ISSN 1674-2974
mOBMZE

L L HAXFEFR (BRARFR) FEA0E F 128

Journal of Hunan University (Natural Sciences) 2022 % 12RH
. . . . . . Vol. 49 No. 12
Available online at http://jonuns.com/index.php/journal/index December 2022
Open Access Article : https://doi.org/10.55463/issn.1674-2974.49.12.27

On the Stability of the van der Pol-Mathieu-Duffing Oscillator under the Effect of
Fast Harmonic Excitation

Sanaullah Dehraj'*, Rajab A. Malookani', Muhammad Memon®, Abdul Rafay Khatri?, Asgher Al
Maitlo', Shah zaman Nizamani®

! Department of Mathematics and Statistics, Quaid-e-Awam University of Engineering, Sciences and Technology, 67480
Nawabshah, Sindh, Pakistan

2 Department of Electronic Engineering, Quaid-e-Awam University of Engineering, Sciences and Technology, 67480
Nawabshah, Sindh, Pakistan

® Department of Information Technology, Quaid-e-Awam University of Engineering, Sciences and Technology, 67480
Nawabshah, Sindh, Pakistan

* Corresponding author: sanaullahdehraj@quest.edu.pk

Received: August 7, 2022 / Revised: October 4, 2022 / Accepted: November 10, 2022 / Published: December 30, 2022

Abstract: This paper aims to examine the nonlinear dynamics of a van der Pol-Mathieu-Duffing oscillator
under the effect of fast harmonic excitation. The governing equations of motion describing the harmonically forced
oscillations of the van der-Pol-Mathieu-Duffing oscillator are expressed in terms of the second-order
nonhomogeneous nonlinear ordinary differential equation with suitable initial conditions. This paper uses Krylov-
Bogoliubov averaging technique for the stability analysis of the system. The frequency response curves under the
effect of external excitation, damping, and nonlinearity are obtained at various resonances. Additionally, the stable
and unstable regions were identified. It turns out that the damping reduces the amplitude of oscillations and
squeezes the instability regions, whereas the stability region grew with the increase in the amplitude of external
excitation.
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1. Introduction

The van der Pol-Mathieu-Duffing Oscillator has a
wide range of applications in diverse fields for
instance, in mechanics, biology and epidemiology.
Mathematically, the van der Pol-Mathieu-Duffing
oscillator is modeled as nonlinear second order
ordinary differential equations. The van der Pol-
Mathieu-Duffing oscillator [1] is modeled as:

¥+ (1—hcoswt)x — (a— fx?)x—yx? =

af? cos x cos I, )
Subject to initial conditions:
x(0) = xo, £(0) = x;. )

The coefficients a, § are damping coefficients, ¥ is
a nonlinearity term, h and a are excitation amplitude
and taken to be small, x, and x, are initial

displacement and velocity. The dots here denote the
differentiation with respect to time t. The fast harmonic

excitation frequency 12 is considered as large compared
to w such that resonance phenomena with the
frequency 2 are avoided. The mentioned model is a

mixture of three equations, that is, van der Pol, Mathieu
and Duffing equation.

2. Literature Review

This system has applications in fast harmonic
excitation on chaotic dynamic [2], mechanics, biology,
and epidemiology [3], the dynamical behavior of dust
grain charge in dusty plasmas [4], modeling micro-
electro-mechanical system (MEMS) devices [4], and
electrical engineering. Many real life necessities like an
inverted pendulum, Duffing oscillator showing the
novel spring, microelectro mechanical system devices,
and optical parametric oscillations which are
mathematically termed as the Van der Pol-Mathieu-
Duffing oscillator. The dynamics of such an oscillator
have been examined through quantitative and
qualitative approaches. In the quantitative approach,
the perturbation method [5-6], homotopy analysis
method [7-8], Runge Kutta methods [9-10], the finite
difference and finite element methods are used [11-
12]. In the qualitative approach [13-15], the stability of
the system is investigated in terms of periodic steady
state, the first integral and bifurcation analysis. In [16—
17] the authors studied the van der Pol-Mathieu-
Duffing equation analytically and numerical methods
under the influence of harmonic excitation. In [18] the
authors studied the van der Pol-Mathieu-Duffing
oscillator under the influence of fast harmonic
excitation by the Melnikov method. It has been
observed that the chaotic domain in the parameter
space can be significantly reduced for some parameters
of fast excitations.

3. Method

In this paper, nonlinear dynamics of the van der Pol-
Mathieu-Duffing oscillator under the effect of fast
harmonic excitation are studied using Krylov-
Bogoliubov averaging method. The frequency response
curves are obtained for different cases and for different
resonances. The stability of the system at different
resonance cases was examined in detail. Finally, the
effect of different physical parameters on the system
motion was analyzed graphically.

4. Results — Solution to the Problem

In this section, the frequency-response curve for the
governing equations of motion given in Eq. (1) and (2)
by the application of Krylov-Bogoliubov averaging
method is constructed. Let us consider that the

parameters i, a, f, ¥ and a given in Eq. (1) are to be
of order £ (0 < € « 1). The direct application of the

averaging technique is not easy due to the inclusion of
the term cosx in excitation. We therefore use the

Maclaurin series for the expansion of cos x. We write
cosxz(l—x—2+ g x—6+) (3)
2! 4! 6!
41.Casel:cosx =1
By putting cosx= 1 and by
h, a, B, v, a= 0(e) into Eq. (1), we get
%+ x = €[xhcoswt + (@ — fx2)x + yx3 +
aQ? cos Q] o)

taking

For further simplification, we let wt = s and

w™? = 1— ey so that
dx _ g d*x _ 2 &x
Y and de2 ~  ds® (%)
By setting Eq. (5) into Eq. (4) it yields:
zx
X x= E[f.&x-l-IhCOSS-I- (a—ﬁxzjg +

ds?

yx3 + aQ? cos Qs]

(6)
Let us consider the solution of Eg. (6) is assumed in
the form as under:

x(s) = b(s) cos(s + Y(s)) )

By keeping b and ¢ constant, the differentiation of
(7) with respect to s yields

% = —bsin(s +1(s)) and ¥ = —bcos(s + P(s)) —

by cos(s + P(s)) — b sin(s + Y (s)) ®)

By plugging Eqg. (7) and (8) into Eg. (6) and
equating the resulting equations for b and 1, we obtain
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b =

—epb cos(s + ) sin(s + ) + bhcos(s) cos(s +

P) sin(s + ) — basin?(s + ) + b3 sin?*(s +

P) cos?(s + ) + b3y cos*(s + Y) sin(s + ) +

aQ? cos Qt sin(s + )] (9)
pcos?(s + ) + hcos(s) cos?(s + Y1) —
a sin(s + 1) cos(s + ) + b2 B sin(s + 1)) cos3(s +

1!"': e [1;9) + by cos*(s +¢) + EQQ cos Q cos(s + U)] (10)

It can be observed that Eg. (9) and (10) are 2m

periodic in 5. and the average of (9)-(10) yields.

b= jeba = Jeotpr Tanmnl(a-1)-v] (1)
T@:_EEM ~eb’y — Eacos[( -1)-v] (12)
If we choose o= 1, and putQ—1=eo in (11)
and (12) it yields:
b= —b — _bgﬁ— —asmn (13)
7= J__Ju — 3b2y— 25 4 €oST (14)

where 1 = ags — 1.
For a steady state, we make 5 and 7j to zero into Eq.
(13) and (14) respectively, thus we get

%ba — ébgﬁ— éasinn=0 (15)
1, Zp2, 1 -

g— K Sb]f yacosn =0 (16)

Dividing Eqg. (15) by "b", we get

1o = p2p— Lasing =

Sa sb B 2basmr;,r—[)l @17

Now squaring and adding equations (16) and (17) it
yields:

U__‘# - §b2y+§[z—z— a’+ zibzaﬁ—

gy N e

L] -
Letusput ¢ ==(Q — 1) into Eq. (18):
Q=1+e|-2u- gbzyii[z—z— a®+ ~bap -

Eq. (19) represents the frequency-response curve for
thiscasecosx = 1.

4.1.1. Stability Analysis of the System

To examine the stability of the system, we shall find
the eigenvalues. To do so, we compute the Jacobean of
the coupled system of ordinary differential equations
(15)-(16) as under:

la — 2p2p —lacosy
] = ] ? f 12 , (20)
—;b}’-l— 252408 , asinn
The critical points p of the averaged Egs. (13) and
(14) satisfy the following transcendental equations:

b—a—iba = asiny (21)

2

U—g——b y——cosn (22)

With Eq. (21) and (22), Eq. (20) becomes:

b b3
“a - Zb*p —bo+E4+ 2T )
,r:
] 1 1
g_H _ Y Za — _bzﬁ
b 2z 8 2 8 -

For eigenvalues |/ —AIl =0 where [ is the
identity matrix of order 2x2, thus the Eigenvalues can
be obtained as under:

1o - ip2g -2 —bo+L4 Y

2 8 2 g | _ (24)
T _# _ Sy 1o — leﬁ_;{
b 2b g 2 g

Simplification of Eq. (24) yields the following
eigenvalues of the system:

"11,2 =

Zq —ibzﬁ]i [% - [(a - (§+ %ZF))(U —

e =)

¢+ =) o
Note that instability occurs in the system

when 4 = 0 for a stable system 4 < 0.
1 1 o |pegt u 3Ty
(Ge—30%) —l? —{(“—(ﬁ T))(“—
p o, 9p%y
w, oy )}
¢+ %) "

The effect of different physical parameters u, the
amplitude of external excitation a, nonlinearity ¥, and
nonlinear damping 8 on the frequency response curve
has been drawn using Egs. (19), (25) and (26).

Effect of parameter ;2
T T T

<0

2

181

12F 0
a qf
0.8

06

04

02t : ._...:.:-.'_...

0

s 2 y 0 : 2 3

Q
Fig. 1 Frequency response curve under the effect of parameter p
withy=1,a=1,a=0.1,=1

Effect of external excitation amplitude a

25

05

0

Fig. 2 Frequency response curve under the effect of amplitude of
external excitation withy=1,u=-1,a=0.1,p=1
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Fig. 1 and Fig. 2 show that the amplitude varies
under the frequency by varying the parameter p and
amplitude of external excitation a. It is shown that as
u — +oo, the curve shifts toward the left, whereas the
curve shifts the right if u — —oo. The red portion in
the curve depicts the instability in the system. By
increasing ¢, the instability reduces. Similarly, the
amplitude of the oscillation grows if the amplitude of
external excitation increases. Additionally, the
instability also grows as excitation amplitude a grows.

Effect of nonlinearity +

y=0

18} y=1

\ y=-2
a 1 ;
V=2 &—
08 E y=-1
06F 4 — |
y=3+—
0.4F & ,‘\‘
Ok Zoageese ey
o L
-2 1 0 1 2 3 4

Q
Fig. 3 Frequency response curve of the effect of nonlinearity 3 with
a=1,a=01, =1, u=-1

Effect of nonlinear damping 3

o8

06

041

02

0
-2 -1 0 1 2 3 4

)
Fig. 4 Frequency response curve under the effect of nonlinear
damping fwithy =1, a=1,a =01, p = -1

Figs. 3 and 4 show the variation of amplitude of
oscillation versus frequency under the effects of
nonlinearity and nonlinear damping, respectively. It is
shown that if ¥ — +oo, the curve turns to the right,
whereas the curve turns to the left if y = —oo.

Additionally, it is also shown that the instability in the
system decreases if ¥ increases or decreases, that is,

away from zero. Moreover, Fig. 4 shows that amplitude
and instability decreases if the damping increases.

4.2.Case ll: cosx = (1 _Z_? )

By substituting the above expression for cosx and
by taking h, @, £, v, a = 0(¢) into Eq. (1), it yields:
¥F+x=¢ [xhcoswt + (a—BxP)x+yx®+

z
a®? cos Qt — Z— aQ? cos Qt]

(27)
By using Eq. (5) in (27) it follows:
—+ X = e[,ux + xh cos(s) + (a—ﬁ12)—+y1 +
af?cosfls — ; af?? cos Qs] 28)

wherew™2 =1—¢eu and w™* = (l—e‘u)i
By plugging Eg. (7) and (8) into Eq. (28) and
equating the resulting equations for 5 and v , we

obtain:
b = —e[ pbcos(s + 1) sin(s + ) + bhcos(s)cos(s +
) sin(s + ) — basin®(s + ) + b3p sin?(s +
) cos?(s + ) + b3y cos*(s + ) sin(s + ) +

aQ? cosQs sin(s + 1) — ab

:ﬂz cosQscos? (s+

P) sin(s + )] (29)
Y = —e[ pcos?(s + 1Y) + hcos(s) cos?(s + ) —

a sin(s + ) cos(s + ¥) + b?Bsin(s + ) cos3(s +

1Y) + b2y cos*(s + ) +§QZ c0sQs cos(s + ) —

abn®

cosQs cos*(s+ )] (30)
The right-hand sides of (29)-(30) are 2m periodic in

5 s0 the averaging of (29)-(30) yields.
b=teva — lenip- TZeasin[(0-3)-3u] (31)
@:—%E_u— geb2y+ %Eﬂ cos[(n—-3)-3y] (32)
Letus put Q —3 = eg andn = g5 — ¢ in Egs. (31)

and (32) we get

lpg — Lpig_ 2

. ba sb B o asiny (33)

[ T

_o,1 3pzy_ 2
=S topt Sby . acosm (34)

For a steady state, we shall make b and 7j equal to
zero into Eq. (33) and (34) it yields:

—ba— bgﬁ asmq—o (35)
3

E+5ﬁ+ Eb Yy — EQCOST] =0 (36)

Dividing Eq. (35) by ‘b, if follows

1o — Ip2p— 2 ising =

Sa Sbﬁ  asinn =0 (37)

Now squaring Eg. (36) and (37) and adding the
resulting equations, we get
g= - %,u— Ebzyii[w

R e
. a+2ba,8

iy -
15b B ] (38)
Putting o = é[ﬁ — 3) into Eq. (39) yields:
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Q=
3+ |- E,u - zbzyig[m::az— a?+ %bza,{%—
gy

Lot )
Thus Eg. (39) is the required equation of

frequency-response curve for this case,

cosx—(l——_)

4.2.1. Stability Analysis

To examine the stability of the system, we shall find
the eigenvalues of the system. To do so, we compute
the Jacobean of the coupled system of ordinary
differential equations (35)-(36).

1 18p 9p
S ——bzﬁ —asinng ———acosy

= (@)
—a sing

16

The critical points p of the averaged Egs. (33) and
(34) satisfy the following transcendental equations:

1p o — Lp3p_ 9%

2bﬁc Sb B= %asmn (41)

4,1 3p2,_ 3

S tout Sb y = [ acosn (42)
with Eq. (41) and (42), Eq. (40) becomes:

Eby - Ea cosn

2
—ioc—lbzﬁ, _be b 3By
— 2 8 3 2 8
/= g I 3by 1 1,9 (43)
L B3 Lo lpzp
3b 2b 8 2 8 p

For eigenvalues |[J —AI| = 0, where I is the
identity matrix of order 2x2, thus the eigenvalues of
the system are given as under:

_ 1 1.2 LSSl A Y A

Az = sb ﬁiLa +{(3+2+ 2 )(3+2

) "

The system is unstable if L > 0 so for stable system

A <0.
sl o 2o

(Ebzﬁ)z _

bty
2 )H <0 (45)
A frequency response curve under the effect of
parameter u, amplitude of external excitation
a, positive nonlinearity ¥, and negative nonlinearity ¥
are drawn usmg equations (39), (44) and (45).

Effect of parameter ;2

Fig. 5 Frequency response curve under the effect of parameter p
withy =1, a=1,a=0.01 =1

Effect of external excitation amplitude a

a=1

Q
Fig. 6 Frequency response curve under the effect of external
excitationg withy =1, p=-1,a =001, =1

Figs. 5 and 6 show the frequency response curve
under the effects of the parameter g and the

amplitude b. It is shown that the curves move toward
right as the parameter u increases. Additionally, the
instability decreases with increasing the parameter g. It

is shown that the curve stretches as the excitation
amplitude b increases and the instability increases as

the excitation amplitude increases.

Effect of positive nonlinearity ~

3

25

a15f

05

0 L L L
-10 -5 0 5 10 15

Fig. 7 Frequency response curve of the effect of nonlinearity  with
a=1,a=001 =1, p=-1

Effect of negative nonlinearity

25

a 15}

05

0 2 4 6 8 10 12 14 16 18 20
Q
Fig. 8 Frequency response curve under the effect of nonlinearity ¢

Withﬂ=1Ja=ﬂ.01,ﬂ=1JH=—1
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Figs. 7 and 8 exhibit the frequency response curves
under the effect of nonlinearity. For positive
nonlinearity y, it is shown that the instability regions

manifold as y increases. By decreasing y, the instability

regions decreases and the curve stretches. For negative
nonlinearity y, it is shown that the instability region

decreases as the parameter ¥ moves toward zero.

4.3.Case lll: cosx = (1—x—?+x—f )
2! 4!
Substituting the expression for cos x and by taking
h, @, B, v, a = 0(€) into Eg. (1) and adopting the

similar steps as carried out for case | and Case Il we get
the following frequency response equation as under:

Q=
£2[(E2) -
b*h zﬂ (46)

4.3.1. Stability Analysis

For stability purposes, we shall find the eigenvalues
of the systems for this case, which are obtained using
similar types of steps as carried out for Case | and Case
I and are obtained as under

15

5+¢ ——pl— —szf

el + %bzeﬁ—

e o (e 2
2. 2 .

For this case system is Instable if A > 0, that is
(o) ~[(a-20)" o o2+ (e

3 . 3b%y
2t )}]< 0 (48)

A frequency response curve under the effect of
parameter u, amplitude of external excitation
a, positive nonlinearity ¥, and negative nonlinearity ¥

are drawn using equatlons (46), (47) and (48).

Effect of parameter .3

3

y=-15 ¢—|
o & © 4 2 0 2 4 5 8 1
Q
Fig. 9 Effect of frequency response curve parameter p with y =1, a
=4, o =0.00000001, p = 0.001

Effect of excitation amplitude a

S\

Q
Fig. 10 Frequency response curve under the effect of amplitude of
external excitation withy=1,p=-1,a=0.1,p=1

05

Figs. 9 and 10 show the frequency response curve
under the effect of the parameter x and the amplitude

b. It shows that the curve moves toward the left as the
parameter p increases. Further, the instability increases
as the parameter p increases. It is shown that instability
increases the amplitude b increases.

Effect of positive nonlinearity

3

251

Q15f

05

Fig. 11 Frequency response curve with nonlinearity effect y with

a =4, ¢ =0.00000001, 5§ =0.001, p = -1

Effect of negative nonlinearity

ar
25 -
2k
—>
15+ '_|/=0
1k
=1
05f y=-2
0 . . . . . . )
-10 -5 0 5 10 15 20 25 30

Q
Fig. 12 Frequency response curve with nonlinearity effect y with

a =2, a =0.00000001, § =0.001, p=—-1
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Figs. 11 and 12 exhibit the frequency response
curves under the effect of nonlinearity. For positive
nonlinearity, it is shown that the curve moves toward
right as the nonlinearity increases. Additionally, the
instability decreases as the nonlinearity increases. For
negative nonlinearity, it is shown that the curve moves
toward the left as the nonlinearity increases in negative.
Additionally, the instability decreases as the
nonlinearity decreases in negative.

2 rY (=)
4.4, Case IV: cosx = (1 - T4fo 2 )

Substitution of the above expression for cos x and
by taking h, @, B, y, a=0(¢) into Eq. (1) and
adopting the similar steps as carried out for cases I to
I11 w get following equation of frequency response:

7 21, 7 [ a9m5 47 5 1.4
Q_?-I-E[_ L ?b Yi;[(s:xs‘;) -att Eb af =

' :ﬂ (49)

4.4.1. Stability Analysis

For stability purposes, we shall find the eigenvalues
of the systems for this case, which are obtained using
similar types of steps as carried out for Case I to Il and
are obtained as under

Aip=—[a—207p| 2 Ga—ébzﬁ)z +

(E_|_E_|_ MJ :

7 2 ]
5¢ 5 b2
(F+2+27) (50)

This is the instability if A >0
(a-308) -[(Ga-2e2p) "+
8 2 8

(Geie 0G0

The frequency response curve under the effect of
parameter u, amplitude of external excitation
@, positive nonlinearity ¥, and negative nonlinearity ¥
are drawn by using equations (49), (50) and (51).

Effect of parameter ;2

3

25n

-50 -40 -30 -20 -10 0 10 20 30 40

Fig. 13 Frequency response curve-under the effect of parameter u
with ¥ = 1, @ = 100, & = 0.00000000001, § = 0.0000001

Effect of external excitation amplitude a

25F

05

0 L L L I L I . .
-50 -40 -30 -20 -10 0 10 20 30 40
Q

Fig. 14 Frequency response curve under the effect of amplitude of
external excitation o with

y=1 p=-1, & = 0.00000000001, f = 0.0000001

Figs. 13 and 14 exhibit the frequency response
curve under the effect of parameter i and the amplitude
b. It is shown that the curve moves left as the parameter
U increases and subsequently instability increases as p
increases. It is shown that the curve moves upward as

the amplitude excitation b decreases; whereas the
instability grows as the amplitude b grows.

Effect of Positive Nonlinearity -~
T T T T T T

3

251

a15f

05

0 I L L L L I L L
-50 -40 -30 -20 -10 0 10 20 30 40

Fig. 15 Frequency response curve under the effect of nonlinearity y
with ¢ =100, 0 =1, #=0.01, u = -1

Effect of Negative Nonlinearity +

251

o 15}

05

0 L L L J L L L L L
-5 10 5 0 5 10 15 20 25 30 35 40

Fig. 16 Frequency response curve L}nder the effect of nonlinearity y
witha=100,a=1,=0.01,u=-1

Figs. 15 and 16 exhibit the frequency response
curve under the effect of nonlinearity. For positive
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nonlinearity ¥, it is shown that the curve moves upward
as the nonlinearity y increases and subsequently the
instability region grows as the nonlinearity increases.
For negative nonlinearity y, it is shown that the curve

moves left as the nonlinearity ¥ increases from the

negative side and subsequently the instability region
increases.

5. Conclusion

In this paper, the stability of the van der Pol-
Mathieu-Duffing oscillator under the effects of
damping nonlinearity and fast harmonic excitation is
examined via Krylov-Bogoliubov averaging technique.
It is found that the resonances occur at at & 1,3,5,7

depending upon the expansion of external excitation
term cosx . For thecosx & 1, resonance occur at

2
01, whereas for COs X A (1 — ’;_) ,

x2 xd- 2 & &

COSX A (1——,+—,)and cosx®1——+=——"the
2! 4! 2! 4! 6!

resonance occurs at Q & 3,5 and 7, respectively.

The expressions for frequency-response curves are
obtained at various resonant conditions. The main
finding of this study is that for the case of
resonance {1 & 1, the frequency-response curves have a

classical bell shape, in this situation the system is non-
chaotic. Further, it is seen that the amplitude of the
oscillation grows as excitation increases, while the
damping suppresses it. Moreover, the entrainment area
is seen to shift toward right if nonlinearity decreases
and toward left if it increases. For the case of
resonances Q = 3,5and 7 the frequency-response

curves first decreases to zero and then increases. It is
seen that the entrainment region stretches as the
amplitude of external excitation increases while
compresses when excitation decreases, Furthermore, it
is shown that the entrainment region shifts toward right
if nonlinearity increases, while with a decrease in
nonlinearity, the entrainment region shifts toward left.
In the future, the averaging method can be applied to
study the van der Pol-Mathieu-Duffing oscillator for
external excitations other than fast harmonic excitation.
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