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Abstract: This paper aims to examine the nonlinear dynamics of a van der Pol-Mathieu-Duffing oscillator 

under the effect of fast harmonic excitation. The governing equations of motion describing the harmonically forced 

oscillations of the van der-Pol-Mathieu-Duffing oscillator are expressed in terms of the second-order 

nonhomogeneous nonlinear ordinary differential equation with suitable initial conditions. This paper uses Krylov-

Bogoliubov averaging technique for the stability analysis of the system. The frequency response curves under the 

effect of external excitation, damping, and nonlinearity are obtained at various resonances. Additionally, the stable 

and unstable regions were identified. It turns out that the damping reduces the amplitude of oscillations and 

squeezes the instability regions, whereas the stability region grew with the increase in the amplitude of external 

excitation.   

Keywords: Krylov-Bogoliubov averaging, resonances, frequency response curve, stability. 

快諧波激勵作用下范德波爾-梅西-杜芬振盪器的穩定性 

摘要：本文旨在研究范德波爾-梅西-杜芬振盪器在快諧波激勵作用下的非線性動力學。描

述范德波爾-梅西-杜芬振盪器的諧波強迫振蕩的運動控制方程用具有合適初始條件的二階非

齊次非線性常微分方程表示。本文采用克雷洛夫-博戈柳博夫平均技術對系統進行穩定性分

析。在各種共振條件下得到了在外部激勵、阻尼和非線性作用下的頻率響應曲線。此外，還

確定了穩定和不穩定區域。事實證明，阻尼減小了振蕩的幅度並擠壓了不穩定區域，而穩定

區域隨著外部激勵幅度的增加而增加。 

关键词：克雷洛夫-博戈柳博夫平均、共振、頻率響應曲線、穩定性。 
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1. Introduction    
The van der Pol-Mathieu-Duffing Oscillator has a 

wide range of applications in diverse fields for 

instance, in mechanics, biology and epidemiology. 

Mathematically, the van der Pol-Mathieu-Duffing 

oscillator is modeled as nonlinear second order 

ordinary differential equations. The van der Pol-

Mathieu-Duffing oscillator [1] is modeled as: 

      (1) 

Subject to initial conditions: 

 .                                        (2) 

The coefficients  are damping coefficients,  is 

a nonlinearity term,  and  are excitation amplitude 

and taken to be small,  and  are initial 

displacement and velocity. The dots here denote the 

differentiation with respect to time  The fast harmonic 

excitation frequency  is considered as large compared 

to  such that resonance phenomena with the 

frequency  are avoided. The mentioned model is a 

mixture of three equations, that is, van der Pol, Mathieu 

and Duffing equation.  

 

2. Literature Review 
This system has applications in fast harmonic 

excitation on chaotic dynamic [2], mechanics, biology, 

and epidemiology [3], the dynamical behavior of dust 

grain charge in dusty plasmas [4], modeling micro-

electro-mechanical system (MEMS) devices [4], and 

electrical engineering. Many real life necessities like an 

inverted pendulum, Duffing oscillator showing the 

novel spring, microelectro mechanical system devices, 

and optical parametric oscillations which are 

mathematically termed as the Van der Pol-Mathieu-

Duffing oscillator. The dynamics of such an oscillator 

have been examined through quantitative and 

qualitative approaches. In the quantitative approach, 

the perturbation method [5–6], homotopy analysis 

method [7–8], Runge Kutta methods [9-10], the finite 

difference and finite element methods are used [11–

12]. In the qualitative approach [13–15], the stability of 

the system is investigated in terms of periodic steady 

state, the first integral and bifurcation analysis. In [16–

17] the authors studied the van der Pol-Mathieu-

Duffing equation analytically and numerical methods 

under the influence of harmonic excitation. In [18] the 

authors studied the van der Pol-Mathieu-Duffing 

oscillator under the influence of fast harmonic 

excitation by the Melnikov method. It has been 

observed that the chaotic domain in the parameter 

space can be significantly reduced for some parameters 

of fast excitations. 

 

3. Method  
In this paper, nonlinear dynamics of the van der Pol-

Mathieu-Duffing oscillator under the effect of fast 

harmonic excitation are studied using Krylov-

Bogoliubov averaging method. The frequency response 

curves are obtained for different cases and for different 

resonances. The stability of the system at different 

resonance cases was examined in detail. Finally, the 

effect of different physical parameters on the system 

motion was analyzed graphically. 

 

4. Results – Solution to the Problem 
In this section, the frequency-response curve for the 

governing equations of motion given in Eq. (1) and (2) 

by the application of Krylov-Bogoliubov averaging 

method is constructed. Let us consider that the 

parameters  and  given in Eq. (1) are to be 

of order  The direct application of the 

averaging technique is not easy due to the inclusion of 

the term  in excitation. We therefore use the 

Maclaurin series for the expansion of  We write   

                       (3) 

 

4.1. Case I:   

By putting and by taking 

  into Eq. (1), we get 

       (4) 

For further simplification, we let and 

 so that 

                         (5) 

By setting Eq. (5) into Eq. (4) it yields:  

(6) 

Let us consider the solution of Eq. (6) is assumed in 

the form as under:  

                                  (7) 

By keeping and constant, the differentiation of 

(7) with respect to  yields 

   (8) 

By plugging Eq. (7) and (8) into Eq. (6) and 

equating the resulting equations for  and , we obtain 
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       (9) 

= -  [    (10) 

It can be observed that Eq. (9) and (10) are  

periodic in  and the average of (9)-(10) yields.  

         (11) 

  (12) 

If we choose  and put    in (11) 

and (12) it yields: 

                        (13) 

                    (14) 

where  

For a steady state, we make   and to zero into Eq. 

(13) and (14) respectively, thus we get 

                          (15) 

                  (16) 

Dividing Eq. (15) by we get  

                           (17) 

Now squaring and adding equations (16) and (17) it 

yields:  

         (18) 

Let us put   into Eq. (18): 

       (19) 

Eq. (19) represents the frequency-response curve for 

this case . 

 

4.1.1. Stability Analysis of the System 

To examine the stability of the system, we shall find 

the eigenvalues. To do so, we compute the Jacobean of 

the coupled system of ordinary differential equations 

(15)-(16) as under:                 

       (20) 

The critical points  of the averaged Eqs. (13) and 

(14) satisfy the following transcendental equations: 

                     (21) 

                                (22) 

With Eq. (21) and (22), Eq. (20) becomes: 

         (23) 

For eigenvalues    where   is the 

identity matrix of order 2 2, thus the Eigenvalues can 

be obtained as under:  

          (24) 

Simplification of Eq. (24) yields the following 

eigenvalues of the system:                                           

            (25) 

Note that instability occurs in the system 

when  for a stable system . 

    (26) 

The effect of different physical parameters the 

amplitude of external excitation nonlinearity   and 

nonlinear damping  on the frequency response curve 

has been drawn using Eqs. (19), (25) and (26). 

 
Fig. 1 Frequency response curve under the effect of parameter μ 

with γ = 1, a = 1, α = 0.1, β = 1 

 

 
Fig. 2 Frequency response curve under the effect of amplitude of 

external excitation with γ = 1, μ = -1, α = 0.1, β = 1 
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Fig. 1 and Fig. 2 show that the amplitude varies 

under the frequency by varying the parameter  and 

amplitude of external excitation  It is shown that as 

, the curve shifts toward the left, whereas the 

curve shifts the right if   The red portion in 

the curve depicts the instability in the system. By 

increasing , the instability reduces. Similarly, the 

amplitude of the oscillation grows if the amplitude of 

external excitation increases. Additionally, the 

instability also grows as excitation amplitude grows. 

 
Fig. 3 Frequency response curve of the effect of nonlinearity with 

 

 

 
Fig. 4 Frequency response curve under the effect of nonlinear 

damping with  

 

Figs. 3 and 4 show the variation of amplitude of 

oscillation versus frequency under the effects of 

nonlinearity and nonlinear damping, respectively. It is 

shown that if  the curve turns to the right, 

whereas the curve turns to the left if  

Additionally, it is also shown that the instability in the 

system decreases if  increases or decreases, that is, 

away from zero. Moreover, Fig. 4 shows that amplitude 

and instability decreases if the damping increases.  

  

4.2. Case II:  

By substituting the above expression for   and 

by taking  into Eq. (1), it yields:  

         (27) 

By using Eq. (5) in (27) it follows: 

   (28) 

where   and  .  

By plugging Eq. (7) and (8) into Eq. (28) and 

equating the resulting equations for  and   , we 

obtain:          

     (29) 

   (30) 

The right-hand sides of (29)-(30) are  periodic in 

 so the averaging of (29)-(30) yields. 

     (31) 

     (32) 

Let us put  and  in Eqs. (31) 

and (32) we get 

                    (33) 

                 (34) 

For a steady state, we shall make  and  equal to 

zero into Eq. (33) and (34) it yields: 

                   (35) 

                (36) 

Dividing Eq. (35) by , if follows 

                        (37) 

Now squaring Eq. (36) and (37) and adding the 

resulting equations, we get  

 (38) 

Putting into Eq. (39) yields: 
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        (39) 

Thus, Eq. (39) is the required equation of 

frequency-response curve for this case, 

. 

 

4.2.1. Stability Analysis 

To examine the stability of the system, we shall find 

the eigenvalues of the system. To do so, we compute 

the Jacobean of the coupled system of ordinary 

differential equations (35)-(36).    

    (40) 

The critical points  of the averaged Eqs. (33) and 

(34) satisfy the following transcendental equations: 

                               (41) 

                            (42) 

with Eq. (41) and (42), Eq. (40) becomes: 

(43) 

For eigenvalues  0, where   is the 

identity matrix of order 2 2, thus the eigenvalues of 

the system are given as under: 

   (44) 

The system is unstable if λ > 0 so for stable system 

λ < 0.    

        (45) 

A frequency response curve under the effect of 

parameter amplitude of external excitation 

positive nonlinearity  and negative nonlinearity  

are drawn using equations (39), (44) and (45). 

 
Fig. 5 Frequency response curve under the effect of parameter   

with  

 

 
Fig. 6 Frequency response curve under the effect of external 

excitation  with  

 

Figs. 5 and 6 show the frequency response curve 

under the effects of the parameter  and the 

amplitude . It is shown that the curves move toward 

right as the parameter  increases. Additionally, the 

instability decreases with increasing the parameter . It 

is shown that the curve stretches as the excitation 

amplitude  increases and the instability increases as 

the excitation amplitude increases. 

 
Fig. 7 Frequency response curve of the effect of nonlinearity  with  

 

 

 
Fig. 8 Frequency response curve under the effect of nonlinearity  

with  
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Figs. 7 and 8 exhibit the frequency response curves 

under the effect of nonlinearity. For positive 

nonlinearity , it is shown that the instability regions 

manifold as  increases. By decreasing  the instability 

regions decreases and the curve stretches. For negative 

nonlinearity  it is shown that the instability region 

decreases as the parameter  moves toward zero. 

 

4.3. Case III:  

Substituting the expression for  and by taking 

 into Eq. (1) and adopting the 

similar steps as carried out for case I and Case II we get 

the following frequency response equation as under:  

      (46) 

 

4.3.1. Stability Analysis 

For stability purposes, we shall find the eigenvalues 

of the systems for this case, which are obtained using 

similar types of steps as carried out for Case I and Case 

II and are obtained as under  

 (47) 

For this case system is Instable if that is 

          (48) 

A frequency response curve under the effect of 

parameter amplitude of external excitation 

positive nonlinearity  and negative nonlinearity  

are drawn using equations (46), (47) and (48). 

 
Fig. 9 Effect of frequency response curve parameter μ with γ = 1, a 

= 4, α = 0.00000001, β = 0.001 

 

 
Fig. 10 Frequency response curve under the effect of amplitude of 

external excitation with γ = 1, μ = -1, α = 0.1, β = 1 

 

Figs. 9 and 10 show the frequency response curve 

under the effect of the parameter  and the amplitude 

b It shows that the curve moves toward the left as the 

parameter  increases. Further, the instability increases 

as the parameter  increases. It is shown that instability 

increases the amplitude b increases. 

 
 Fig. 11 Frequency response curve with nonlinearity effect γ with  

 

 
Fig. 12 Frequency response curve with nonlinearity effect with 
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Figs. 11 and 12 exhibit the frequency response 

curves under the effect of nonlinearity. For positive 

nonlinearity, it is shown that the curve moves toward 

right as the nonlinearity increases. Additionally, the 

instability decreases as the nonlinearity increases. For 

negative nonlinearity, it is shown that the curve moves 

toward the left as the nonlinearity increases in negative. 

Additionally, the instability decreases as the 

nonlinearity decreases in negative. 

 

4.4. Case IV:  

Substitution of the above expression for and 

by taking  into Eq. (1) and 

adopting the similar steps as carried out for cases I to 

III w get following equation of frequency response:  

     (49) 

 

4.4.1. Stability Analysis 

For stability purposes, we shall find the eigenvalues 

of the systems for this case, which are obtained using 

similar types of steps as carried out for Case I to III and 

are obtained as under  

                (50) 

This is the instability if λ > 0 

           (51) 

The frequency response curve under the effect of 

parameter amplitude of external excitation 

positive nonlinearity  and negative nonlinearity  

are drawn by using equations (49), (50) and (51). 

 
Fig. 13 Frequency response curve under the effect of parameter μ 

with  

 
Fig. 14 Frequency response curve under the effect of amplitude of 

external excitation α with  

 

Figs. 13 and 14 exhibit the frequency response 

curve under the effect of parameter  and the amplitude 

b  It is shown that the curve moves left as the parameter 

 increases and subsequently instability increases as  

increases. It is shown that the curve moves upward as 

the amplitude excitation b decreases; whereas the 

instability grows as the amplitude b grows.    

 
Fig. 15 Frequency response curve under the effect of nonlinearity γ 

with α = 100, α = 1, β = 0.01, μ = -1  

 

 
Fig. 16 Frequency response curve under the effect of nonlinearity γ 

with a = 100, α = 1, β = 0.01, μ = -1 

 

Figs. 15 and 16 exhibit the frequency response 

curve under the effect of nonlinearity. For positive 
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nonlinearity  it is shown that the curve moves upward 

as the nonlinearity  increases and subsequently the 

instability region grows as the nonlinearity increases. 

For negative nonlinearity it is shown that the curve 

moves left as the nonlinearity  increases from the 

negative side and subsequently the instability region 

increases.  

     

5. Conclusion  

In this paper, the stability of the van der Pol-

Mathieu-Duffing oscillator under the effects of 

damping nonlinearity and fast harmonic excitation is 

examined via Krylov-Bogoliubov averaging technique. 

It is found that the resonances occur at   

depending upon the expansion of external excitation 

term . For the  resonance occur at 

 whereas for , 

and the 

resonance occurs at respectively.  

The expressions for frequency-response curves are 

obtained at various resonant conditions. The main 

finding of this study is that for the case of 

resonance , the frequency-response curves have a 

classical bell shape, in this situation the system is non-

chaotic. Further, it is seen that the amplitude of the 

oscillation grows as excitation increases, while the 

damping suppresses it. Moreover, the entrainment area 

is seen to shift toward right if nonlinearity decreases 

and toward left if it increases. For the case of 

resonances  the frequency-response 

curves first decreases to zero and then increases. It is 

seen that the entrainment region stretches as the 

amplitude of external excitation increases while 

compresses when excitation decreases, Furthermore, it 

is shown that the entrainment region shifts toward right 

if nonlinearity increases, while with a decrease in 

nonlinearity, the entrainment region shifts toward left. 

In the future, the averaging method can be applied to 

study the van der Pol-Mathieu-Duffing oscillator for 

external excitations other than fast harmonic excitation.  
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