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Abstract: A formula for the asymptotic solution of an over-damped strongly nonlinear vibration system 

combining the extended KBM method and the harmonic balance (HB) method with slowly varying coefficients is 

proposed. This article aims to establish a slowly time-varying solution of an over-damped nonlinear vibration 

system where one eigenvalue is an integer multiple (greater than two hundred times) of the other eigenvalues. The 

integrated multiple eigenvalues can provide a better result than other eigenvalues for strong linearity (even if). We 

found solutions by considering initial conditions and comparing the percentage error of present solutions with 

unified solutions by using this procedure in examples. Finally, the findings are addressed, especially to improve the 

physical prospects and shown graphically by using Excel, Dev C++, MATHEMATICA, and MATLAB software.     

Keywords: nonlinear system, over damped vibration system, slowly changing coefficients, multiple 

integrated roots, perturbation equations, strongly non-linear.  

求解以強非線性和多重積分根為代表的緩變係數高階非振盪振動系統的逼近技術 

摘要：提出了結合擴展克雷洛夫-

博戈柳博夫平均法方法和緩變係數諧波平衡方法的過阻尼強非線性振動系統的漸近解公式。

本文旨在建立一個過阻尼非線性振動系統的緩慢時變解，其中一個特徵值是其他特徵值的整

數倍（大於二百倍）。對於強線性（即使），集成的多個特徵值可以提供比其他特徵值更好

的結果。我們通過考慮初始條件並通過在示例中使用此過程將當前解決方案與統一解決方案

的百分比誤差進行比較來找到解決方案。最後，研究結果得到解決，特別是改善物理前景，

並使用 Excel、Dev C++、數學和软件軟件以圖形方式顯示。 

关键词：非線性系統，過阻尼振動系統，緩慢變化的係數，多重積分根，微擾方程，強

非線性。 

1. Introduction
Many analytical methods have found limited

solutions for different non-linear systems. Among them 

are the widely used perturbation methods, wherein a 

small parameter power amplifies the solution. [1–5] are 

important. To avoid the complexity of algebra, the 

perturbation method determines a low-order 

approximate solution. Another significant method is the 

harmonic balance (HB) method [6–10], which covers 

strongly nonlinear systems. The Krylov–Bogoliubov 
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averaging method (KBM) [11–13]  is one of the the 

above-mentioned methods that is well-known for 

analyzing the theory of nonlinear oscillations. Initially, 

[3] developed this method to obtain periodic solution of 

nonlinear second-order differential systems. Letter, the 

method was amplified and verified mathematically by 

[4]. To process a damped oscillatory, [14] extended this 

method by using a strong linear damping force. 

Further, to advance an over-damped nonlinear system, 

[15]] encompassed this method. [17–19] examined 

over-damped nonlinear systems and found approximate 

solutions of Duffing’s equation, when the number of 

undisturbed equation roots is more than one times. 

Again, [18] proposed a unified method to solve an n-th 

order differential system (autonomous) and 

characterized by using constant coefficient and slowly 

varying coefficient-based oscillatory, damped 

oscillatory and non-oscillatory processes. [20] extended 

KBM method by using the slowly and periodically 

changing coefficients-based on underdamping, 

damping, and overdamping vibrating systems. [20], 

[21] introduced a damped forced nonlinear vibrating 

system with varying coefficients. At present, [22] also 

extended the method by using slowly and periodically 

changing coefficients-based damped and damped 

forced vibrating systems with strong non-linearity. In 

another recent paper, [23] finds approximate solutions 

to over damped nonlinear differential systems based on 

the extended KBM method, where one eigenvalue is a 

multiple (ten times) of the other eigenvalues. The 

purpose of this article is to find a solution for a slowly 

changing over-damped nonlinear vibration system 

where one eigenvalue is an integral multiple (more than 

200 times) of the other eigenvalues. 

 

2. Methodology 
Let us consider nonlinear differential systems 

governed by 

    (1) 

where the over-dots indicate differentiation with 

respect to t,  an inconsiderable parameter, 

, t  slowly varying time, 

 f  a nonlinear function. Since their time 

derivatives are proportional to  , the coefficients in 

equation (1) change slowly. We 

set,  where )(  

is known as the internal frequency. Setting 0  and 

0  = constant, in Eq. (1). Eq. (1) has two 

eigenvalues, )( 01   and )( 02   are constants, but 

when ,0 )( 01   and )( 02   change slowly in that 

their time derivatives. We may consider that 

)( 02  >> )( 01  . The unperturbed solution of 

equation (1) is  

,                        (2) 

When 0 , we propound an asymptotic solution 

for equation (1)  

 (3) 

where 1x  and 1y  satisfies first-order differential 

equations 

 

 
Limited to the first few terms only, 1, 2…m, a series 

of expansions of (3) and (4), we determine the function 

,...,, 21 uu  and ,...,,,...,, 2121 YYXX  such that ),(1 tx  

and ),(1 ty  appears in (3) and (4) and fulfills the 

given differential system (1) with precision
1m
[15] to 

determine these unknown features. The function does 

not contain terms that include; 2,1, j
tj , these are 

because they are incorporated in the series expansion 

(3) at the time of ordering 
0 . As these unknown 

functions are determined, the functions ,..., 21 uu  not 

included secular-type terms 
tte 
[15, 18, 19, 20, 24–26] 

Differentiate x (t, ε) twice with respect to t and 

substitute the derivatives ẍ and x in the original 

equation (1) to equalize the coefficients of the equal 

harmonics. We get 

 (5) 

where 

 
Here it is assumed that  can be expanded in the 

Fourier series as 

                    (6) 

The formulae are obtained by equating the 

coefficients of equal harmonic terms on both sides. To 

get the solution (1) with overdamping, apply a 

constraint that 1u excludes the 

terms

. 

This assumption confirms that there are no terms of the 

secular type 
t

te 1 [15, 16, 20, 24–26], assuming that 

this research can found the unknown function 

1u and 11,YX , so this completes the evaluation of the 

first order solution in (1). 

 

2.1. Example  

Consider a nonlinear autonomous vibrating system 

governed by  

(7) 
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Eq. (7) has two eigenvalues.   Here, 

  

and . Now, by replacing 

with the value of
)0(f  Eq. (5), we obtain                   

   

)3( 1

2

1

3

11211

1111211112112111

yxxyx

YyyxxXyyxx








  (8) 

and 

  

)3(
3

1

2

11

121121111112111

yyx

uyyxxyyxx



 
  (9) 

The particular solution of (9) is  
3

12

2

1111 yyxu                      (10) 

where 

)3(21,)(23 12222121    

Now we solve the two functions of (7) X  and 

Y (described in the methodology). The specific 

solutions are 

(11) 

and 

     (12) 

To the particular solution of (11)-(12) and replacing 

the functional values of, 1X 1Y  with (4) and rearrange, 

we obtain 

                  (13) 

and (14)         

where 

)/(3),/(1

),3/(1),/(1

212211

212211








 

Now we must solve the equation. (13) and equation. 

(14) for an 1x 1y ; but Eq. (13) and Eq. (14) have an 

exact solution or not. In most of the cases (i.e., over 

damped or critically damped), we can unable to find an 

exact solution of equation. (4) when the nonlinear 

equation has a physically powerful linear damping 

force [16, 20, 24, 26–30]. For over damped system, 

[15] replace the terms with a small parameter  , 

through their respective unperturbed values (i.e., 

)(),( 11 tytx by and ), since x  

together with all )(),( 11 tytx  die out quick. Within this 

time interval, the difference between 

)(),( 11 tytx and ,  occurs in the 

order of   only. Yet, because of motions with little 

damping or without damping, this is certainly off-base. 

Here, x  and  die out occurs in more than 

an order  . In this article we used Runge-Kutta method 

(4th order).   

Hence, the first order solution of equation (7) is 

,                      (15) 

where 1x  and 2y  are given by (13) and (14), and  1u  is 

given by (10). 

 

2.2. Another Formation 
We may consider another formation. Therefore, we 

choose 

(16) 

 and 

(17) 

The particular solution of (17) is  
2

1111 yxu                      (18) 

where )(23 2121    

Now we solve the two functions of (16) X  and 

Y (described in methodology).  

The particular solutions are 

(19) 

and 

(20) 

By the particular solution of (19)-(20) and 

substitution of functional values for 1X
1

Y  into (4) and 

rearrange, we obtain 

       (21) 

and 

     (22) 

where 

 

 
Consequently, the first order solution of equation 

(16) is 

,                         (23) 

where 1x  and 2y  are given by (21) and (22), and  1u  is 

given by (18). 

 

2.3. Third-Order Nonlinear System 

Consider nonlinear autonomous third order 

differential systems 

(24) 

Putting 0  and 0  = constant, in Eq. (24), 

we get the non-perturbative solution of (1) in the form 

  (25) 

Let Eq. (24) has three eigenvalues,  

are constants. 

Using Eq. (2) and Eq. (24), we get 

 

(26) 

 

 
and 
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 (27) 

The particular solution of (27) is    

(28) 

where 

 

 

 

 
Now, we must solve the three functions of equation 

(26) X ,Y and Z.  

The particular solutions are 

 

 

    (29) 

By the particular solution of (29) and substitution of 

functional values for, X Y and Z  into (4) and 

rearrange, we obtain 

 
     (30) 

 
where 

 
, 

 

 

 

 

 

 

 
Therefore, the 1

st
 order solution of equation (24) is 

,                               (31) 

where x  y  and z  are given by (30) and  1u  is given 

by (28). 

 

3. Results and Discussion 
On the basis of extended KBM and HB methods, 

where the coefficients change slowly, an asymptotic 

solution of the overdamped nonlinear vibration system 

is obtained. Solutions are determined based on 

techniques that provide better results for strong 

nonlinearities. To verify the accuracy of the 

approximate solution obtained by the perturbation 

method, we compare the approximate solution with the 

numerical one (we consider it accurate). As for such a 

comparison, the extended KBM method presented and 

the HB method in this article [16, 20, 24, 26–30]. In 

this article, we compared the perturbed solutions (15) 

and (23) obtained using the Runge-Kutta method (4
th

 

order). 

First, x is calculated according to (15) with the 

initial conditions  or  

 for 

.

  (i) )(tx  has been 

computed by unified solutions [29] (A.9) with initial 

conditions  or 

 for 

 and  

 .
 

Second, )(tx  has been computed by unified 

solutions [16] (B.17) with initial conditions  

 or 

 for 

 and 

 The relevant numerical solutions are calculated 

using the fourth-order Runge-Kutta method and are 

given in the second column of Table 1. The solutions 

are different values of x shown in the third column of 

Table 1. All the results are presented in Table 1. 

Percent errors were calculated and shown in the fourth, 

sixth and eighth columns of Table 1. For strong 

nonlinearity, the percentage error of (15) is less than 

1% and a eigenvalue is a multiple (more than two 

hundred times) of another eigenvalue, while the 

percentage errors of unified solutions [30] (A.9) and 

the percentage of errors of  unified solutions ([15, 13]) 

(B.17) are more than 1%. Also results are shown in Fig. 

1(A), unified results [29] (A.9) in Fig. 1(B) and unified 

results [16] (B.17) in Fig. 1(C). 

 
Table 1 The results 

t   
 

     

0 1 1 0 3.317741 0 3.317741 0 

.1 0.983242 0.983462 0.02237 3.29398 -4.45337 3.29398 -29.9695 

10 0.417951 0.421336 -0.8034 1.683139 -71.1043 1.683139 -73.397 

20 0.264757 0.266549 -0.6723 0.931933 -68.4203 0.931933 -70.1546 

30 0.183137 0.18425 -0.60407 0.562339 -64.335 0.562339 -66.0125 

40 0.131144 0.131894 -0.56864 0.364528 -60.8571 0.364528 -62.5639 

50 0.095451 0.09598 -0.55116 0.248882 -58.4052 0.248882 -60.1494 

70 0.051628 0.051906 -0.53558 0.126714 -55.922 0.126714 -57.7126 



23 

 

Continuation of Table 1 

90 0.028213 0.028362 -0.52535 0.067907 -55.0871 0.067907 -56.894 

100 0.020883 0.020993 -0.52398 0.050071 -54.92 0.050071 -56.7294 

 

 
Fig. 1(A) Present solution (15) (dotted line) related numerical 

solution (solid line) they are drawn the initial conditions 

  or  

for . 

 

 

 
Fig. 1(B) Unified solutions [29] (A.7) (dotted line) with related 

numerical solution (solid line) are plotted with initial conditions 

  or 

for 

 

and
 

 

 
Fig. 1(C) Unified solutions [16] (B.10) (dotted line) with 

corresponding numerical solution (solid line) are placed with initial 

conditions  or 

  for  

,  

 

Next, we have computed by (15) and (i) unified 

solutions [30] (A.9) (ii) unified solutions [16] (B.17) 

for . The corresponding numerical solutions 

have been found and the percentages of errors have 

been computed. The results are given in Table 2. The 

percentage errors of (14) are less than 1% and the 

percentage errors of unified results [29] (A.9) and the 

percentage errors of unified results [16] (B.17) are 

greater than 1%. The results are given in Table 2. Also 

results are shown in Fig. 2(A), unified solutions [30] 

(A.9) in Fig. 2(B) and unified solutions [16] (B.17) in 

Fig. (C). 

Table 2 The results 

t   
 

     

0 1 1 0 3.739149 0 3.739149 0 

1 0.980752 0.981059 0.031303 3.711612 -6.61661 3.711612 -32.8153 

10 0.393852 0.397592 0.949595 1.854471 -75.9282 1.854471 -77.929 

20 0.24784 0.249763 0.775904 1.001591 -73.0104 1.001591 -74.5683 

30 0.171044 0.172228 0.69222 0.590661 -68.8044 0.590661 -70.3481 

40 0.12236 0.123155 0.649722 0.376043 -65.1359 0.376043 -66.7363 

50 0.089013 0.089572 0.627998 0.253564 -62.4856 0.253564 -64.1416 

70 0.048127 0.04842 0.608806 0.127488 -59.7429 0.127488 -61.4646 

90 0.026296 0.026454 0.600852 0.068035 -58.8065 0.068035 -60.5527 

100 0.019464 0.01958 0.595972 0.050123 -58.6178 0.050123 -60.3675 

 

 
Fig. 2(A) Present solution (15) (dotted line) with similar numerical 

solution (solid line) they are drawn with initial 

situations  or 

for,

,  

 
Fig. 2(B) Unified solutions [29] (A.7) (dotted line) with similar 

solution (solid line) are plotted with initial situation 

conditions  or 

  for  

,  
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Fig. 2(C) Unified solutions [16] (B.10) (dotted line) similar 

numerical solutions (solid line) are plotted with initial 

situations  or 

  for  

,  

 

Similarly, we have computed by (23) another set of 

initial conditions. The corresponding numerical 

solutions have been found and error percentages were 

calculated. The results are given in Table 3. Also 

results are shown in Fig. 3(A), unified solutions [29] 

(A.9) in Fig. 3(B) and unified results [16] (B.17) in Fig. 

3(C).

 
Table 3 The results 

t   
 

     

0 1 1 0 3.107038 0 3.107038 0 

.1 0.984793 0.984951 -0.01604 3.085164 -3.55589 3.085164 -28.5397 

10 0.425943 0.428608 -0.62178 1.597474 -68.1076 1.597474 -70.707 

20 0.262188 0.2636 -0.53566 0.897104 -65.6208 0.897104 -67.5638 

30 0.174792 0.175653 -0.49017 0.548178 -61.6541 0.548178 -63.5113 

40 0.120086 0.120652 -0.46912 0.358771 -58.3141 0.358771 -60.1866 

50 0.083602 0.083988 -0.45959 0.246541 -55.987 0.246541 -57.8885 

70 0.041151 0.041337 -0.44996 0.126327 -53.656 0.126327 -55.5954 

90 0.020391 0.020482 -0.44429 0.067843 -52.878 0.067843 -54.831 

100 0.014364 0.014428 -0.44358 0.050045 -52.7225 0.050045 -54.6788 

        

 
Fig. 3(A) Present solution (23) (dotted line) similar numerical 

solution (solid line) they are drawn with initial 

situations  or 

for

.

 

 

 
Fig. 3(B) Unified solutions [29] (A.7) (dotted line) with similar 

numerical solution (solid line) are plotted with initial 

situations  or 

  for  

,  

 

 

Fig. 3(C) Unified solutions [16] (B.10) (dotted line) with similar 

numerical solution (solid line) are plotted with initial 

situations  or 

  for  

, 55 

 

Comparably, we have computed by (23) (i) unified 

solutions [29] (A.9) (ii) and unified solutions [16] 

(B.17) for . The corresponding numerical 

solutions have been found and percentage errors have 

been calculated. The results are given in Table 4. Also 

results are shown in Fig. 4(A), unified solutions [30] 

(A.9) in Fig. 4(B) and unified results [16] (B.17) in Fig. 

4(C). 

Table 4 The results 

t   
 

     

0 1 1 0 3.528445 0 3.528445 0 

1 0.982462 0.982688 -0.023 3.502796 -5.47277 3.502796 -31.389 

10 0.400889 0.403913 -0.74868 1.768805 -73.6846 1.768805 -75.7822 

20 0.244937 0.24649 -0.63005 0.966762 -70.8615 0.966762 -72.4699 

30 0.162886 0.163825 -0.57317 0.5765 -66.6994 0.5765 -68.2737 



25 

 

Continuation of Table 4 

40 0.11179 0.112405 -0.54713 0.370286 -63.1136 0.370286 -64.7308 

50 0.077789 0.078207 -0.53448 0.251223 -60.5546 0.251223 -62.2176 

70 0.038276 0.038478 -0.52498 0.127101 -57.935 0.127101 -59.6526 

90 0.018965 0.019064 -0.5193 0.067971 -57.0479 0.067971 -58.7854 

100 0.01336 0.013429 -0.51381 0.050097 -56.8697 0.050097 -58.6103 

 

 
Fig. 4(A) Present solution (23) (dotted line) similar numerical 

solution (solid line) they are drawn with initial 

situations  or 

for  

, 55 

 

 
Fig. 4(B) Unified solutions [30] (A.7) (dotted line) with similar 

numerical solutions (solid line) are plotted with initial 

situations  or 

 for  

, 55 

 

 
Fig. 4(C) Unified solutions [16] (B.10) (dotted line) with similar 

numerical solution (solid line) are plotted with initial 

situations or 

  for  

, 55 

 

Finally, we have computed by (35) and unified 

solutions. The corresponding numerical solution is also 

computed by Runge-Kutta fourth-order method. All the 

results are shown in Fig. 5(A), Fig. 5(B), Fig. 6(A) and 

Fig. 6(B). 

 
Fig. 5(A) Present perturbation solution (31) (dotted line) similar 

numerical solution (solid line) they are drawn with initial 

situations  or 

for  

, 

 

 

 
Fig. 5(B) Unified solutions (dotted line) with similar numerical 

solutions (solid line) are plotted with initial 

situations  or 

for  

, 

 

 



Uddin et al. Approximation Technique for Solving High-Order Non-Oscillatory Vibration Systems with Slowly Changing Coefficients 

Represented by Strong Non-Linearity and Multiple Integrated Roots, Vol. 49 No. 11 November 2022 

26 

 
Fig. 6(A) Present perturbation solution (31) (dotted line) similar 

numerical solution (solid line) they are drawn with initial 

situations  or 

for , 

, 

 

 

 
Fig. 6(B) Unified solutions (dotted line) with similar numerical 

solutions (solid line) are plotted with initial 

situations  or 

for 

, 

 

 

From Tables 1, 2, 3, and 4, the percent error 

between (15) and (23) is less than 1% for strong non-

linearity and one eigenvalue is a multiple (more than 

200 times) of the other eigenvalues, while the 

percentage errors of unified solutions [29] (A.7) and 

the percentage errors of unified solutions [16] (B.10) 

are much more than 1% and strong non-linearity causes 

serious problems. From Figs. 1(A), 2(A), 3(A),.4(A), 

5(A) and 6(A) Perturbation solutions agree well with 

numerical solutions but in these situations Figs. 1(B), 

1(C), 2(B), 2(C), 3(B), 3(C), 4(B), 4(C), 5(B) and 6(B) 

disagree, and the solution does not produce the desired 

result. 

 

4. Conclusion 
In conclusion, we suggest that, in this article, the 

extended KBM method and the HB methods have been 

modified and applied successfully to the second and 

third order autonomous nonlinear vibration systems 

with slowly changing coefficients. Normally, in the 

unified KBM method, it is noticed that much error 

occurs in the case of rapid changes with  respect to 

time . However, all aforementioned results obtained in 

this paper correspond accurately to the numerical 

solutions obtained from the fourth order Runge-Kutta 

method. It is, therefore, concluded that the extended 

KBM method and the HB methods provide highly 

accurate results, which can be applied for different 

types of nonlinear differential systems. This article 

aims to establish a slowly time-varying solution of an 

over damped nonlinear vibration system where one 

eigenvalue is an integer multiple (greater than two 

hundred times) of the other eigenvalues. The integrated 

multiple eigenvalue can provide a better result than 

other eigenvalues for strong linearity (even if 1 ). 

These methods will keep a significant contribution to 

future research on nonlinear vibrating problems, which 

emerge in mathematical physics and engineering. 

 

Appendix A 
Discussion of  [29] unified theory:  

Author’s choose an approximate solution of (1) in 

the form 

(A.1) 

where a  and b satisfy the equation 

 
(A.2)

 The equations 

(A.3) 

When  3  (A3) separated into two the 

following equations 

 

-                (A.4) 

Thus,
 1B  does not contain the term 0 . However, 

the above functions of 1A and 1B are valid if  is 

small. The values of 1A  and 1B from (A.6) and then 

integrating with respect to t , we obtain 

 

 (A.5) 

            (A.6) 

Therefore, the first order solution of (A. 1) is  

      (A.7) 

where a and b are given by (A.5) and 1u is given by 

(A.6). 

 

Appendix B 
The following is a discussion of Unified Theory 
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[16]. The article [16] found a unified solution  in the 

form  

                (B.1) 

or  

                (B.2)

   

     (B.3) 

It is notable that such unified solutions can be 

derived from (4). We rewrite (4) as 

(B.4) 

where a and b  satisfy the first order differential 

equations 

                               (B.5) 

The roots of the linear equation are 01  ik   

and 02  ik  , according to the unified theory, so 

that 

)33( 0000 3322333)0( ttttkt ebeabbeaeaef
   . 

Furthermore, with respect to the KBM method, 1u  does 

not contain terms with 
t

e 0 and 
t

e 0 . Replacing the 

values of 21 ,  and 
)0(f into (B.9) and imposing that 

1u omits the terms with 
t

e 0 and 
t

e 0 , we obtain 

   

    (B.6) 

and 

  (B.7)

 Replacing the values of 1

~
A  and 1

~
B from (B.13) into 

(B.5), we obtain 

 
                (B.8) 

Equations of (B.15) have exact solutions. These 

equations correspond to 

 
                                   (B.9) 

Under the transformations,
irea

2

1
  

ireb 
2

1
 

However, under the above transformations (B.4) 

becomes 

              (B.10) 

where 1u  is given by (B.7) , r and   are given by 

(B.9). Replace
ktre and   t0  
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