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Abstract: The article aims to assess the stochastic model's control variant and study the effect of time on 

the epidemic's behavior. A single population must have strong immunity as it recovers from the epidemic. Lower 

the infected and susceptible individuals and maximize the absolute amount of recovered individuals by using 

possible minimal control variables. We have demonstrated whether we should implement a treatment policy to 

minimize the number of death cases by examining three different examples from various perspectives. We have also 

proved that the best policy in the event of a fatality is to avoid it. The epidemic model will be a bang policy with 

only one switch if the cost function depicted in the illustration is utilized. Furthermore, a switch can only be 

activated if criteria are satisfied. As a result, we investigate the approaches for preventing the HBV model. Finally, 

we will develop a more realistic model-building strategy that integrates the emergence of treatment effect on the 

infectives during their incubation period for a fatal epidemic. A fatal epidemic is expected to be more severe than a 

general epidemic, and more realistic model-building approaches are developed. The same mathematical methods 

and conclusions may be used nearly immediately to a wide range of spreading processes, which should be stressed. 

Keywords: discrete study, stochastic epidemic model, optimal control. 

具有最优控制策略的随机流行病模型的离散研究及其分析 

摘要：本文旨在评估随机模型的控制变量，并研究时间对流行病行为的影响。单一人群

在从流行病中恢复时必须具有很强的免疫力。通过使用可能的最小控制变量来降低感染和易

感个体并最大化恢复个体的绝对数量。我们通过从不同角度研究三个不同的例子，证明了我

们是否应该实施一项治疗政策，以尽量减少死亡病例的数量。我们还证明，在发生死亡事件

时最好的策略是避免它。如果使用插图中描述的成本函数，流行病模型将是一个只有一个开

关的爆炸策略。此外，只有在满足标准时才能激活开关。因此，我们研究了预防乙肝病毒模

型的方法。最后，我们将制定一个更现实的模型构建策略，该策略将在致命流行病的潜伏期

对感染者的治疗效果的出现进行整合。预计致命的流行病将比一般流行病更严重，并且开发

了更现实的模型构建方法。相同的数学方法和结论几乎可以立即用于广泛的传播过程，应该

强调这一点。 

关键词：离散研究、随机流行病模型、最优控制。 
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1. Introduction 
Epidemic models summarize and explain data on 

communicable diseases. Furthermore, they help us 

better understand the biological and sociological 

mechanisms underlying the spread of disease so that 

public health authorities, medical practitioners, and the 

government can take preventative measures to manage 

the epidemic. For researchers, developing an 

acceptable and accurate mathematical epidemic model 

is critical. In addition, these mathematical models aid 

in translating a description of individual behavior to a 

description of the transmission of disease in a 

population. In most communicable diseases, we have a 

good idea of how the disease is transmitted and how a 

single infection can spread. However, epidemiology 

does not have the formal framework needed to examine 

the potential breadth of an infection chain that is at 

least partially triggered by chance interactions. That 

makes mathematical models necessary to determine the 

likely spread of an epidemic. 

 

1.1. Analyzing Epidemics Using Modeling 

When it comes to modeling spreading processes, 

there are infinite possibilities. Every epidemic model is 

based on the existence of "compartments" in which 

people of a community are separated. Epidemic models 

often have two compartments: "Susceptible" and 

"Infected" (or simply "Susceptible"). An initial sample 

of a particular population is partitioned into these two 

divisions in models with only these two options. There 

are healthy but sensitive to infection in the 

"Susceptible" compartment (S). "Infected" persons are 

kept in the "Infected" compartment (I). From here, the 

population's interactions can be modeled in many ways. 

Numerous alternative epidemic models attempt to 

capture different real-world disease transmission and 

dissemination aspects. For example, people who are no 

longer susceptible to the virus might be added to the 

"Removed" (R) compartment, commonly added to the 

database. A deceased, vaccinated, or immune person 

might be the subject of this statement. Other 

compartments have been proposed in the literature to 

explore the effect of, for example, an incubation time 

or partial immunity, or quarantine. 

 

1.2. Control of Epidemics 

Stochastic network models should be controlled as 

fast as possible to stop the spread of disease. However, 

we must first discuss our effective 'control levers' for 

addressing an epidemic before going into the specifics. 

The heterogeneous SIS dynamics will be enough for 

our purposes here. 

𝑝𝑖 = −𝛿𝐼𝑝𝑖 +  𝛽𝑖𝑗𝑝𝑗 (1 − 𝑝𝑖)
𝑀
𝑗=1
                           (1) 

M subpopulations in a metapopulation model, to put 

it another way, each node I represents a subpopulation 

(like a town) within a larger population (like a country) 

of N individuals. The recovery rates I and infection 

rates ij, which define the interactions between diverse 

subpopulations, are the factors we must experiment 

with. 

It is generally desired to enhance the recovery rate I 

and lower the infection rate is in order to reduce 

epidemic impacts. Better medical care for sick people 

can improve their chances of recovery in a certain 

population segment. If more resources were allocated, 

this subpopulation could benefit from additional 

doctors or more effective treatment modalities. There 

are several methods for reducing infection rates. First, 

the infection rate can be reduced by restricting 

movement between different populations. Since a 

subpopulation I can no longer affect other 

subpopulations, quarantining it is the same as setting ji 

= 0 for all j. For strategies to reduce the infection rate, 

there are more subtle tactics like giving masks to a 

population and raising knowledge about a disease so 

that individuals are less likely to get it. 

Naturally, the disease would die fast if we had 

unlimited resources and treatment capability and kept 

everyone in confinement; however, this is not a 

practical option. Thus, given a limited budget, it is 

necessary to establish which factors are most critical 

tominimize the disease's consequences as much as 

feasible. We will formulate these issues and assess 

where the technology stands right now as a further step. 

 

1.3. What Is the Significance of Epidemic Models? 

We can describe the infectious individual's part in 

spreading the disease before describing how it spreads 

throughout a community using an epidemic model. 

Therefore, a model that depicts disease transmission 

within a community leads to crucial insights, such as 

the epidemic threshold theorem, which has a well-

understood interpretation for its parameters. 

Comparisons are frequently used to help researchers 

better understand how diseases spread. As a result, we 

can look at outbreaks of the same disease in various 

locales and periods and outbreaks of distinct diseases. 

In many ways, building epidemic models that correctly 

represent diverse epidemic outbreaks and then 

comparing the models is the best way to make such 

comparisons. That is a common statistical analysis 

approach. In addition, epidemic models play a 

significant role in evaluating the effectiveness of 

disease control measures. However, it is common in 

most scientific fields for researchers to examine the 

effects of changes by comparing the findings of 

multiple trials. As a result, it is not always possible to 

conduct trials involving epidemic outbreaks of disease. 

For this challenge, it is natural to try to develop a 

model that adequately captures the basic properties of 

epidemics in the community. Then these models are 

used to anticipate the specific alterations. For example, 
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the objective is that changing the model to reflect the 

proposed campaign will appropriately represent the 

basic aspects of epidemics in a population that has only 

been partially vaccinated by using a model like this to 

evaluate a vaccine campaign. 

 

2. Review of Related Studies 
Research of Tran, Ky & Yin, George [1] focuses on 

stochastic SIS epidemic models under regime change. 

Assuming that a decision-maker can either alter the 

infectivity period or reduce the projected discounted 

cost of disease, medical treatment, and the negative 

impact on society, we hope to minimize those 

estimated discounted costs. In addition, a vaccine 

model has been developed. Markov chain 

approximation methods are used to build numerical 

approaches for estimating continuous-time dynamics. 

The approximation strategies converge to the best 

strategy as the mesh size decreases. To demonstrate our 

findings, we present numerical examples. 

A non-linear stochastic deterministic SIS model 

with vaccination is the subject of [2]. Two time-

dependent control factors are used in the research to 

discover the most effective methods of limiting the 

spread of disease using deterministic and stochastic 

optimal control analyses. We numerically apply an 

estimate based on the deterministic model's answer to 

solve the stochastic optimal control problem. The 

numerical simulations are used to show and compare 

the results. Following the intensity of noise, the 

likelihood of an illness and the expense of non-

pharmaceutical therapies and vaccinations rises. 

Boutayeb et al. [3] help better understand how 

information spreads in online ecosystems like 

Facebook, WhatsApp, and Twitter. We have developed 

a new discrete-time model. An additional compartment 

is added to the model to study the effect of sharing on 

the amount of information. We consider the possible 

interactions between persons and information on the 

Internet, such as posts, photographs, and videos. With 

the help of a theoretical framework, we can 

demonstrate how our optimal control technique reduces 

the amount of shared data and the number of people 

who share it, thus lowering annoyance and instability 

in society. We conduct numerical simulations to 

examine various scenarios before and after 

implementing our control approach. Simulated and 

discussed sensitivity analysis of parameter information 

is also included. 

Kovacevic et al. [4] investigate infectious disease 

transmission dynamics using a continuous-time 

stochastic SIS epidemiological model. Previously 

afflicted people might re-enter the transmission chain 

after healing. Individuals who have been infected with 

a decision-maker concerned with minimizing costs 

connected with illness and pharmacological therapy 

can dynamically regulate disease. This stochastic 

control problem makes two alternative assumptions 

about the available information available. First, the 

Hamilton-Jacobi-Bellman (HJB) equation can be used 

to predict the best degree of control at any time using a 

complete and accurate count of infected individuals. If 

no state measurement is available, that can be recast as 

an optimal control problem for the Kolmogorov 

forward equation. Because of the degeneracy of the 

HJB and Kolmogorov equations, unusual reasoning is 

required to establish optimality requirements in both 

circumstances. Information patterns have been studied 

quantitatively based on the theory that has been 

established so far. 

According to Lorch et al. [5], SIS epidemic 

processes can be modeled and controlled by Stochastic 

optimum control of stochastic differential equations 

with leaps from the standpoint of marked temporal 

point processes and stochastic optimal control of 

stochastic differential equations with jumps. For the 

first time in the history of disease outbreak research, 

we have a new perspective that can help us transcend 

the limitations of current control tactics. To keep the 

number of people infected as low as possible, we use 

treatment intensities to choose who and when to treat. 

Preliminary tests show that our control technique 

regularly beats several options with simulated data. Our 

method may make future developments of realistic 

data-driven control tactics for epidemic processes 

possible. 

Bolzoni et al. [6] in SIR (Susceptible-Infected-

Recovered) epidemic models investigate the optimal 

control problem, focusing on alternate control 

approaches such as vaccination, isolation, culling, and 

transmission reduction. Using the Minimum Principle 

of Pontryagin (PMP), we prove that only bang-bang 

controls with a maximum of one switch are allowed for 

all the policies considered. There are times when it 

makes sense to postpone control actions and 

subsequently apply them at their greatest rate for the 

rest of the outbreak. A recent study found that the ideal 

technique for lowering the total infectious burden 

across an outbreak is to utilize the maximum control 

possible for the whole epidemic. The most important 

implication of our findings is that it may be difficult to 

reduce the total infectious burden while also shortening 

an epidemic's duration and vice versa. 

Furthermore, numerical simulations revealed that 

optimal control could be delayed even when the control 

reproduction number is less than one. The transition 

from no control to maximum control can occur even 

after the infection has peaked. Our findings are 

especially relevant to livestock infections because 

sanitary restrictions imposed on farms during ongoing 

outbreaks, such as animal movements and export 

prohibitions, need shorter outbreak duration. 

According to Nasir et al. [7], SIR pandemic 

infection may be modeled using a discrete stochastic 

model, and the optimal control policy can be calculated 

using this model. A Markov Decision Process (MDP) 
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model is offered as an alternative to state-space 

modeling. State-specific actions and probability are 

included in the proposed model. For calculating the 

optimal control policy, an optimality criterion is 

discussed. Case studies and graphical representations 

explain the optimal policy's behavior and the tradeoffs 

involved in selecting the optimality criterion. Scaling 

population size is also introduced to deal with large-

scale issues. 

Halawar et al. [8] investigate a non-linear dynamical 

system of linear quadratic control. First, the distinction 

between stochastic and deterministic control systems is 

demonstrated, and the incidence of symmetry breaking 

as a noise function is included in the stochastic model's 

definition. Then, the Pontryagins Maximum Principle 

is used to solve the Deterministic optimum control 

issue and show its existence. Next, the stochastic 

optimal control problem is examined with the 

Stochastic Maximum Principle and numerical 

simulations. Finally, we numerically apply an estimate 

based on the deterministic model's answer to solve the 

stochastic optimal control problem. 

Sharom and Malik [9] analyzed that Combinations 

of isolation, quarantine, vaccination, and therapy are 

frequently required to eliminate most infectious 

diseases, according to mathematical modeling of 

infectious diseases. However, disease elimination will 

be tough if they are not provided at the right moment 

and in enough volume. Against the spread of infectious 

diseases, optimum control theory can be used to devise 

the best disease intervention tactics. This strategy can 

reduce both the expense of the infection and of 

administering the control. Mathematical models that 

use optimal control theory to determine the best tactics 

for limiting the spread of an infectious disease are 

reviewed in this study. 

Lee et al. [10] analyzed Stochastic approaches for 

calculating influenza transmission models presented in 

this research. Stochastic modeling for deterministic 

SEIR-type epidemiological models is first revisited. 

The primary goal of our research is to demonstrate the 

computational methodologies for stochastic epidemic 

models. First, some influenza models are constructed 

using the moment closure method (MCM) and 

compared to findings obtained using the traditional 

stochastic simulation approach (SSA). Even though 

both methods produce related peak and end epidemic 

size results, the MCM has drastically shortened 

calculation time and expenses. Afterward, the MCM 

was used to predict the spread of the 2009 H1N1 flu 

virus in South Korea. Next, the usual deterministic 

strategy and the stochastic approach are contrasted for 

influenza outcomes (MCM). Our findings reveal that 

stochastic and deterministic models have a significant 

disparity when only many infected individuals are 

present. That is followed by looking at vaccine and 

antiviral treatment's effectiveness in various settings. 

Ding & Lenhart [11] emphasized disease models. 

This paper introduces the theory of optimal control 

applied to discrete-time models. Such optimum control 

problems can be solved by following simple steps and 

discussing a few preconditions. This example 

illustrates how to apply Pontrya-Maximum gin's 

principle to characterize the ideal level of control. 

Numerical data are presented to demonstrate certain 

examples. 

 

3. Research Methods 
 

3.1. Optimal Control Analysis for a Deterministic 

System 

 

3.1.1. Model 1 

The deterministic version of the stochastic system in 

equation (1) is as follows: 

 

 

 

        (2) 

 

3.1.2. Model 2 

An effective weapon in the fight against infectious 

diseases is mathematical modeling's optimization 

programming.  

Those who have been infected may be able to 

understand and prepare for the immunization. u1(t) for 

S(t) and u2(t) for A(t), B(t) are added to the equation to 

apply the vaccine (2). Our goal is to reduce infection; 

we follow these guidelines. 

               (3) 

Subject to 

 

 

                      (4) 

 
S(t), A(t), and B(t) must be in proportion to each 

other, and these little positive constants, ξ1, ξ2, and 

ξ3, ensure that they are. 

𝑆0 >  0, 𝐴(0)  =  𝐴0 ⩾ 0, 𝐵(0)  =  𝐵0 ⩾ 0, 𝑅0 >  0. (5) 

Infected populations' values or weights are referred 

to as ξ1, ξ1, and ξ3 in (3), which might be unchanged, 

positive, or zero. As a result, the cost of cure and 

vaccine will be represented by (3) ξ4 and ξ5, both 

positive constants. The expense of lowering both types 

of infection will be made clear in our goal. We will not 

be able to reduce the number of susceptible, but our 

goal is to train operators (𝑢1
∗, 𝑢2

∗ ,) such as 

𝐽 ( 𝑢2
∗ ,𝑢1

∗)  =  𝑚𝑖𝑛{𝐽 (𝑢2 ,𝑢1),𝑢2 ,𝑢1 ∈, 𝑈},          (6) 
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Subjected to the control system (4) and for (5), 

where U is 

𝑈 ∶=  {(𝑢2,𝑢1)| 0 ⩽ 𝑢2,𝑢1 ⩽
1, 𝑢2,𝑢1�𝑠“𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒”𝑜𝑛[0, 𝑇] 𝑖 =
 1, 2}                (7) 

First, we determined the basis for our control 

strategy's existence. 

 

3.2. Existence of Solution  

This section will cover a qualitative analysis of the 

solutions to (3)–(7). Because the control parameters are 

already non-negative and Lebesgue measurable, we 

need to verify that a solution exists that is bounded in 

positive existence. Take 

𝛩𝑡 =  𝑋𝛩 +  𝐶(𝛩),          (8) 

There is a non-linear system with a fixed coefficient 

in Eq. (8): where Θt indicates the derivative of Θ 

concerning time. We established the parameters. 

 

 

 
As Equation (8) bounded and non-linear, therefore 

set 

𝐺(𝛩)  =  𝐶𝛩 +  𝜓(𝛩),         (9) 

This satisfies: 

𝜓(𝛩1) − 𝜓(𝛩2)| ⩽ 𝑛1|𝑆1(𝑡) − 𝑆2(𝑡)|  +  �晦2|  −
𝐴2(𝑡)  +  𝐴1(𝑡)|  +  𝑛3| − 𝐵2(𝑡)  +  𝐵1(𝑡)|  +
 𝑛4|𝑅1(𝑡) − 𝑅2(𝑡)|, ⩽ 𝑁(|𝑆1(𝑡) − 𝑆2(𝑡)|  +
 |𝐴1(𝑡) − 𝐴2(𝑡)|  + |𝐵1(𝑡) − 𝐵2(𝑡)|  +  |𝑅1(𝑡) −
𝑅2(𝑡)|),         (10) 

where 𝑁 =  𝑚𝑎𝑥{(𝑛1,𝑛2 ,𝑛3 ,𝑛4)} is free of state 

parameters of system (2). For this we can also take  

|𝐺(𝛩1) − 𝐺(𝛩2)| ⩽ |𝛩1 − 𝛩2|𝑀,      (11) 

Here < ∞ > M = max{‖C‖, N}, infers that G is well-

defined and meets Lipschitz's requirement of uniformly 

continuous evolution. We conclude that the model's 

solution exists (4) because the control and state 

parameters are non-negative. The next section will see 

how the control variable affects our function's end aim. 

 

4. Result and Discussion 
Theorem 1: Asu ∗ =  (u2

∗ , u1
∗)  ∈ U, there will be 

two optimal variables for managing the system (3)– 

(7). 

Proof: To arrive at our conclusion, we must 

demonstrate that the parameters outlined are sufficient. 

The control and state variables have already been 

proven to be positive. There is an additional need for 

compactness: the set of (7) must be convex and near 

and bound. Convex functions may alternatively 

represent the control parameters of the goal function. 

Because the equation under consideration is correct, the 

optimal control (𝑢1
∗ ,𝑢2

∗)) can be found. 

 

4.1. Constraints on Optimality 

Here, we need to describe the optimal control 

solution attribute of (3)–(7). The Hamiltonian and 

Lagrangian equations for our controlled issue must be 

formulated.  

Let x = (S, A, B, R) and u = (u1, u2) in vector form 

represent the values of x and u, respectively. The 

Lagrangian describes the optimal solution to (3)–(7). 

We first need to define the Lagrangian and 

Hamiltonian for our control issue. Vectors x and u 

represent state and control variables, respectively, so 

let us denote them as x = (S, A, B, R) or u = (u1 and 

u2). This form will be the Lagrangian L. 

𝐿 𝑆 𝑡 , 𝐴 𝑡 , 𝐵 𝑡 , 𝑢 𝑡  =  𝜉1𝑆 𝑡 +  𝜉2𝐴 𝑡 +

 𝜉3𝐵 𝑡 + 
1

2
 𝜉4𝑢1

2 𝑡 +  𝜉5𝑢2
2 𝑡  ,            (12) 

Functions change because of Hamiltonian H: 

𝐻(𝑥, 𝑢, 𝜆)  =  𝜆 ⋅ 𝑔(𝑥, 𝑢)  +  𝐿(𝑥, 𝑢),      (13) 

And g(x, u) = ( g1(x, u), …, g4(x, u) ) , λ = (λ1,…, 

λ4) and u = (u1(t), u2(t)) also 𝑔3(𝑥, 𝑢)  =  𝜎𝐴(𝑡)  −
 (𝜇0  +  𝑑1  +  𝛾2)𝐵(𝑡)  − 𝑢2(𝑡)𝐵(𝑡), 

𝑔4(𝑥, 𝑢)  =  𝛾1𝐴(𝑡)  +  𝛾2𝐵(𝑡)  + (𝑢1(𝑡)  +
 𝛿)𝑆(𝑡)  − 𝜇𝑂𝑅 +  𝑢2(𝑡)(𝐴 +  𝐵)(𝑡)      (14) 

In addition, the usual Pontryagin's Maximum 

Principle will be used for our control problem to ensure 

optimality conditions. Assuming (x*, u*) is an optimal 

solution of the investigated system in the form (3)– (7), 

then a "Hamiltonian" system is defined. 

      (15) 

The maximality axiom: 

        (16) 

And axiom of intersection is: 

0 =  𝜆 ( 𝑡𝑓)                      (17) 

Theorem 2: Let S*, A*, B*, and R* be the values of 

the state variables that correspond to the best controls. 

(u* 2, u* 1) for system (3)–(7). Then, ∃ variables of 

adjoint λi(t),i = 1,…,4, satisfying: 

 

 

                                     (18) 
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𝜆’3(𝑡)  =  −𝜉3  + (𝜆3(𝑡)  − 𝜆4(𝑡))𝑢 ∗  2(𝑡)  
+  𝜆3(𝑡)(𝜇0  + 𝑑1  + 𝛾2)  − 𝛾2𝜆4(𝑡), 
𝜆’4(𝑡)  =  𝜇0𝜆4(𝑡) 

With intersection (terminal) axiom for i = 1,2,3,4 

𝜆𝐼(𝑇)  =  0,(19) 

Next, the optimal control parameters 𝑢1   
∗ (t) 

and 𝑢2   
∗ (t) are as follows 

       (20) 

And: 

   (21) 

Proof (18) can be derived from (15) by taking the 

condition of intersection stated in (19) as a basis for the 

axiom (19) can take from the condition of intersection 

given in (17). Take the derivative of H and assess 
𝜕𝐻

𝜕𝑢1
=  0 and 

𝜕𝐻

𝜕𝑢2
=  0 to determine the best solution. In 

addition, we use the condition for maximal (16) to 

obtain (20)–(21), which established the integral 

theorem in our case. 

The analytical evaluation showed that the optimal 

values for state and control variables could be 

calculated from the optimal system, which has state (4) 

and equation of the adjoint variables (18), along with 

boundary conditions (5) and (19), and which fulfills 

properties of optimal control parameters (𝑢1   
∗ ,𝑢2   

∗ ), 

and this was confirmed experimentally (20) and (21). 

 

4.2. Optimal Control Strategy for Stochastic 

System (Model 1) 

Stochastic optimum control for systems focuses on 

this section (1). Stochastic control system based on 

model (1)'s identical two control parameters (u1 and u2) 

and stochastic perturbation 

 

        (22) 

𝑑𝐵(𝑡)  =  [ − (𝑑1  +  𝛾2  +  𝜇0)𝐵(𝑡)  +  𝜎𝐴(𝑡)  
− 𝐵 𝑡 𝑢2(𝑡)]𝑑𝑡 + 𝛷3𝐵 𝑡 𝑑𝑊3(𝑡), 

𝑑𝑅 𝑡 =    𝛿 +  𝑢1 𝑡  𝑆 𝑡 − 𝜇0𝑅 𝑡 +  𝛾2𝐵 𝑡 

+  𝑢2 𝑡 𝐵 𝑡 +  𝛾1𝐴 𝑡 

+  𝑢2 𝑡 𝐴 𝑡  𝑑𝑡 +  𝛷4𝑅 𝑡 𝑑𝑊4(𝑡), 
With some of the initial approximation:  

𝑅 0 >  0, 𝐵 0 ⩾ 0, 𝐴 0 ⩾ 0, 𝑆 0 >  0,        (23) 

To help our readers, we've included the vector 

below: 

𝑢 𝑡 =   𝑢2 𝑡 , 𝑢1 𝑡  
′𝑥 𝑡 =

  𝑥4 𝑡 , 𝑥3 𝑡 , 𝑥2 𝑡 , 𝑥1 𝑡  
′         (24) 

and: 

𝑑𝑥 𝑡 =  𝑔 𝑥 𝑡  𝑑𝑤 𝑡 +  𝑓 𝑥 𝑡 , 𝑢 𝑡  𝑑𝑡,     (25) 

with initial approximation as: 

𝑥0  =   𝑥4 0 , 𝑥3 0 ,𝑥2 0 ,𝑥1 0  ′ =  𝑥 0 ,      (26) 

where f and g are the vectors defined as: 

 

 

                                     (27) 

 

𝑓3 𝑥 𝑡 , 𝑢 𝑡  =   𝜎𝐴 𝑡 

−  𝜇0 +  𝑑1  +  𝛾2 𝐵– 𝑢2 𝑡 𝐵 𝑡  𝑑𝑡 
+  𝛷3𝐵 𝑡 𝑑𝑊3 𝑡 , 

𝑓4 𝑥 𝑡 , 𝑢 𝑡  =   𝑢2 𝑡 𝐵 𝑡 +  𝛾1𝐴 𝑡 + 𝑢2 𝑡 𝐴 𝑡 

+  𝛾2𝐵 𝑡 +  𝑢1 � 𝑆 𝑡 – 𝜇0𝑅 𝑡  𝑑𝑡 
+  𝛷4𝑅 𝑡 𝑑𝑊4 𝑡 , 

𝑔1  =  𝛷1𝑆, 𝑔2  =  𝛷2𝐴, 𝑔3  =  𝛷3𝐵, 𝑔4  =  𝛷4𝑅 
The following cost-quadratic-functional 

considerations are considered: 

          (28) 

Here X1, X2, X3, Y1, Y2, k4, k3, k2, and k1 are 

constants and greater than 0. 

In this section, we will figure out what the optimal 

solution is u*(t) = (𝑢2
∗(t), 𝑢1

∗ (t)) 

J(u)⩾G(u* ), ∀u ∈ U        (29) 

U is the controlling admissible set given as: 

{ 𝑢𝑖( 𝑡 ) ∶  𝑢𝑖( 𝑡 )  ∈  [ 0,𝑢𝑖
𝑚𝑎𝑥 ] , ∀𝑢𝑖 ∈

𝐿2 [ 0, 𝑡𝑓  ] 𝑡 ∈  ( 0, 𝑡𝑓  ] , 𝑖 =  1, 2 }  =  𝑈      (30) 

where 𝑢𝑖
𝑚𝑎𝑥 > 0 at i = 1, 2 are not changeable. The next 

step is to use the stochastic maximum rules, which we 

will do on the first try. For this, we take “Hamiltonian” 

Hm(x, u, m, n) as: 

𝐻(𝑥, 𝑢, 𝑚, 𝑛)  =  〈𝑓(𝑥, 𝑢), 𝑚〉− 𝑙(𝑥, 𝑢)  +
 〈𝑔(𝑥), 𝑛         (31) 

where〈…〉represent the inner product space due to 

“Euclidean” and m = [m4, m3, m2, m1] ′ and n = [n4, n3, 

n2, n1] ′ represent the respective adjoint vectors. The 

maximization principle is as follows: 

              (32) 

       (33) 

𝐻𝑚(𝑥 ∗ max0≤𝑥≤1 𝑥𝑒−𝑥2
(𝑡), 𝑢 ∗  (𝑡), 𝑚, 𝑛)  =

 max𝑈∈𝑈 𝐻𝑚 𝑢(𝑥 ∗  (𝑡), 𝑢 ∗  (𝑡), 𝑚, 𝑛)      (34) 

x*(t) is the path of x's optimality (t). The beginning 

and the end (BCs) conditions of Eqs. (32) and (33) are 

𝑥0  =  𝑥∗  0 ,                                                              (35) 

−
𝜕(𝑥∗ 𝑡𝑓 

∂x
=  𝑚 𝑡𝑓         (36) 

respectively. As Eq. (34) shows that the optimality 
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variable x*(t) is an operator of q(t), p(t) and x*(t), this 

implies that 

𝑢 ∗  𝑡 =  𝜙 𝑚, 𝑛, 𝑥 ∗ ,         (37) 

ϕ can be computed by Eq. (34). Thus, Eqs. (32) and 

(33) can be written as 

𝑑𝑥 ∗  ( 𝑡 )  =
∂H(x∗(t),u∗(t),m,n)

∂m 
dt +  g(x ∗

 (t))dW( t )          (38) 

𝑑𝑚 ( 𝑡 )  =  −
(𝜕𝐻(𝑥∗(𝑡),𝑢∗(𝑡),𝑚 ,𝑛))

𝜕𝑥
𝑑𝑡 + 𝑏(𝑡)𝑑𝑊(𝑡)    (39) 

So, the “Hamiltonian” is: 

 

 

                  (40) 

 

It follows from the stochastic maximum principle 

that 

      (41) 

Variables are gathered. Piece-wise continuity and 

Lebesgue measurability will be examined for the 

objective function's appropriate set of control variables. 

We will create an optimal control and state sequence 

that can be convergent in the feasible field for the 

boundedness of all feasible controls. Such a role 

identifies a controlling factor: 

 

 

          (42) 

 

𝑚’3(𝑡)  =  −𝑋3  +  (𝑚3(𝑡)  − 𝑚4(𝑡))𝑢 ∗  2(𝑡)  
+  𝑚3(𝑡)(𝜇0  +  𝑑1  +  𝛾2)  
− 𝛾2𝑚4(𝑡)  +  𝛷3𝑛3, 

𝑚’4(𝑡)  =  𝑚4 𝑡 𝜇0  +  𝛷4𝑛4 , 
Along with the auxiliary starting and ending 

constrains as: 

          (43) 

and: 

 𝑆, 𝐴, 𝐵, 𝑅,  =
𝑘1

2
𝑆2 +  

𝑘1

2
𝐴2 +

𝑘1

2
𝐵2 +

𝑘1

2
𝑅2  (44) 

where 𝑚1 𝑡𝑓 =  −𝑘1𝑆, 𝑚2 𝑡𝑓 =  −𝐴𝑘2,𝑚3 𝑡𝑓 =

 −𝐵𝑘3 ,𝑚4 ( 𝑡𝑓  )  =  −𝑅𝑘4. On derivative of 

Hamiltonian equation with respect to u1, u2 we obtain 

the optimal control 𝑢1
∗ and𝑢2

∗as follows 

𝑢1
∗ =  𝑚𝑎𝑥  min  

1

𝑌1

 𝑚1 − 𝑚4 𝑆
∗, 1 , 0  

𝑢2
∗ =  𝑚𝑎𝑥  min  1,

 𝑚2−𝑚4 𝐴
∗+  𝑚3−𝑚4 𝐵

∗

𝑌2
 , 0  (45) 

Plugging the control parameter into the dynamical 

system helps achieve the goal of optimality. A 

mathematical model is an equation or system of 

differential equations that may be controlled, as Eq 

(27). It is necessary to construct the goal function 

according to Eq. (28)'s instructions. It is important to 

keep the balance between low-cost and opposing 

variables intact until the end of the process. The choice 

of the objective function directly impacts the 

optimality; hence, attention must be paid when 

selecting it. Weight should be given the most important 

word if there are more than two regulating goal 

functions. Before we can apply the Pontryagin 

Maximum Rules, we must check the existence and 

compactness of optimal control that can 

maximize/minimize the objective function subject to 

some starting point and differential equations or 

systems of differential equations that optimize the 

"Hamiltonian" by some points. To begin, the 

Hamiltonian is defined as follows: 

𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 
=   𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 
+   𝑅𝐻𝑆𝑜𝑓𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑠𝑦𝑠𝑡𝑒𝑚  𝑎𝑑𝑗𝑜𝑖𝑛𝑡  

Control strategies that maximize the "Hamiltonian" 

for u at u* are a fundamental component of an optimal 

control method. Derivatives for a state variable can be 

applied to the adjoint equation to get the final 

condition. 

 

4.3. Simulations Based on Numbers  

Systems (1) and (2) must be approximated to 

validate our analytical results (2). Simulations can be 

drawn from qualitative aspects and the parameters 

chosen in an epidemiologically plausible manner. The 

computed model (1) is presented as follows using the 

stochastic Runge–Kutta Method (Table 1): 

 
Table 1 Descriptions of parameters applied in model 

Λ The rate of recruitment 

μ0 Natural death rate 
θ The rate of interaction between an infected and healthy 

population 

γ1 The rate at which acutely infected individuals are getting 
a recovery 

γ2 The recovery rate from chronically infected cases 

d1 The death rate due to disease 

δ The vaccination rate of disease 
σ Transferring rate of acute to chronically infected class 
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where ζk,i(k = 1, 2, 3, 4), N(0,1) and time increment 

are four independent Gaussian random variables.  

For Δt > 0, see Table 2. 

 
Table 2 Values of parameters 

Parameters Value Source Parameters Value Source 

Λ 98.75 Estimated Φ2 0.400 Estimated 

𝜇0 0.18 Estimated Φ3 0.250 Estimated 

𝜃 0.50 Estimated Φ4 0.65 Estimated 

𝛾1 0.08 Estimated 𝑢1 0.4460 Estimated 

𝛾2 0.02 Estimated 𝑢2 0.2250 Estimated 

d1 0.25 Estimated S(0) 49 Estimated 

δ 0.04 Estimated A(0) 52 Estimated 

σ 0.19 Estimated B(0) 22 Estimated 

Φ1 0.77 Estimated R(0) 0 Estimated 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 1 Plots of S(t), A(t), and B(t) populations with and without 

controls for the stochastic and deterministic model approaches: (a) 

S(t) – with and without control in the deterministic model approach; 

(b) S(t) – with and without control in the stochastic model 

approach; (c) A(t) – with and without control in the deterministic 

model approach; (d) A(t) – with and without control in the 

stochastic model approach; (e) A(t) – with and without control in 

the deterministic model approach; (f) B(t) – with and without 

control in the stochastic model approach 
 

 
(a) 
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(b) 

Fig. 2 Plot of R(t) populations with and without controls for the 

stochastic and deterministic models: (a) R(t) – with and without 

control in the deterministic model approach; (b) R(t) – with and 

without control in the stochastic model approach 
 

 
(a) 

 
(b) 

Fig. 3 Plots of u1(t) and u2(t) for the stochastic and deterministic 

model approaches(a) Plots of u(t)1 and u(t)2, in deterministic model 

approach; (b) Plots of u(t)1 and u(t)2 in the stochastic model 

approach 

 

5. Conclusion 
 

5.1. Main Findings of the Present Study 

Fig. 2 has been used to develop a stochastic virus 

system. Controlled and uncontrolled R(t) populations 

are shown on the graph that is Fig. 3. In a stochastic 

approach, the deflections in environmental noise are 

referred to as Φi, where II is one of the following 

values: 1, 2, 3, 4, 5. This deflection affects both the 

stability of the population and the reduction of the 

epidemic. A stochastic method was used to investigate 

the optimum control mechanism for avoiding and 

managing the DISEASE pandemic in this situation. 

The results were published in science. When used in 

optimal control methods, the optimum control 

technique based on this approach gives a superior 

approximation between stochastic and deterministic 

systems. On the right are the calculated solutions for 

optimal control in techniques 1 and 2. On the left are 

the retrieved individuals; on the right are the first three 

containers of the appraisal. On the right are the 

premeditated solutions for optimal control in 

techniques 1 and 2. 

Moreover, Fig. 3 depicts the behavior of the best 

stochastic control of the model (1). It is possible to 

notice the difference here as well. Alternatively, the 

number of vulnerable, acute, and chronic cases has 

dropped, while the number of recovery cases has 

grown. 

 

5.2. Comparison with Other Studies 

Even though epidemic models have been studied for 

a long time, control engineers have only just joined the 

picture. The construction and study of epidemic models 

have thus generated a large amount of effort, but 

considerably less has provided the required 

understanding and equipment on how to regulate these 

processes successfully. Several spreading processes on 

complex networks can be modeled using the same 

concepts and methods. For example, the transmission 

of a disease across a population, the acceptance of a 

new product in the marketplace, the possibility of a 

computer virus transmitting over the World Wide Web, 

etc. The word "individual" may refer to any one of 

these four types of entities. This paper serves as an 

introduction to the latter. Newcomers to the topic of 

spreading processes on complicated networks can 

benefit from a brief report we have put together. That, 

however, is patently false. It implies that the 

deterministic approximations we investigate for any 

given population with a stochastic model are 

approximations. As a result, it is natural to wonder 

about the precision with which they describe their 

stochastic counterparts. In this effort, a better 

approximation is accomplished between stochastic and 

deterministic systems in the optimum control method. 

To better understand the stochastic model, a numerical 

solution was done. 

 

5.3. Implication and Explanation of Findings 

The control form of the stochastic model was 

investigated in the current study. As with the 

deterministic technique, the inquiry was carried out in 

the presence of two control factors, denoted by the 

letters u1 and u2. As a result, we investigate the 

strategies of HBV model prevention by employing the 

two control factors listed below: It is represented by the 

control variable u1(t), which is utilized to lower the 

vulnerable population through vaccination. u2(t) 

represents the control variable treatment of hepatitis B 

infected patients. This control aims to minimize the 

rate of hepatitis B transmission. This control variable 
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aims to lessen the number of infected persons in the 

population. In addition, we will reduce other variables 

that may be contributing to the increase in infections. 

In our plan, we will employ the "Hamilton–Jacobi–

Bellman" techniques for stochastic approaches and the 

usual techniques for deterministic approaches, which 

are only used by a few researchers now. In addition, we 

were interested in constructing mathematical and 

statistical models and other types of models. 

 

5.4. Strengths and Limitations 

The numerical simulation of a stochastic optimum 

control issue allows for evaluating the feasibility of a 

certain control strategy. We believe that our method 

provides a feasible approximation alternative to a 

formal approach to numerical simulation of the 

stochastic optimum control issue, which is significantly 

more difficult and labor demanding. It is a 

disadvantage of the procedure described above that it 

does not consider the system's present condition. 

Because of this, nodes that do not have any diseased 

neighbors may have their cure rates increased. The 

great amount of research on the difficulties covered in 

this article has resulted in a large body of work. 

However, there are still many fascinating control 

problems to be addressed, particularly in networked 

dynamics. There is still more work to be done to fully 

harness the potential of these findings and have a 

meaningful impact on society; this is especially true in 

terms of knowing how to govern these processes on 

complicated networks successfully. 

 

5.5. Conclusion, Recommendation, and Future 

Research 
The optimal control stochastic model has been 

solved numerically for better understanding. The 

stochastic RK technique is used to support the 

analytical outcomes in this study. We used numerical 

simulations of the researched models to verify our 

theoretical findings. The other disease can be prevented 

and controlled using the same method we studied. For 

example, stochastic infectious models can be used to 

explore the effect of time on the epidemic's behavior. 

This article focused on illness and epidemics. 

However, it should be noted that the same 

mathematical methods and conclusions may be used 

for a wide range of other spreading processes, such as 

information propagation through social media, malware 

spreading on the World Wide Web, and viral 

marketing. As more real-world data become available, 

we will be able to further develop the model by 

including the safety, efficiency, and universality of the 

vaccine in daily life. That will allow us to broaden 

further the stochastic system proposed in this paper by 

including a vaccinated class in the stochastic system. 

Further considering the impacts of infectious illness 

treatment, immunization, media attention, and other 

controls on the linked optimum control issues is the 

next stage in the model's development. 
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