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Approximation Technique for Solving High-Order Non-Oscillatory Vibration Systems
with Slowly Changing Coefficients Represented by Strong Non-Linearity and
Multiple Integrated Roots
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Abstract: A formula for the asymptotic solution of an over-damped strongly nonlinear vibration system
combining the extended KBM method and the harmonic balance (HB) method with slowly varying coefficients is
proposed. This article aims to establish a slowly time-varying solution of an over-damped nonlinear vibration
system where one eigenvalue is an integer multiple (greater than two hundred times) of the other eigenvalues. The
integrated multiple eigenvalues can provide a better result than other eigenvalues for strong linearity (even if). We
found solutions by considering initial conditions and comparing the percentage error of present solutions with
unified solutions by using this procedure in examples. Finally, the findings are addressed, especially to improve the
physical prospects and shown graphically by using Excel, Dev C++, MATHEMATICA, and MATLAB software.

Keywords: nonlinear system, over damped vibration system, slowly changing coefficients, multiple
integrated roots, perturbation equations, strongly non-linear.
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1. Introduction important. To avoid the complexity of algebra, the

Many analytical methods have found limited  Perturbation  method —determines a  low-order
solutions for different non-linear systems. Among them  approximate solution. Another significant method is the
are the widely used perturbation methods, wherein a  harmonic balance (HB) method [6-10], which covers
small parameter power amplifies the solution. [1-5] are  Strongly nonlinear systems. The Krylov—Bogoliubov
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averaging method (KBM) [11-13] is one of the the
above-mentioned methods that is well-known for
analyzing the theory of nonlinear oscillations. Initially,
[3] developed this method to obtain periodic solution of
nonlinear second-order differential systems. Letter, the
method was amplified and verified mathematically by
[4]. To process a damped oscillatory, [14] extended this
method by using a strong linear damping force.
Further, to advance an over-damped nonlinear system,
[15]] encompassed this method. [17-19] examined
over-damped nonlinear systems and found approximate
solutions of Duffing’s equation, when the number of
undisturbed equation roots is more than one times.
Again, [18] proposed a unified method to solve an n-th
order  differential  system  (autonomous) and
characterized by using constant coefficient and slowly
varying  coefficient-based  oscillatory, = damped
oscillatory and non-oscillatory processes. [20] extended
KBM method by using the slowly and periodically
changing  coefficients-based on  underdamping,
damping, and overdamping vibrating systems. [20],
[21] introduced a damped forced nonlinear vibrating
system with varying coefficients. At present, [22] also
extended the method by using slowly and periodically
changing coefficients-based damped and damped
forced vibrating systems with strong non-linearity. In
another recent paper, [23] finds approximate solutions
to over damped nonlinear differential systems based on
the extended KBM method, where one eigenvalue is a
multiple (ten times) of the other eigenvalues. The
purpose of this article is to find a solution for a slowly
changing over-damped nonlinear vibration system
where one eigenvalue is an integral multiple (more than
200 times) of the other eigenvalues.

2. Methodology
Let us consider nonlinear differential
governed by
¥4+ 25 (Di+ ({(§+GeosT+Esin2)x =
—ef(x,%,1), T=&t

systems

1)
indicate differentiation with
respect to t, €an inconsiderable parameter,
{4=0,=0(c) =3, t=c¢&tslowly varying time,
E(t) =0, f a nonlinear function. Since their time
derivatives are proportional to€, the coefficients in
equation @ change slowly. We
set,w?(7) = ({{ + {; cos T+ {3 sin2 1) where o(r)
is known as the internal frequency. Setting € =0 and
T=1,= constant, in Eq. (1). Egq. (1) has two

eigenvalues, A,(r,) and A,(r,) are constants, but

where the over-dots

when & =0, 4,(z,) and 4,(z,) change slowly in that
their time derivatives. We may consider that
4, (74)|>>|4,(z,)|. The unperturbed solution of

equation (1) is
x(t,0) = xoeﬁi('fo]t + }roeﬂz(”fojt, )
When ¢ # 0 we propound an asymptotic solution
for equation (1)
x(t,€) = x15(6T) + ¥y 0(t.T) + cuy (x,y,6,7) +
su,(x,y,6,1)+..., 3)

where X, and Y, satisfies first-order differential
equations

Xy = A (D)x; + eXy (x4, 7T) + 72X, (x,)4,7)

V=40 + eV (3,0 + €Ly, 1 (4

Limited to the first few terms only, 1, 2...m, a series
of expansions of (3) and (4), we determine the function
Uy, Uy,..., and X, X,,...,Y,,Y,,..., such that X, (t,7)
and Y, (t,7) appears in (3) and (4) and fulfills the
given differential system (1) with precision ™" [15] to
determine these unknown features. The function does
not contain terms that include; gijt, j =12, these are
because they are incorporated in the series expansion
(3) at the time of ordering £° As these unknown

functions are determined, the functions u;,U,,... not

included secular-type terms te ' [15, 18, 19, 20, 24-26]
Differentiate x (t, €) twice with respect to t and
substitute the derivatives X and x in the original
equation (1) to equalize the coefficients of the equal
harmonics. We get

(Ag 20y + Ay 0y — A;) Xy + (A x,0x, +

Ay 2y, — )Y + lel + Iz}ﬁ + (A x,0x; +

Ay 2y; — A1) (A x,0x5 + Ly, 0y, — )u; =

_f(oj (X171, 7). (5)
where

Ay =dA/dt, A, =dA,/dr, 0xy = 8/0x,, 0y, = /0y, f @ = f(x0,%0,T)

Here it is assumed that £°) can be expanded in the
Fourier series as

,f(Oj = 13?1,1'2=0 Frl,rz (T)x?-}{z (6)

The formulae are obtained by equating the

coefficients of equal harmonic terms on both sides. To
get the solution (1) with overdamping, apply a

constraint that u, ---excludes the
terms.

x'ry'z i A+ i, A, < (1 H1)8(1g). 14,1, = 0,1,2,
This assumption confirms that there are no terms of the
secular type te ™' [15, 16, 20, 24-26], assuming that
this research can found the unknown function
u,and X,,Y,, so this completes the evaluation of the
first order solution in (1).

2.1. Example

Consider a nonlinear autonomous vibrating system
governed by

i+ 28 (DE+ ((F+ GeosT+ Esin21)x = —x3(7)
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Eq. (7) has two eigenvalues. J{j (t5).j = L2 Here,
f(oj = _(If + 31‘%}'2 + 31'1:"'22 + }’23)
and 2x, =a/dx,, Ny, = a/dy;. Now, by replacing

Xog=X1+V2

with the value of f @ Eq. (5), we obtain
(qulg)ﬁ + ﬁz leyl - /12 ) xl + (ﬂ1X19X1 + /Lzy1Qy1 - j1)Y1 (8)
+j1'X1 +ﬂ'2’y1:_(xl3 +3X12y1)

and
(/-llxlgxl + ﬂ'zy]_le - 21)(11)(19)(1 + ﬂz yjI_le - 22)”1 (9)
=—(3%Y; +Y,")
The particular solution of (9) is
u =0 X1Y12 +a, Y13 (10)
where

o, ==324, (4 +4,), @, =-122,(34, - 4)

Now we solve the two functions of (7) X and
Y (described in the methodology). The specific
solutions are

(Apx 2x; + Ay 0y, — )X, + Allli =—xi (11)
and

(A 2000%; + oy, 0y — A0V + Ay = —3xfy, (12)

To the particular solution of (11)-(12) and replacing
the functional values of, X, Y, with (4) and rearrange,
we obtain

Xy =Ayx; + S(‘q’llxlﬁl + B> 1?) (13)
and y; = A0 + 5(%3’1311’1 +X21'123’1) (14)
where

:Bl =_1/(ﬂ1 _/12)’ :Bz =_1/(3/11 _/12),

L =U(AL -4), 1, =384 +4,)

Now we must solve the equation. (13) and equation.
(14) for anX, Y,; but Eq. (13) and Eq. (14) have an
exact solution or not. In most of the cases (i.e., over
damped or critically damped), we can unable to find an
exact solution of equation. (4) when the nonlinear
equation has a physically powerful linear damping
force [16, 20, 24, 26-30]. For over damped system,
[15] replace the terms with a small parametere,
through their respective unperturbed values (i.e.,
X (1), y,(t) by xg,e*2(Fo)fandy,e?=(Te)t) since X
together with all x, (t), y, (t) die out quick. Within this
time interval, the difference between
X, (), y; (t) andx,e?:(Fo)t y e 22(Fa)® occurs in the
order of € only. Yet, because of motions with little
damping or without damping, this is certainly off-base.
Here, X and x,(t),y,;(f) die out occurs in more than
an order € . In this article we used Runge-Kutta method
(4th order).

Hence, the first order solution of equation (7) is

x(t,€) = x; +y, + €uy, (15)
where X; and Y, are given by (13) and (14), and U, is
given by (10).

2.2. Another Formation

We may consider another formation. Therefore, we
choose

(A 023 + A3y Dy — A5) Xy + (A%, 0x, +

Ay 2y, — A)Y + lel + 51'2}’1 = _(xf + 37‘5%3”1 +

") (16)
and

(A2 02203 + Aoy 0y; — A4) (A 20005 + Ay )3 Qyy —

Ayuy = =3x,yf (17)

The particular solution of (17) is

U, =a; X%V, (18)

where o, =—3/21,(4, +1,)

Now we solve the two functions of (16) X and
Y (described in methodology).

The particular solutions are

(Ax 0xy + Ly 2y — )X, + ';Llﬁl =—x§ (19)
and

(A x, 0%y + Ay, Qyy =AY, + Ly = —3x3y, —

»? (20)

By the particular solution of (19)-(20) and
substitution of functional values for X, Y . into (4) and

rearrange, we obtain

Xy =A%, + 5("1'17‘31181 + B, lf} (21)
and

Vi =Ay + 5('&:?}’12.’1 + X217 + Xa}ﬁa) (22)
where

By=—-1/(A4 =)0, =—1/(34;, — 4;),
X1=1/(A =), s = =3/(A + A3). )ts = —1/(32, = A1)

Consequently, the first order solution of equation
(16) is

x(t, &) =x, + v, + €Uy, (23)
where X; and Y, are given by (21) and (22), and U, is
given by (18).

2.3. Third-Order Nonlinear System
Consider nonlinear autonomous third
differential systems
T+ E(ME+EI+(F+ 08T+ {Gsin2T)x =
—ef (0,1, %,1,), (24)
Putting £ =0 and 7 =7,= constant, in Eq. (24),
we get the non-perturbative solution of (1) in the form
I(E,O) — xoeﬁi(':o]t 1 Voeﬂz(ro]t_i_zoeﬂa(”:o]t) (25)
Let Egq. (24) has three  eigenvalues,
A1 (19),4, (1) and A;(z,)) are constants.
Using Eq. (2) and Eq. (24), we get
(Axdx + L, v0y + 4,202 — 1,) (A, x0x + L,y2y + 4,20z — )X +
(Ax0x + L,yQy + 1320z — 1) (A, x0x + L, y0y +
Az0z — )Y + (26)
(A x0x + A, y0y + 4,202 — 1) (A x0x + A,y0y + 4,202 — 1,)7 +
Lx+Ly+Lz=—(3yz2 + 23 + y3 + 3y%z + 6xyz + 3x%2)
and

order
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(A x02x + L, vy + A320z — A,) (A, x0x + L, y0y +
Azflz — M) (A x00x + A, 90y + Ayz0z — A)u, =
—(x®+3x%y+ 3x%z + 3xy?)
The particular solution of (27) is
Uy = oy X7 + @, 3x%y + a33x%z + a,3xy?)
where
a; = —1/24, (314, — 4,) (34 — 43)
ay, =—3/(A; + A, + 13)(24; + 13)(24, — 4,)
@y = —3/(A + 43) (24; + A3 — 1) (244)
@y = —3/(Ay + A3) (A + 24, — 43)(24;)
Now, we must solve the three functions of equation
(26) — X ,Y and Z.
The particular solutions are ]
(Ax00x + A,y0y+ A;202 - 4,) (A a0+ A, 30y + A;202 — Ag)}H—A’lx =—(3yz2+7%)
(A2x + 2, p0y + Agz0z— A) (A + A,y + Aaz0z — )Y + Ly = —(y* +3y%2)
(A x02x + A, y0y + 43202 — A4 )(A1x0x + A, vy +
23202 — A,)Z + A3z = —(6xyz + 3x%2) (29)
By the particular solution of (29) and substitution of
functional values for, X Y and Z into (4) and
rearrange, we obta}in
X =Ax+e(lxfy +Boyz* + By2°)
y=A4y+ 5(123’351 + X252 + x2y%z)
7= Az + (X326, + 6,xyz + 6,x72)
where
B1= _1f('11 — ) —43)
B: = _Bf?":la (241 + 43) (47 + 43),
Bz =—3/243(32; — 4;)

(27)

(28)

(30)

X1 = _11‘{[:'12 —4)(A; — 43)
X2 = —1/243(24; — 1,)(31, — 43)
X3 = _3!"2'&2 (24, —A3_44)

6, = _1!"(’13 —A)(43 — 44)
6, = _61‘{[:'12 + A3) (4 + 43)
8; =—3/24;,(22; — 4, +4,)
Therefore, the 1% order solution of equation (24) is
x(t,0) =x+y+z+zsu,), (31
where X y and Z are given by (30) and U, is given
by (28).

3. Results and Discussion

On the basis of extended KBM and HB methods,
where the coefficients change slowly, an asymptotic
solution of the overdamped nonlinear vibration system

IS obtained. Solutions are determined based on
techniques that provide better results for strong
nonlinearities. To verify the accuracy of the
approximate solution obtained by the perturbation
method, we compare the approximate solution with the
numerical one (we consider it accurate). As for such a
comparison, the extended KBM method presented and
the HB method in this article [16, 20, 24, 26-30]. In
this article, we compared the perturbed solutions (15)
and (23) obtained using the Runge-Kutta method (4™
order).

First, x is calculated according to (15) with the

initial  conditions  x(0) = 1.000, x(0) = 0.000 or
x; = 1.0000,y, = —0.169064 for
=111, =—-.03, 4, = —8.
w = W+ ({2 +{, cosT + {Zsin27); (i) x(t) has been
computed by unified solutions [29] (A.9) with initial
conditions x(0) = 1.000, x(0) = 0.000 or
x; = 3.317741,y, = —0.238597 for
e=114,=-.03 A, =—8and

w = wyy/ ({2 + ¢, cosT + {2sin21) .

Second, x(t) has been computed by unified
solutions [16] (B.17) with initial conditions

x(0) = 1.000, x(0) = 0.000 or
x; = 3.317741,y, = —13.0815 for
£=11, 1, =-.03, 1, =—8and

W = wOJ[if + {, cosT + {5 sin271)

The relevant numerical solutions are calculated
using the fourth-order Runge-Kutta method and are
given in the second column of Table 1. The solutions
are different values of x shown in the third column of
Table 1. All the results are presented in Table 1.
Percent errors were calculated and shown in the fourth,
sixth and eighth columns of Table 1. For strong
nonlinearity, the percentage error of (15) is less than
1% and a eigenvalue is a multiple (more than two
hundred times) of another eigenvalue, while the
percentage errors of unified solutions [30] (A.9) and
the percentage of errors of unified solutions ([15, 13])
(B.17) are more than 1%. Also results are shown in Fig.
1(A), unified results [29] (A.9) in Fig. 1(B) and unified
results [16] (B.17) in Fig. 1(C).

Table 1 The results

t XExact xP"ﬂ:"; Erty Xalam Er% X Murry Er%
met o

0 1 1 0 3.317741 O 3.317741 O

A 0.983242 0.983462 0.02237 3.29398  -4.45337 3.29398  -29.9695

10 0.417951 0.421336 -0.8034  1.683139 -71.1043 1.683139 -73.397

20  0.264757 0.266549 -0.6723  0.931933 -68.4203 0.931933 -70.1546

30 0.183137 0.18425  -0.60407 0.562339 -64.335 0.562339 -66.0125

40 0.131144 0.131894 -0.56864 0.364528 -60.8571 0.364528 -62.5639

50 0.095451  0.09598 -0.55116 0.248882 -58.4052 0.248882 -60.1494

70 0.051628 0.051906 -0.53558 0.126714 -55.922 0.126714 -57.7126
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Continuation of Table 1

90  0.028213 0.028362 -0.52535 0.067907 -55.0871 0.067907 -56.894
100 0.020883 0.020993 -0.52398 0.050071 -54.92 0.050071 -56.7294
Fig.1(A) Fig. 1{C)

0
1 101 201 301 401 601 601 701 801 a0l 1001

Fig. 1(A) Present solution (15) (dotted line) related numerical
solution (solid line) they are drawn the initial conditions

%(0) = 1.000, x(0) = 0.000 or x, = 1.0000,y; = —0.169064
for s =11, @ = wy/({i +{;cosT + {5 5in27).
A =—03 4, =8

Fig. 1(B)

501 601 7o 801 ant 1001

Fig. 1(B) Unified solutions [29] (A.7) (dotted line) with related
numerical solution (solid line) are plotted with initial conditions
x(0) = 1.000, x(0) = 0.000 or
%y = 3.317741, 4 = —0.238597 for
e=11,4 =—03, 1, = -8

and @ = wg+/ ({7 + {pcosT + {2 5in2T)

1 101 201 a0t 401 1501 601 701 a0t 801 1001

Fig. 1(C) Unified solutions [16] (B.10) (dotted line) with
corresponding numerical solution (solid line) are placed with initial
conditions x{0) = 1.000, or

x(0) = 0.000x, = 3.317741,y, = —13.0815 fors = 1.1
w = wy(§f +{zcosT+ {3sin2T), 1, = —03, 1; = —8

Next, we have computed by (15) and (i) unified
solutions [30] (A.9) (ii) unified solutions [16] (B.17)
for £ = 1.3. The corresponding numerical solutions
have been found and the percentages of errors have
been computed. The results are given in Table 2. The
percentage errors of (14) are less than 1% and the
percentage errors of unified results [29] (A.9) and the
percentage errors of unified results [16] (B.17) are
greater than 1%. The results are given in Table 2. Also
results are shown in Fig. 2(A), unified solutions [30]
(A.9) in Fig. 2(B) and unified solutions [16] (B.17) in
Fig. (C).

Table 2 The results

t XExact xﬂ\“ﬂzﬁé Ert Xalam Er% X dMurty Er%
met o
0 1 1 0 3.739149 0 3.739149 0
1 0.980752 0.981059 0.031303 3.711612 -6.61661 3.711612 -32.8153
10 0.393852 0.397592 0.949595 1.854471 -75.9282 1.854471 -77.929
20 0.24784 0.249763 0.775904 1.001591 -73.0104 1.001591 -74.5683
30 0.171044 0.172228 0.69222 0.590661 -68.8044 0.590661 -70.3481
40 0.12236 0.123155 0.649722 0.376043 -65.1359 0.376043 -66.7363
50 0.089013 0.089572 0.627998 0.253564 -62.4856 0.253564 -64.1416
70 0.048127 0.04842 0.608806 0.127488 -59.7429 0.127488 -61.4646
90 0.026296 0.026454 0.600852 0.068035 -58.8065 0.068035 -60.5527
100 0.019464 0.01958  0.595972 0.050123 -58.6178 0.050123 -60.3675

Fig. 2(A)

1,2

0.8
0.6%]
0,4
0.2

Fig. 2(A) Present solution (15) (dotted line) with similar numerical

Fig. 2(B)

Fig. 2(B) Unified solutions [29] (A.7) (dotted line) with similar

solution (solid line) they are drawn with initial
situations x{0) = 1.000, or

x(0) = 0.000x, = 1.0000, y, = —0.194349for,
£= 13,0 = wy/({f +{zcosT+ {55in21), Ay = —.03, 1, = —8

solution (solid line) are plotted with initial situation
conditions x{0) = 1.000, or

x(0) = 0.000x, = 3.739149,y, = —0.276523 fors = 1.3
w = wy ({7 +{pcosT+ {35in2T), 1, = —03, ; = —8
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Fig. 2(C)

1 101 201 301 401 501 601 701 ao01 901 1001

Fig. 2(C) Unified solutions [16] (B.10) (dotted line) similar
numerical solutions (solid line) are plotted with initial
situations x{0) = 1.000, or

x(0) = 0.000x, = 3.739149,y, = —15.45449 forz = 1.3

w = woy/({F +{zcosT + {Z5in21), 4, = —.03, A, = —8

Similarly, we have computed by (23) another set of
initial conditions. The corresponding numerical
solutions have been found and error percentages were
calculated. The results are given in Table 3. Also
results are shown in Fig. 3(A), unified solutions [29]
(A.9) in Fig. 3(B) and unified results [16] (B.17) in Fig.
3(0C).

Table 3 The results

t XExace xﬂ\“ﬂzﬁé Erty Xalam Er% X Murry Er%
met o
0 1 1 0 3.107038 0 3.107038 0
A 0.984793 0.984951 -0.01604 3.085164 -3.55589 3.085164 -28.5397
10 0.425943 0.428608 -0.62178 1.597474 -68.1076 1.597474 -70.707
20 0.262188 0.2636 -0.53566 0.897104 -65.6208 0.897104 -67.5638
30 0.174792 0.175653 -0.49017 0.548178 -61.6541 0.548178 -63.5113
40 0.120086 0.120652 -0.46912 0.358771 -58.3141 0.358771 -60.1866
50 0.083602 0.083988 -0.45959 0.246541 -55.987 0.246541 -57.8885
70 0.041151 0.041337 -0.44996 0.126327 -53.656 0.126327 -55.5954
90 0.020391 0.020482 -0.44429 0.067843 -52.878 0.067843 -54.831
100 0.014364 0.014428 -0.44358 0.050045 -52.7225 0.050045 -54.6788
Fig. 3(A) Fig. 3(C)

1.2
1
08

x
06
04
02
i

1 101 2001 301 401 a01 t BO1 701 801 901 1001
Fig. 3(A) Present solution (23) (dotted line) similar numerical
solution (solid line) they are drawn with initial
situations x(0) = 1.000, or
x(0) = 0.000x, = 1.0000,y, = —0.153413 for
£ =10 w = wy/({f + {ocosT + {5 5in21).
A = —.035, 1, = —8.55

Fig. 3(B)

1 101 201 301 400 S01 0 601 701 801 901 1001

Fig. 3(B) Unified solutions [29] (A.7) (dotted line) with similar
numerical solution (solid line) are plotted with initial
situations x{0) = 1.000, or

x(0) = 0.000x, = 3.107038,y; = —0.219633 forz = 1.0
o = woy/({F + {ycosT + {Z5in2r), 4 = —.035, A, = —B.55

501 601 o1 a0t 901 1001

Fig. 3(C) Unified solutions [16] (B.10) (dotted line) with similar
numerical solution (solid line) are plotted with initial
situations x{0) = 1.000, or

x(0) = 0.000x, = 3.107038, 14 = —11.8950 fors = 1.0
w = wg/({; +{;cosT+ {35in2T), A, = —.035, i, = —855

Comparably, we have computed by (23) (i) unified
solutions [29] (A.9) (ii) and unified solutions [16]
(B.17) for &= 1.2. The -corresponding numerical
solutions have been found and percentage errors have
been calculated. The results are given in Table 4. Also
results are shown in Fig. 4(A), unified solutions [30]
(A.9) in Fig. 4(B) and unified results [16] (B.17) in Fig.
4(C).

Table 4 The results

t XExact Xpresent Eri Xalam Eri X pfurty Erdg
method

0 1 1 0 3.528445 0 3.528445 0

1 0.982462 0.982688 -0.023 3.502796 -5.47277 3.502796 -31.389

10 0.400889 0.403913 -0.74868 1.768805 -73.6846 1.768805 -75.7822

20 0.244937 0.24649 -0.63005 0.966762 -70.8615 0.966762 -72.4699

30 0.162886 0.163825 -0.57317 0.5765 -66.6994 0.5765 -68.2737
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Continuation of Table 4

40 0.11179 0.112405 -0.54713 0.370286 63.1136  0.370286 -64.7308
50  0.077789  0.078207 -0.53448 0.251223 605546 0.251223 -62.2176
70 0.038276  0.038478 -0.52498 0.127101 -57.935 0.127101 -59.6526
90  0.018965  0.019064 -0.5193 0.067971 -57.0479  0.067971 -58.7854
100  0.01336 0.013429 -0.51381 0.050097 -56.8697  0.050097 -58.6103
Fig-4(A) Fig. 5(A)
132
1
08
06 1 7
0,4
0.2 09 A
0 08 1
1 101 201 301 401 t501 601 701 a01 gm 1001
Fig. 4(A) Present solution (23) (dotted line) similar numerical 071
solution (solid line) they are drawn with initial 0E 1
situations x{0) = 1.000, or 05
. . X
x(0) = 0.000x, = 1.0000, y; = —0.177096 fors = 1.2, 04 -
w = woy/({F + {zcosT + {55in27), 4, = —035, 1, = —855 0.3 1
02 1
Fig. 4(B) 0,1 A
0
a1 M 217 3 41 51 51 71 81 91 101

701 am 401 1001
Fig. 4(B) Unified solutions [30] (A.7) (dotted line) with similar
numerical solutions (solid line) are plotted with initial
situations x{0) = 1.000, or
x(0) = 0.000 x, = 3.528445,y, = —0.257560 for=1.2

w = woy/({F + {zcosT + {55in27), 4, = —035, 1, = —855

Fig. 4(C)

201 01 1001

Fig. 4(C) Unified solutions [16] (B.10) (dotted line) with similar
numerical solution (solid line) are plotted with initial
situations x{0) = 1.000, or

x(0) = 0.000x; = 3.528445, y; = —14.26800 for e = 1.2
w = wyy/(§f + {cosT+ {3sin2T), ; = —.035, 1, = —855

Finally, we have computed by (35) and unified
solutions. The corresponding numerical solution is also
computed by Runge-Kutta fourth-order method. All the
results are shown in Fig. 5(A), Fig. 5(B), Fig. 6(A) and
Fig. 6(B).

t

Fig. 5(A) Present perturbation solution (31) (dotted line) similar
numerical solution (solid line) they are drawn with initial
situations x{0) = 1.000, or

#(0) = 0.000 £(0) = —0.1000,x, =
0.866172,y; = —0.817847,2z = —0.442186¢,, . _ 1 o

w = wy/({f + {ycosT + {3 5in2T),
Ay = —.100, A, = —7.00.1; = —0.700

Fig.5(B)

a1 a1 101

Fig. 5(B) Unified solutions (dotted line) with similar numerical
solutions (solid line) are plotted with initial
situations x{0) = 1.000, or

#(0) = 0.000 #(0) = —0.1000 x, =
0.885773, y, = —0.88836,2, = —1.523429¢0; _ 1 o

w = wo/({F + {ycosT + {3 5in27),
Ay = —.100, A, = —7.00. 15 = —0.700
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Fig.6(A)
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t

Fig. 6(A) Present perturbation solution (31) (dotted line) similar
numerical solution (solid line) they are drawn with initial
situations x(0) = 1.000, or

#(0) = 0.000%(0) = —0.1000x, =
0.862789, y; = —0.806632,2 = —0391573 ¢ . _ 14

w = wg/({i +{;cosT+ {3 sin2T),
A = —100, A, = —7.00.1; = —0.700

Fig. 6(B)

Fig. 6(B) Unified solutions (dotted line) with similar numerical
solutions (solid line) are plotted with initial
situations x(0) = 1.000, or

#(0) = 0.000%(0) = —0.1000x, =
0.884351,y, = —0.877895,2 = —0.1.575339 ¢

£=11w= wy({f +{zcosT + {Z5in27),
2 = =100, A, = —7.00.13 = —0.700

From Tables 1, 2, 3, and 4, the percent error
between (15) and (23) is less than 1% for strong non-
linearity and one eigenvalue is a multiple (more than
200 times) of the other eigenvalues, while the
percentage errors of unified solutions [29] (A.7) and
the percentage errors of unified solutions [16] (B.10)
are much more than 1% and strong non-linearity causes
serious problems. From Figs. 1(A), 2(A), 3(A),.4(A),
5(A) and 6(A) Perturbation solutions agree well with
numerical solutions but in these situations Figs. 1(B),
1(C), 2(B), 2(C), 3(B), 3(C), 4(B), 4(C), 5(B) and 6(B)
disagree, and the solution does not produce the desired
result.

4. Conclusion

In conclusion, we suggest that, in this article, the
extended KBM method and the HB methods have been
modified and applied successfully to the second and
third order autonomous nonlinear vibration systems
with slowly changing coefficients. Normally, in the
unified KBM method, it is noticed that much error
occurs in the case of rapid changes with x respect to

time t. However, all aforementioned results obtained in
this paper correspond accurately to the numerical
solutions obtained from the fourth order Runge-Kutta
method. It is, therefore, concluded that the extended
KBM method and the HB methods provide highly
accurate results, which can be applied for different
types of nonlinear differential systems. This article
aims to establish a slowly time-varying solution of an
over damped nonlinear vibration system where one
eigenvalue is an integer multiple (greater than two
hundred times) of the other eigenvalues. The integrated
multiple eigenvalue can provide a better result than
other eigenvalues for strong linearity (even if ¢ >1).
These methods will keep a significant contribution to
future research on nonlinear vibrating problems, which
emerge in mathematical physics and engineering.

Appendix A

Discussion of [29] unified theory:

Author’s choose an approximate solution of (1) in
the form

x(t,€) = a(t)e™* + b(t)e H + cu, (a,b,t) + £2 ... (A1)
where & and b satisfy the equation

d, = €A;(a,b,t)+£* ..

a, = eB;(a,b,t) +&% .. (A.2)
The equations

(8/0t— A+ WA e + (8/8t + A — p)Be # =
_(Babze(ﬁu;ﬂt + bae—agt) (A.3)

When A~=3u (A3) separated into two the

following equations
(8/0t — A+ p)Ae ™ = —pie 3t
(8/0t + A — p)B,e Mt =-3ah?eA+2m)t (A.4)
Thus, B, does not contain the term z)0 . However,
the above functions of A and B, are valid if uis

small. The values of A and B, from (A.6) and then
integrating with respect tot, we obtain

2

b2 —2;41&_1
a=a0+b0/ 1+go(e )/(3}12—-1!!)

2

b=b, /(14 D) w— | A9

(@/ot+pu—D(@/dt —p+ Du, =

_(3a2b€(23+|{4}t + aae—a;w)

Therefore, the first order solution of (A. 1) is

x(t,e) = a(De ™ + b(t)e ™ + suy, +--- (A7)
whereaand b are given by (A.5) and u,is given by
(A.6).

(A.6)

Appendix B

The following is a discussion of Unified Theory
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[16]. The article [16] found a unified solution in the
form

x(t,g) = pcoshyp + su, (p, ) + - (B.1)

or

x(t,&) = psinhy + su, (p, ) + - (B.2)

p=—kp+ed(p)+--

Y= —w, +£A4B,(p) + -~ (B.3)

It is notable that such unified solutions can be
derived from (4). We rewrite (4) as

x(t,e) = a(te ™™ + b(De # + cu, +---.  (B.4)

whereaand b
equations

a = ¢4, (a,b,t) +]
b =B, (abt)+
The roots of the linear equation are 4, = —K +ia,

satisfy the first order differential

(B.5)

and A, =—K —ia@,, according to the unified theory, so
that

fO = (@%**" +3a%be™ +3ab’e " +b% ).
Furthermore, with respect to the KBM method, U, does
not contain terms with e“'and e *'. Replacing the
values of A, A,and f@into (B.9) and imposing that

wpt —apt

u, omits the terms with e and e, we obtain
(04, /0t + 2iwyA, = —3a?be 2kt

(0B, /0t + 2iw, B; = — 3ab%e 2%t (B.6)
and

(0/0t+ k —iwy) (8/0t + k + iwy)u, =

_E—Ekt(aaeaimot+ bzeaimot) (B.7)

Replacing the values of ;&1 and I§1from (B.13) into
(B.5), we obtain

@ = 3sa’be 2" /2(K — iwy)

b = 3cab?e 2% /2(K + iwy) (B.8)

Equations of (B.15) have exact solutions. These
equations correspond to

¥ = 3ekr3be 2k /8w?

¢ = 3ewyrie ¢ /8w? (B.9)

. 1 . 1 -
Under the transformations, a = 5 re'” b= E re’'”

However, under the above transformations (B.4)
becomes

x(t,g) = re ¥ cos(w, + @) + 1y (B.10)

where U, is given by (B.7) , F'and ¢ are given by
(B.9). Replace p = re ™ and y = w,t + ¢
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