LOAN}_{it} + \delta_4 \text{DEPO}_{it} + \theta_1 \text{GDP}_{it} + \theta_2 \text{INF}_{it} + \epsilon_{it}$$ (10)

In the regression, PRO is measured by ROA and ROE; the control variables are mentioned above. The estimation method is Panel Corrected Standard Errors with the year and country-fixed effect. The table shows the values of $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5$, and β_6.

Table 6 The effect of fintech funding on bank profitability sorted by bank scale (The authors’ elaboration)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Small Bank</th>
<th>Large Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN</td>
<td>-0.0009865***</td>
<td>-0.0071014***</td>
</tr>
<tr>
<td>FIN(-1)</td>
<td>-2.96</td>
<td>-2.67</td>
</tr>
<tr>
<td>FIN*COV</td>
<td>0.69</td>
<td>-5.44</td>
</tr>
<tr>
<td>FIN*(1-COV)</td>
<td>4.24</td>
<td>3.54</td>
</tr>
<tr>
<td>FIN*COV(-1)</td>
<td>-0.0028025***</td>
<td>-0.0194095**</td>
</tr>
<tr>
<td>FIN*COV(-2)</td>
<td>-4.65</td>
<td>-2.02</td>
</tr>
<tr>
<td>FIN*COV(-3)</td>
<td>-1.53</td>
<td>-0.95</td>
</tr>
<tr>
<td>FIN*COV(-4)</td>
<td>0.002528***</td>
<td>0.0157642***</td>
</tr>
<tr>
<td>FIN*COV(-5)</td>
<td>3.69</td>
<td>2.96</td>
</tr>
<tr>
<td>FIN*COV(-6)</td>
<td>0.002945***</td>
<td>0.0211893**</td>
</tr>
</tbody>
</table>

Note: *, **, and *** are significant values at 10%, 5%, and 1%, respectively.
Following Pham et al. [4], the total assets (after being converted from national currency to US dollars) are sorted and split at the median (18,217 million US dollars). The top half is the large banks, and the small ones are at the bottom. Table 6 shows that the signs of most $\beta_{smallbank}$ are similar to $\beta_{ASEAN-5}$ and significant at a 1%-5% level, while most $\beta_{largebank}$ are insignificant. It reveals that small banks are more sensitive to the fintech effect than large banks, and they are proactive in collaboration with fintech companies to enhance their performance. Besides, there is no evidence of an association between fintech funding and large bank profitability, which might be caused by the small economic scales of fintech companies compared with large banks.

3.3. Alternative Estimator Using the Generalized Least Square Method

We use an alternative estimator to confirm robustness. The reason for selecting the Generalized Least Square method (GLS) is that GLS can alternative the PCSE to fix heteroskedasticity and autocorrelation issues [59, 60, 64].

The regression models take the following form:

$$PRO_{it} = \alpha_i + \beta_1 x_{FINT_i} + \gamma x_{PRO_{it-1}} + \delta_2 x_{SIZE_{it}} + \delta_2 x_{LEV_{it}} + \delta_3 x_{LOAN_{it}} + \delta_4 x_{DEPO_{it}} + \theta_2 x_{GDP_{it}} + \theta_2 x_{INF_{it}} + \epsilon_{it}$$ (17)

$$PRO_{it} = \alpha_i + \beta_2 x_{FIN_{it}} + \gamma x_{PRO_{it-1}} + \delta_2 x_{SIZE_{it}} + \delta_2 x_{LEV_{it}} + \delta_3 x_{LOAN_{it}} + \delta_4 x_{DEPO_{it}} + \theta_2 x_{GDP_{it}} + \theta_2 x_{INF_{it}} + \epsilon_{it}$$ (18)

The estimation results by GLS are presented in Table 7, which confirms the effect of fintech funding on bank profitability as in Table 8.

The regression models take the following form:

$$PRO_{it} = \alpha_i + \beta_1 x_{FINT_i} + \gamma x_{PRO_{it-1}} + \delta_2 x_{SIZE_{it}} + \delta_2 x_{LEV_{it}} + \delta_3 x_{LOAN_{it}} + \delta_4 x_{DEPO_{it}} + \theta_2 x_{GDP_{it}} + \theta_2 x_{INF_{it}} + \epsilon_{it}$$ (13)

$$PRO_{it} = \alpha_i + \beta_2 x_{FIN_{it}} + \gamma x_{PRO_{it-1}} + \delta_2 x_{SIZE_{it}} + \delta_2 x_{LEV_{it}} + \delta_3 x_{LOAN_{it}} + \delta_4 x_{DEPO_{it}} + \theta_2 x_{GDP_{it}} + \theta_2 x_{INF_{it}} + \epsilon_{it}$$ (14)

$$PRO_{it} = \alpha_i + \beta_3 x_{FIN_i} \times COVID_i + \beta_4 x_{FIN_{it}} \times (1 - COVID_i) + \gamma x_{PRO_{it-1}} + \delta_2 x_{SIZE_{it}} + \delta_2 x_{LEV_{it}} + \delta_3 x_{LOAN_{it}} + \delta_4 x_{DEPO_{it}} + \theta_2 x_{GDP_{it}} + \theta_2 x_{INF_{it}} + \epsilon_{it}$$ (15)

$$PRO_{it} = \alpha_i + \beta_5 x_{FIN_{it-1}} \times COVID_i + \beta_6 x_{FIN_{it-1}} \times (1 - COVID_i) + \gamma x_{PRO_{it-1}} + \delta_2 x_{SIZE_{it}} + \delta_2 x_{LEV_{it}} + \delta_3 x_{LOAN_{it}} + \delta_4 x_{DEPO_{it}} + \theta_2 x_{GDP_{it}} + \theta_2 x_{INF_{it}} + \epsilon_{it}$$ (16)

In the regression, PRO is measured by ROA and ROE; the control variables are mentioned above. The estimation method is the Generalized Least Square with the fixed effect of year and country. The table shows the values of $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6$ and β_7 are proactive in collaboration with fintech companies to enhance their performance. Besides, there is no evidence of an association between fintech funding and large bank profitability, which might be caused by the small economic scales of fintech companies compared with large banks.

Table 8 The effect of fintech funding on bank profitability by PSCE

<table>
<thead>
<tr>
<th>Variable</th>
<th>ROA</th>
<th>ROE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN</td>
<td>-0.00399***</td>
<td>-0.0022514</td>
</tr>
<tr>
<td>FIN_{it}</td>
<td>-3.12</td>
<td>-1.57</td>
</tr>
<tr>
<td>FIN*COV</td>
<td>-4.78</td>
<td>-4.76</td>
</tr>
<tr>
<td>FIN*(1-COV)</td>
<td>-6.27</td>
<td>-4.18</td>
</tr>
<tr>
<td>FIN_{it}*COV</td>
<td>-0.60</td>
<td>-0.04</td>
</tr>
<tr>
<td>FIN_{it}(1-COV)</td>
<td>4.47</td>
<td>4.00</td>
</tr>
<tr>
<td>FIN_{it}(1-COV)</td>
<td>3.85</td>
<td>3.95</td>
</tr>
</tbody>
</table>

Note: *, **, and *** are significant values at 10%, 5%, and 1%, respectively.
From these discussions above, the authors conclude that the proposed hypothesis is partly accepted, which means that there is a negative effect of fintech funding on bank profitability. However, the lag effect of fintech funding is positive. Besides, the authors explore that the lag effect of fintech is stronger than its effect. In general, the authors argue that the growth of fintech funding plays a positive role in bank performance; it increases bank profitability in the case of ASEAN-5.

4. Conclusion
Motivated by reports about the rise of fintech startup companies in the ASEAN region and the gap in the effect of fintech on bank performance in the cross-country, this study is conducted to fill the gap and provide empirical evidence about the link between banks and fintech in the digital era. Following consumer and disruptive innovation theories, the authors develop the hypothesis that there is a negative effect of fintech development measured by fintech funding value on bank profitability in the ASEAN region. The dataset is obtained from various sources, namely the report of the UOB group (fintech funding), audited financial statements of banks (bank-level data), and the World Bank database (macroeconomic indicators). With the strongly balanced panel data of 57 banks of ASEAN-5 (Malaysia, Indonesia, Thailand, Philippines, and Vietnam) from 2017 to 2021, the dynamic panel models including the context of Covid-19 and the effect of fintech funding on bank profitability are estimated by the PSCE method. Besides the estimator by the PSCE method, the study employs multiple additional tests (sorted by country and bank scale) and an alternative estimator by the GLS method for estimation robustness. The aggregating estimation results in various ways allow concluding that the proposed hypothesis is partly rejected by the mixed effect of fintech funding on bank profitability. The fintech variable negatively influences bank profitability, but its lag is a positive factor. Sorted by country, there is no evidence about the link between fintech and bank profitability in Malaysia and Indonesia, but fintech funding is mostly positive in the Philippines and negative in Vietnam. Besides, the authors found that small banks are more sensitive to profitability to fintech development than large banks.

This paper is novel because it contributes to the current debate in the literature regarding the effect of fintech on bank performance. First, it investigates the effect of fintech on bank performance across countries where the fintech industry has been rapidly growing, thereby adding significant knowledge. Second, the findings suggest a negative effect of fintech funding on bank profitability, with a positive lag effect. Third, the authors found mixed results across countries, indicating differences in the effect of fintech funding on bank profitability in the ASEAN-5 region.

The study has some limitations that might be directions for further research. First, the scope of this study only focused on the ASEAN-5 region (Southeast Asia), which is the most dynamic market for the fintech industry. However, other regions such as South Asia, Asia, or Africa should also be considered for investigation as they are interesting directions for further research. The context of fintech company development in other regions might provide interesting reasons for the differences in the effect of fintech funding on bank performance between regions. Second, this study only used the amount of fintech funding for fintech measurement, while other measures could also be considered for further research, such as the number of newly established fintech companies, registered capital of fintech companies, or the popularity of fintech companies on social media or outlook reports of consultant organizations. Multiple-dimensional measurements will provide a holistic effect of fintech companies on bank performance. Third, due to limitations in data collection, the authors have not yet considered the effect of endogenous and exogenous variables in the panel data model, which may result in biased estimation. The Generalized Method of Moments (GMM) is a method that can overcome these issues, as mentioned above. Thus, the authors suggest that further research should collect more variables and extend the sample size. The GMM estimation results are able to provide insights into the relationship between

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>t-Statistic</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td></td>
<td>.0090191</td>
<td>.0009541</td>
<td>.0010397</td>
<td>.0009651</td>
</tr>
<tr>
<td>LEV</td>
<td></td>
<td>-.006506**</td>
<td>-.006807**</td>
<td>-.007088**</td>
<td>-.006872**</td>
</tr>
<tr>
<td>LOAN</td>
<td></td>
<td>.008466</td>
<td>.0078566</td>
<td>.006731</td>
<td>.0080399</td>
</tr>
<tr>
<td>DEPO</td>
<td></td>
<td>-.004978</td>
<td>-.0040517</td>
<td>-.0029954</td>
<td>-.0041673</td>
</tr>
<tr>
<td>GDP</td>
<td></td>
<td>-.111</td>
<td>-.107</td>
<td>-.080</td>
<td>-.104</td>
</tr>
<tr>
<td>INF</td>
<td></td>
<td>-.306</td>
<td>-.375</td>
<td>-.484</td>
<td>-.373</td>
</tr>
<tr>
<td>Cons</td>
<td></td>
<td>-.050</td>
<td>-.204</td>
<td>-.314</td>
<td>-.172</td>
</tr>
<tr>
<td>Country fixed effect</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effect</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Statistic</td>
<td></td>
<td>303.0277***</td>
<td>349.6166*</td>
<td>498.6526**</td>
<td>352.2685**</td>
</tr>
</tbody>
</table>

Note: *, **, and *** are significant values at 10%, 5%, and 1%, respectively.

55
fintech and bank performance.

References

