
第 49 卷 第 4 期

2022 年 4 月

湖南大学学报（自然科学版）

Journal of Hunan University (Natural Sciences）

Vol. 49 No. 4

April 2022

Received: February 13, 2022 / Revised: March 27, 2022 / Accepted: March 29, 2022 / Published: April 30, 2022

About the authors: Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye,Department of Computer Science, University of Ilorin,

Ilorin, Nigeria

Corresponding author Shakirat Aderonke Salihu, salihu.sa@unilorin.edu.ng

Open Access Article https://doi.org/10.55463/issn.1674-2974.49.4.12

An Enhanced Information Retrieval-Based Bug Localization System with Code

Coverage, Stack Traces, and Spectrum Information

Shakirat Aderonke Salihu*, Oluwakemi Christiana Abikoye

Department of Computer Science, University of Ilorin, Ilorin, Nigeria

Abstract: Several strategies such as Vector Space Model (VSM), revised Vector Space Model (rVSM), and

integration of additional elements such as stack trace and previously corrected bug report have been utilized to

improve the Information Retrieval (IR) based bug localization process. Most of the existing IR-based approaches

make use of source code files without filtering, which eventually increases the search space of the technique,

thereby slowing down the bug localization process. This study developed an enhanced IR-based bug localization

model as a viable solution. Specifically, an enhanced rVSM (e-rVSM) is developed based on the hybridization of

code coverage, stack traces, and spectrum information. Combining the stack trace and spectrum information as

additional features can enhance the accuracy of the IR-based technique by boosting the bug localization process.

Code coverage analysis was conducted to remove irrelevant source files and reduce the search space of the IR

technique. Then the filtered source files are preprocessed via tokenization and stemming from selecting relevant

features and removing unwanted words. The preprocessed data is further analyzed by finding similarities between

the preprocessed bug reports and source code files using the e-rVSM. Finally, scores for each source code and

suspected buggy files are ranked in descending order. The performance of the proposed e-rVSM is tested on two

open-source projects (Zxing and SWT), and its effectiveness is assessed using TopN rank (where N = 5, 10), Mean

Reciprocal Rank (MRR), and Mean Average Precision (MAP). Findings from the experimental results revealed the

effectiveness of e-rVSM in bug localization. In particular, e-rVSM recorded a significant Top 5 (80.2%; 65%) and

Top 10 (89.1%; 75%) rank values on SWT and Zxing dataset respectively. Also, the proposed e-rVSM had MRR

values of 80% and 54% on the SWT dataset and MAP values of 61.22% and 47.23% on the Zxing dataset.

Keywords: information retrieval, bug localization, vector space model.

具有代码覆盖率、堆栈跟踪和频谱信息的增强型基于信息检索的错误定位系统

摘要：向量空间模型、修订的向量空间模型以及堆栈跟踪和先前更正的错误报告等附加

元素的集成已被用于改进基于信息检索的错误定位过程。大多数现有的基于信息检索的方法

都使用未经过滤的源代码文件，这最终增加了该技术的搜索空间，从而减慢了错误定位过程

。本研究开发了一种增强的基于信息检索的错误定位模型作为可行的解决方案。具体来说，

基于代码覆盖率、堆栈跟踪和频谱信息的混合开发了一个增强的修正向量空间模型。将堆栈

跟踪和频谱信息组合为附加功能可以通过促进错误定位过程来提高基于信息检索的技术的准

确性。进行代码覆盖分析以删除不相关的源文件并减少信息检索技术的搜索空间。然后，过

滤后的源文件通过标记化进行预处理，并源于选择相关特征和删除不需要的单词。通过使用

电子修订的向量空间模型发现预处理的错误报告和源代码文件之间的相似性，进一步分析预

处理的数据。最后，每个源代码和可疑错误文件的分数按降序排列。提议的增强型修正向量

空间模型的性能在两个开源项目（志兴和标准小部件工具包）上进行了测试，并使用前 N 排

名（其中 N = 5、10）、平均倒数排名和平均平均值评估其有效性精确。实验结果揭示了增

强的修正向量空间模型在错误定位中的有效性。特别是，增强的修正向量空间模型分别在标

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

109

准小部件工具包和志兴数据集上记录了显着的前 5(80.2%; 65%)和前 10 名(89.1%; 75%)排名

值。此外，提议的增强型修订向量空间模型在标准小部件工具包数据集上的月经常性收入值

为 80%和 54%，在志兴数据集上的平均精度值为 61.22%和 47.23%。

关键词：信息检索、错误定位、向量空间模型。

1. Introduction

Software bugs are instances of unanticipated

behavior that affect the software's performance. It may

also be viewed as an unsuitable procedure in software

that would generally provide inaccurate results.

Software engineers often devote a significant amount

of time and resources to developing quality and reliable

software, yet despite this, software systems are still

vulnerable to software bugs or defects [1-3]. Moreover,

software bugs may not be present or noticed

immediately, but as update continues and complexity

increases, there is a likelihood of the presence of

software bugs. Therefore, software bug reports are

critical for every software development project. A

software user may warn the software development

team about unexpected consequences of using their

product by filing a bug report [4-8]. Software bug

reports are widely employed in various research

domains, including bug prediction, bug localization,

and bug triaging; they are submitted via the Bug

Tracking Systems (BTS) [9-11]. Software debugging

entails two stages: bug localization and bug fixing [12].

To formally address software bugs, software developers

and engineers set up software bug repositories to

collect software bug reports from users [13].

Bug localization is the process by which a bug is

located within the source code files. Although it is

necessary for the software development process,

particularly software maintenance, it is time-consuming

and incredibly costly [5, 7, 14, 15]. As reported in

several studies, software testing and debugging

activities take up 75% of the software development

cost. In comparison, software maintenance activities

consume roughly 90% of the software development life

cycle (SDLC) [16-18]. For example, Lucia et al. [19]

assessed 374 bugs from Rhino, AspectJ, and Lucene

software repositories in their study. It was discovered

that 84-93% of software bugs are found in the first 20%

of the source code files. Also, in the respective study of

Zhou et al. [20] and Anvik et al. [21], it was disclosed

that 300 bug reports are filed daily. In the case of large

software products, the number of bug reports in the

repository may be so high that it will be difficult for the

software development team to address this large

number of bug reports in the least amount of time.

Furthermore, developers often do bug localization

manually, which is tedious. As a result, reliable ways to

automatically detect software bugs from bug reports

are necessary [7, 9, 14, 22, 23]. Several studies have

proposed automated bug localization techniques to

overcome this issue, which take as input bug reports

and use textual information from these reports'

summary and description fields to find the buggy

source code files. Many of these approaches are

information retrieval (IR)-based, and they usually work

by computing similarities between a reported bug and

source code files. Then, the source code files are

ranked based on their similarities to a reported bug [24-

27].

IR-based bug localization techniques have gained

significant attention due to their minimal external

dependencies [28-30]. Some of the existing IR-based

bug localization techniques such as Vector Space

Model (VSM) [31, 32], revised Vector Space Model

(rVSM) [20], Modified revised Vector Space Model

(MrVSM) [33], and Smoothed Unigram Model (SUM)

[34] has been reported to be effective in bug

localization. VSM was initially used for automatic bug

localization by finding the similarities between bug

reports and source code. Zhou et al. [20] extended

VSM to rVSM, which considered the complexity of the

source codes in finding similarities. Wong et al. [35]

introduced the magnifier parameter, ɓ, to control how

much weight is given to complex or large source codes.

Wang et al. [11], Youm et al. [36], and Dao et al. [37],

in their respective studies, proposed the integration of

execution information and enhancement features into

VSM in other to improve the accuracy of the automatic

bug localization process.

Despite the effectiveness of these methods, there is

still a need for continuous development of

sophisticated methods with high bug localization

accuracy. From current studies, some features have

been identified as potential factors that can improve the

effectiveness of IR-based bug localization methods.

Specifically, features such as version control history

[33], source code metrics [36], code churn [38], stack

traces [35] and program execution details (coverage,

slicing and spectrum information) [11, 37, 39].

Collectively, the software team requires these features

(information) to fix the bug. Nonetheless, most of the

existing bug localization solutions usually consider the

whole source code files without filtering, which often

included irrelevant source code files that were not

110

covered by any failure run. It naturally expands the

search space of IR-based techniques. Furthermore,

several of the notable IR-based bug localization

methods that utilized rVSM used a constant magnifier

parameter, ɓ, across all projects, which did not give

ideal results due to the differences in the open-source

projects' features.

This study proposes an enhanced IR-based bug

localization with an automatic generation of magnifier

parameter ɓ for the following: large source code files;

code coverage to filter the irrelevant source files;

integration of stack traces and spectrum information as

an additional feature boosting the accuracy of the

model.

Specifically, the significant contributions of this

work are highlighted below:

1. Integration of code coverage analysis into the bug

localization model for filtering the source code files to

reduce the search space of IR-based models

2. Automatic generation of the magnifier parameter

ɓ for large source code files in the rVSM model.

3. Integration of stack traces analysis and spectrum

information to enhance bug localization accuracy of the

model.

The remainder of the paper is structured as follows:

Section 2 addresses major related works, and Section 3

explains the research methodology used in this study.

Section 4 presents and discusses the experimental

outcomes. Finally, Section 5 wraps up the research and

suggests prospective future studies.

2. Related Works
This section reviews previous efforts relevant to the

various methodologies for bug localization. They are

provided in terms of the approaches used in the

investigations.

VSM was first developed as an information retrieval

tool that can help find similarities between two

documents and rank them based on their similarity

scores. Poshyvanyk et al. [40] utilize an IR technique

(Latent Semantic Indexing - LSI) for feature location

named PROMISER. The developed method

experimented on three bugs in eclipse and five in

Mozilla, which is very small. In a related study, Lukins

et al. [41] used Latent Dirichlet allocation (LDA) for

automated bug localization; the approach was based on

grouping similar phrases into a subject and then

identifying terms that belong to that topic. Similarly,

Nguyen et al. [5] built a model called BugScout, an

automated solution that assists developers in reducing

the time they spend searching for problems. It was an

LDA-based strategy in which some of the technical

phrases in the bug report were utilized as topics in the

textual contents of bug reports and source code files. It

correlates bug reports and related buggy files by their

similar topics. It also included several improvement

features, such as past bug reports, to improve the

model's performance. However, LDA has the challenge

of determining a suitable number of topics to employ.

Besides, its ability to evolve or change with topics over

time is a significant drawback [42, 43].

In enhancing VSM, Zhou, et al. [20] proposed a

revised VSM (rVSM) that assigns weight based on the

difficulty of a code. They based their IR techniques on

previously corrected bug reports to maximize

performance. The rationale underlying their approach is

that VSM assigns the same weight to simple and

complex code, even though complex code contains

more errors than simple code. For their weights

determination, another equation was developed and

added to the standard VSM. The approach was tested

on four open-source projects, with the results

outperforming previous works. Also, Saha et al. [39]

improved the VSM by considering the bug report and

source code structures; more weight or importance was

assigned to titles in the bug report than a summary, and

the approach was based on the fact that the title of the

report can also help in localizing bugs. Wong et al. [35]

integrated rVSM with stack traces and codes

segmentation. Their experimental findings showed that

the two heuristics techniques integrated with rVSM

amplified its accuracy. Furthermore, they posited that

an additional parameter is introduced to control the

weight given to each source file with large size or

complex code. However, the suggested parameter

cannot be automatically determined or generated.

Some studies have also been conducted that

employed the dynamic technique. Ye et al. [44]

employed word embeddings for improving automated

bug localization. Their research aimed to close the

lexical gap by projecting natural language statements

and code snippets as meaning vectors in single

representation space. The word embeddings are

initially trained on API to get more similarities.

Takahashi et al. [45] utilized open-source code smells

as added information to improve the efficiency of IR-

based problem localization. Their technique indicated

that code smells may be utilized in conjunction with IR

to locate bugs. Le et al. [26] considered both static and

dynamic approaches for bug localization alongside

suspiciousness words in the bug report as an additional

feature to enhance its performance. Zhang et al. [25]

developed a spectrum-based bug localization using the

PageRank algorithm. Given the original program

spectrum information, the PageRank Algorithm is used

to recompute the spectrum information by considering

the contributions of various tests. In a study by Dao et

al. [37], execution traces were employed to improve the

performance of IR approaches. The three-execution

information was employed differently on three separate

IR- methods. Their research highlighted how execution

information might be integrated with the IR approach

to improve performance.

Nowadays, Machine Learning (ML) and Deep

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

111

Learning (DL) methods have also been employed for

bug localization. Sangle et al. [46] combined ML and

DL methods with rVSM for bug localization. For

improving its accuracy, the proposed method employed

a Multilanguage project composed of Java and C-

language and certain extra features such as previously

addressed bug reports. Similarly, Mahajan and

Chaudhary [47] employed the textual contents of bug

reports and LDA, together with vectorization, to rank

problematic files. They used an approach that combines

LDA and vectorization to score the ranking files. Qiu et

al. [48] developed a Just-In-Time defect identification

and localization (JITO). Their proposed method was

created as a plugin in an Integrated Development

Environment (IDE) to assist developers in identifying

and locating bugs. Cheng et al. [49] designed a model

that combines IR technology, word embedding, and

Deep Neural Network (DNN). The IR technique was

used to determine the exact similarity between the bug

report and the source files; the terms in the bug report

and the source files of different code tokens are linked

by word embedding. The DNN technique integrated the

extracted features to determine the correlation between

the bug report and the source files. Xiao et al. [50]

proposed an approach based on employing a

convolutional neural network (CNN), random

ensemble forests (RF), and multi-grained scanning to

extract semantic and structural features from the word

vectors derived from bug reports and source files.

Tantithamthavorn et al. [51] studied the impact of the

choice of IR-based classifier configuration on the

model's performance and the required effort to examine

the source code entities before locating a bug at the

method level. Lam et al. [52] combined DNN with

rVSM. In this approach, IR was used to collect the

feature on the textual similarity between bug reports

and source files, while DNN was used to learn to relate

the terms in bug reports to potentially different code

tokens and terms in source files. Also, in a study by

Loyola et al. [53], their model was based on learning

feature representations from source changes extracted

from the project history at both syntax and code change

dependency perspectives to support bug localization. A

well-structured end-to-end architecture was

incorporated into the system to integrate feature

learning and ranking between bug reports and source

code changes.

Despite the reported effectiveness of these existing

methods, there is still a need for more sophisticated

ones as the implication for prompt and accurate bug

localization is vital to software development processes.

Consequently, an enhanced rVSM is proposed in this

study. Specifically, the suggested technique would use

a mathematical equation to automatically compute the

value of the magnifier parameter, ɓ, resulting in source

code files from various projects, even if they include

the same number of words, not having the same

magnifier value. This enhancement is expected to give

an improved result compared with Wong et al. [35],

where the parameter was manually determined and all

the projects used have the same value of the parameter,

which is considered inappropriate due to the different

characteristics of the projects. Furthermore, the

proposed method improves the localization process by

using code coverage before using the IR technique to

filter the source files. In addition, stack traces and

spectrum information are merged to improve the

performance of the proposed IR technique. However,

these two elements have not been combined to improve

the accuracy of the automatic bug localization process.

3. Methodology
This section outlines and describes the proposed e-

rVSM method, tested datasets, and performance

assessment metrics.

3.1. Enhanced Revised Vector Space Model (e-

rVSM)

In the proposed e-rVSM, the entire process is

divided into four sections: code coverage analysis, data

preprocessing, development of e-rVSM, stack trace,

and spectrum information analysis. The code coverage

analysis is carried out before the application of the e-

rVSM; this is to ensure a reduction in the search space

as only source files identified to be failed will be

passed to the IR. Each of the stages in the model is

discussed in detail in the subsequent sections.

3.2. Code Coverage Analysis

The code coverage refers to all classes and methods

covered by the program execution. The coverage can

be achieved through code coverage analysis via code

coverage tools, where coverage is run to filter the

source files. This analysis helped determine source files

that failed and those that were passed. That aims to

help reduce the search space for the Information

Retrieval technique. Consequently, only failed source

files are passed to the IR-based model. The procedure

for the code coverage analysis is presented in fig. 1b.

Code coverage tools incorporated into an Integrated

Development Environment (IDE) for running and

report generation are required for carrying out this

analysis.

(a)

112

(b)

Fig. 1 (a) The framework of the proposed e-rVSM; (b) Code

coverage algorithm

Several tools can be used, including Jcrasher, Java

Code Coverage (JaCoCo) for Java applications, etc. In

this study, Jcrasher and JUnit are used to analyze.

These tools (Jcrasher and Junit) try to reveal defects by

causing the program to throw undeclared runtime

exceptions. In addition, the error reporting phase was

made to be automatically generated as a CSV file.

3.3. Preprocessing of Source Codes and Bug

Reports

Preprocessing is one of the critical issues that must

be properly carried out when performing the IR

process. There are several ways of preprocessing data.

However, three preprocessing stages were used to

preprocess the source code files and bug reports for this

proposed model.

These stages are Tokenization, Removal of stop

words, identifier splitting, and stemming:

1) Tokenization involves breaking down the text

into terms for each source code file and bug reports.

This process was achieved using a java class called

string tokenizer. That enables the bug report, and the

source code files to be seen as a composition of terms.

2) Removal of stop words: Stop words refer to

punctuation, question marks, and any unwanted words

or character. Removing stop words that were used

includes removing java keywords and removing words

such as 'must', 'is', 'so', 'are', and a single character.

3) Stemming involves reducing a word to its root

form to enable similar words to be represented using

the same term. Stemming is usually used for words in

Information Retrieval (IR) systems so that words with

almost the same meaning are grouped as the same

concept. That was achieved through the use of a porter

stemming algorithm that is based on rules and cases.

The stemming process is presented based on the rules

generated to track words to be stemmed. For instance,

'Complete', 'Completed', 'Completing' are reduced to

'Complet'.

3.4. Development of e-rVSM

In this proposed IR- model, source code files are

considered a corpus, and bug reports as the query. The

IR technique takes the bug report as a query and creates

a model to search the source code files based on the

query from the bug report. The similarity score or the

level of relevance between the source code files and the

bug report is computed. In traditional or classical VSM,

the relevance score between a document represented as

d and a query q is computed as the cosine similarity

between their corresponding vector representations as

described in Equation 1:

 (1)

where and are a vector of term weights for the

query q and document d respectively. .

represents the inner product of the two vectors. The

term weight w is computed based on the term

frequency (tf) and the inverse document frequency (idf).

Thus, the tf and idf are defined in Equation 2.

 (2)

where ftd denotes the number of occurrences of a term t

in document d, nt denotes the number of documents

that contain the term t, and #D represents the total

number of documents (source code files) in a particular

open-source project. Equation 2 is used by rVSM to

define tf and idf. Therefore, each term weights w in the

document vector and its | | are calculated in

Equation 3.

 (3)

 (4)

Similarly, the vectors of term weights for the query

and | | were obtained in Equations 5 and 6.

 (5)

 (6)

It is to be noted that classical or traditional VSM

does not favor large documents when ranking files. In

other words, large documents are often poorly

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

113

represented, whereas, in rVSM, large source code files

are given more consideration. Thus, L(Ud) is defined in

Equation 7 to model the document length in rVSM,

which is based on logistic function.

 (7)

Equation 7 is used to ensure that large documents

are given more consideration or higher scores during

ranking. To control how much favor is given to large

files size represented by the number of terms, this

proposed model (e-rVSM) intends to enhance the

rVSM model by automatically deriving the value of the

magnifier parameter ɓeta introduced by Wong et al.

[35]. It is calculated automatically using Equation 8

 (8)

where N represents the total number of source code

files in each open-source project, #terms represent the

number of terms in the source code files, and K >= 10.

With the parameter ɓeta introduced, Equation 8 now

becomes Equation 9.

 (9)

Norm is the normalization of the values. The Norm

is defined as follows: (n - nmin) / (nmax - nmin)

The scoring equation for the enhanced rVSM is

shown in Equation 10.

 (10)

3.5. Stack Trace Analysis

The stack trace information was retrieved from the

bug report. For analyzing a bug report with stack traces,

regular expressions are used. The regular expression

defined followed these three patterns:

1) STACK_TRACE_INFO_REGEX = ñ\\((.

*?)\\)ò: This detects all bug reports with an open and

close bracket.

2) ñ([^\\s]+(\\.(?i(java))$)ò ï It extracts bug report

with a bracket, space and .java

3) ñ\\s+([a-zA-Z][\\.\\w]ò - This compares the

source files detected with the source files in the corpus.

If such file exists then it is extracted and allocated

score based on Equation 11.

Given a bug report q, let st represent the stack trace

in q, ST be the set of all stack traces; Sstack represents

the set of files in the stack trace, Sstackimport represents

the set of imported files from Sstack and k represents the

total number of all Sstack and Sstackimport in the corpus.

Then, with the regular expression earlier defined to

extract the stack traces, the stack trace score was

calculated using Equation 11.

 (11)

3.5.1. Spectrum Information Analysis

The spectrum suspiciousness score is calculated

using Tarantula, one of the techniques for extracting

spectrum information. It is rated efficient in generating

spectrum suspiciousness scores and, thus, most popular.

Equation 12 depicts the Tarantula equation used to

calculate the suspiciousness score of the program

element denoted as:

 (12)

NF(d) denotes the Number of Failed test cases

executing the program element, NF denotes the total

number of failed test cases, and NP(d) refers to the

number of passed test cases that execute the program

element. NP represents the total number of passed test

cases. The values of SpecScore and StackScore are also

normalized using the same normalized equation for

rVSMScore.

3.5.2. Integration of Scores

All the three scores generated from rVSM are

denoted as rVSMScores in Equation 10. Stack trace

score represented as StackScore in Equation 11 and

spectrum suspiciousness score represented as

SpecScore in Equation 12 is integrated to rank the

buggy files. That will be achieved by finding the

average of the three scores as expressed in Equation 13.

The average score is used for ranking the source code

files suspected to be buggy in descending order.

 (13)

where rvi is the rVSMScores, stj is the StackScore, and

spk is the SpecScore.

3.6. Description of Open-Source Dataset

The datasets used to evaluate the proposed models

are source code files and bug reports from open-source

SWT and Zxing (Zebra Crossing) projects. These

datasets are publicly available and thus, downloaded

from their respective websites ð this study based its

choice on the Java code platform and the android

application. Also, the preference for the selected

datasets extends to open-source projects that have been

previously used in existing research. For example,

SWT is part of the Eclipse foundation project and

consists of Seven Hundred and Thirty-Six (736) source

files and Ninety-Eight (98) bug reports. In contrast,

Zxing consists of Four Hundred and Twelve (412)

source code files and Twenty-Seven (27) bug reports. A

brief description of the datasets is presented in Table 1.

114

Table 1 Studied open-source software projects

Project Description No. Source Files No. of Bug Reports

SWT v3.1 A standard widget toolkit for Java was designed to provide efficient and

portable access to the GUI facilities of the OS on which it is implemented.

736 98

Zxing A barcode image processing library is licensed under apache and supports 1D

Product, 1D Industrial, and 2D barcodes.

412 27

3.7. Performance Evaluation Metrics

In terms of performance evaluation, bug localization

models based on the proposed and other methods were

analyzed using TopN, Mean Average Precision (MAP),

and Mean Reciprocal Rank (MRR) values. These

metrics are often used in existing SDP studies to assess

the performance of bug localization methods[11, 35, 46,

54].

1) Top N Rank: It is a metric used to calculate the

number of bug reports that have their buggy files found

and ranked within the top N, where N can be 1, 5, or 10.

2) Mean Average Precision (MAP): It is an IR

metric used in evaluating the ranking approaches; it

calculates the average precision values among a set of

queries. It emphasizes all the ranked buggy files. The

higher the value of MAP, the better the performance of

the approach. The Mean Average Precision is computed

by taking the mean of the average precision scores

across all queries.

3) Mean Reciprocal Rank (MRR): The reciprocal

rank of a query is the reciprocal of the position of the

first buggy files in the result that is ranked to be

suspicious. MRR is the mean of the reciprocal ranks of

the results of a set of queries Q.

4. Results and Discussion
The code coverage analysis on SWT Source Files

was based on classes in the source file. SWT is an

open-source from the Eclipse foundation. It is a

standard widget toolkit for JAVA, and 736 source files

are retrieved and compiled from this open-source

project. The files are first checked to see if all the

necessary executable .jar files needed for the running

by the Jcrasher are contained in the open-source folder

before it is imported to the NetBeans environment for

coverage analysis.

From these source files, Jcrasher generates a list of

6069 classes and several test cases for each class. It

then makes the Junit reproduce their error-revealing

behavior. The error listings are reported in the form of

CSV files. As presented in Table 2, in the column

meant for error, any value greater than 0 signifies that

the class has an error. Out of these classes generated,

only 1691 are found to contain error values greater than

0. That implies that these classes contain errors and are

therefore filtered out from the project.

A similar procedure is repeated for the Zxing dataset.

During this process, the Jcrasher automatically

retrieved all the classes in the open-source and

generated test cases for each. These source files contain

4034 classes, while 651 classes were found to contain

error values greater than 0. Similarly, these classes

contain errors and are removed from the project. Table

2 and Table 3 show the code coverage from SWT and

Zxing.

Table 2 Samples of code coverage analysis for SWT

S/N Source Files Classes No. TC Generated Error/No. TC Failed

1 DND.java DNDTest2 3 3

2 DND.java DNDTest3 9 9

3 ImageData.java ImageDataTest1 34 1

4 ImageData.java ImageDataTest107 500 1

5 ImageData.java ImageDataTest108 170 36

6 ImageData.java ImageDataTest122 500 15

7 ImageData.java ImageDataTest123 61 12

8 ImageData.java ImageDataTest191 500 21

9 ImageData.java ImageDataTest192 470 30

10 ImageData.java ImageDataTest196 378 2

11 ImageData.java ImageDataTest2 396 3

12 ImageData.java ImageDataTest200 81 9

13 ImageData.java ImageDataTest215 500 17

14 ImageData.java ImageDataTest22 329 32

15 ImageData.java ImageDataTest4 315 1

16 ImageData.java ImageDataTest7 453 5

17 ImageData.java ImageDataTest91 500 3

18 ImageData.java ImageDataTest92 500 28

19 ImageData.java ImageDataTest93 299 18

20 Compatibility.java CompatibilityTest18 4 1

21 Compatibility.java CompatibilityTest19 303 60

22 PngDeflater.java PngDeflaterTest2 4 2

23 Library.java LibraryTest3 3 3

24 Library.java LibraryTest4 6 5

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

115

Continuation of Table 2

25 XPCOMInit.java XPCOMInitTest2 216 109

26 XPCOMInit.java XPCOMInitTest3 216 109

27 XPCOMInit.java XPCOMInitTest4 1 1

Table 3 Samples of code coverage analysis for Zxing

S/N Source Code Files Test Cases No. of Test

Runs/Generated

Error/No. of

Failed TC

1 ParsedReaderResultTestCase.java ParsedReaderResultTestCaseTest5 1 1

2 SMSParsedResult.java SMSParsedResultTest1 500 32

3 SMSParsedResult.java SMSParsedResultTest10 500 35

4 SMSParsedResult.java SMSParsedResultTest100 500 21

5 SMSParsedResult.java SMSParsedResultTest101 500 39

6 SMSParsedResult.java SMSParsedResultTest102 500 37

7 SMSParsedResult.java SMSParsedResultTest103 500 35

8 SMSParsedResult.java SMSParsedResultTest104 500 30

9 SMSParsedResult.java SMSParsedResultTest105 500 28

10 SMSParsedResult.java SMSParsedResultTest106 500 50

11 SMSParsedResult.java SMSParsedResultTest107 500 35

12 SMSParsedResult.java SMSParsedResultTest108 500 36

13 SMSParsedResult.java SMSParsedResultTest109 500 29

14 SMSParsedResult.java SMSParsedResultTest11 500 36

15 SMSParsedResult.java SMSParsedResultTest110 500 36

16 SMSParsedResult.java SMSParsedResultTest111 500 23

4.1. Summary of the Code Coverage Analysis Result

Table 4 summarizes the code coverage analysis for

the two open-source projects used for this study. The

number of source files, classes generated, errors

detected, and the number of failed source files retrieved

for the two open sources are indicated in Table 4.

Table 4 Summary of the code coverage analysis

S/N Open-Source

Projects

No. of Source Files No. of Classes No. of Errors No. Failed

Source Files

% Code

Coverage

1. SWT 736 6069 1691 106 90%

2. Zxing 412 4034 651 52 85%

From Table 4, SWT has 736 source code files; 6069

classes were extracted by the Jcrasher, out of which

1691 contain an error and have about 90% code

coverage, while 106 source files were filtered out as

failed source files. Zxing has 412 source code files,

4034 classes were extracted, and 651 of them have

error values greater than 0. The percentage code

coverage is 85%, and the number of failed source files

filtered out is 52. Therefore, 106 and 52 source files are

filtered out as failed source files for SWT and Zxing,

respectively.

It can be deduced from the coverage that those

passed source files are irrelevant to failure and has

been removed, thereby reducing the search space of the

IR technique. These failed source files will be passed to

the preprocessing stage of the IR technique.

4.2. Preprocessing of Filtered Source Code Files and

Bug Reports

The preprocessing of the source files filtered after

the code coverage analysis and bug reports from the

two open-source projects were done through

Tokenization, Removal of stop words, identifier

splitting, and stemming. Also, the number of terms in

each source file was noted, and the number of

occurrences of such terms.

As a result, all the failed source files from code

coverage and bug report passed through the

preprocessing stage. Fig. 2 shows samples of a source

file and bug report after preprocessing.

Fig. 2 Source code files after preprocessing

116

4.3. e-rVSM Results

4.3.1. SWT

The preprocessed source code files and bug reports

served as input into the IR. The total number of terms

and occurrences are used, and their weights are

calculated using Equation 8, as discussed in the

methodology section. Fig. 3 shows the experimental

result of the rVSM.

A bug report served as a query into the 106

documents in the corpus. Each of these bug reports

followed the equations of IR and then had an rVSM

score for the source files in the corpus. In other words,

a bug report has a rVSMscore for 106 files. As

presented in Table 5, the value has been normalized

using the normalization equation within the range of

0.0 to 1.0.

4.3.2. Zxing

The preprocessed source code files and bug reports

served as input into the IR. The total number of terms

and their corresponding occurrences are used; the

weight for each one of them is calculated. Fig. 4 shows

the result of the rVSM.

A bug report served as a query into the source files

referred to as documents or corpus. Each bug report

then has a rVSMscore for the source files in the corpus.

In other words, all the 27 bug reports have distinct

rVSMscore for 52 files used for Zxing.

Fig. 3 rVSM scores for SWT

Fig. 4 rVSM scores for Zxing

4.4. Stack Trace Analysis Results

The regular expression generated detects and

extracts stack trace files and those imported to the stack

trace. Values of the stack trace for the source files were

generated using Equation 11. This analysis was carried

out for both SWT and Zxing. Fig. 5 and Fig. 6 show a

sample of the results of stackscore for SWT and Zxing.

Fig. 5 Stackscore for SWT

Fig. 6 Stackscore for Zxing

4.5. Spectrum Analysis Results

4.5.1. SWT Source Files

The spectrum suspiciousness score for 106 source

files in SWT was calculated as discussed in the study's

methodology. After the calculations, each of the source

files has a Specscore. Some of the results of Specscore

for SWT are shown in Table 5.

Table 5 Samples of specscore for SWT

S/N Source files SpecScore

1. DND 0.1

2. ImageData 1.0

3. Compatibility 0.1

4. PngDeflater 0.1

5. Library 0.1

6. XPCOMInit 0.5

7. nsEmbedString 0.3

8. nsIAppShell 0.1

9. nsIAuthInformation 0.1

10. nsIBadCertListener2 0.2

11. nsIBaseWindow 0.1

12. nsICancelable 0.1

13. nsICategoryManager 0.1

14. Accessible 1.0

15. Color 1.0

16. FontData 0.3

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

117

Continuation of Table 5

17. Font 0.1

18. ImageDataLoader 0.1

19. Path 0.9

20. Region 1.0

21. StyledText 0.9

22. Transform 0.1

23. COMObject 0.3

4.5.2. Zxing Source Files

The spectrum suspiciousness score for 52 source

files is calculated using the equation for spectrum

analysis (See Equation 12). After the calculations, each

source file has a score denoted as Specscore. Some of

the results of this Specscore for Zxing are shown in

Table 6.

Table 6 Samples of Specscore for Zxing

Source files SpecScore Source files Spec Score

PlanarYUVLuminanceSource.java 1.0 BinaryBitmap.java 0.2

BitMatrix.java 1.0 DecoderResult.java 0.1

SMSParsedResult.java 0.8 InvertedLuminanceSource.java 0.9

SMSParsedResults.java 0.8 MultiFormatReader.java 0.2

RGBLuminanceSource.java 0.2 BlockedParsedResult.java 0.1

BitArray.java 0.1 Decoder.java 0.1

GenericGF.java 0.1 DecoderConfig.java 0.1
PlanarYUVLuminanceSources.java 1.0 DataMatrixWriter.java 0.1

4.6. Integration of the Scores

All the scores from rVSMScores, Stackscore, and

SpecScore were integrated to rank the source files in

descending order. Table 7 presents samples of files with

scores integrated and ranked files, respectively, using

SWT. A bug report with ID 108792 has its source files

integrated and ranked in descending order, as shown in

the tables.

Table 7 Samples of IntScore result for a bug report in SWT
Bug ID Source Files rVSM

Score

Stack

Score

Spec

Score

Int

Score

108792 Path 1.0 0.3 0.9 0.73333

 Accessible 1.0 0.0 1.0 0.66667

 Color 1.0 0.0 1.0 0.66667

 ImageData 1.0 0.0 1.0 0.66667

 Region 1.0 0.0 1.0 0.66667

 PngDeflater 1.0 0.9 0.1 0.66667

 StyledText 1.0 0.0 0.9 0.63333

 ImageDataLoader 1.0 0.6 0.1 0.56667

 nsIBaseWindow 1.0 0.6 0.1 0.56667

 XPCOMInit 1.0 0.0 0.5 0.50000

 FontData 1.0 0.0 0.3 0.43333

 COMObject 1.0 0.0 0.3 0.43333

 nsEmbedString 1.0 0.0 0.3 0.43333

 nsIBadCertListener2 1.0 0.0 0.2 0.40000

 Font 1.0 0.0 0.1 0.36667

 Transform 1.0 0.0 0.1 0.36667

 DND 1.0 0.0 0.1 0.36667

 Compatibility 1.0 0.0 0.1 0.36667

 nsIAppShell 1.0 0.0 0.1 0.36667

 nsIAuthInformation 1.0 0.0 0.1 0.36667

 nsICancelable 1.0 0.0 0.1 0.36667

 nsICategoryManager 1.0 0.0 0.1 0.36667

Table 7 shows some of the results of returned files

after integrating the scores and ranked in descending

order for bug report with ID: 108792. From this, it can

be deduced that the predicted buggy files for this bug

report have Path.java as the first file in the returned

ranked files with the highest score.

For the Zxing dataset, three scores were integrated

to form the IntScore as the final score for all the source

files in this project. Table 8 presents some samples of

files that have been ranked for Zxing. In addition, a bug

report with ID 508 has its source files integrated and

ranked, as shown in Table 8.

Table 8 Result of ranked files for a bug report in Zxing

Bug ID Source files rVSM

Score

Stackscore Spec

Score

IntScore

508 PlanarYUVLuminanceSource.java 1.0 0.0 1.0 0.666667

 PlanarYUVLuminanceSources.java 1.0 0.0 1.0 0.666667

 BitMatrix.java 1.0 0.0 1.0 0.666667

 InvertedLuminanceSource.java 1.0 0.0 0.9 0.633333

 SMSParsedResult.java 1.0 0.0 0.8 0.600000

 SMSParsedResults.java 1.0 0.0 0.8 0.600000

 DecoderResult.java 1.0 0.3 0.1 0.466667

 DataMatrixWriter.java 1.0 0.3 0.1 0.466667

 BinaryBitmap.java 1.0 0.0 0.2 0.400000

 GenericGF.java 1.0 0.1 0.1 0.400000

 MultiFormatReader.java 1.0 0.0 0.2 0.400000

 RGBLuminanceSource.java 1.0 0.0 0.2 0.400000

 BitArray.java 1.0 0.0 0.1 0.366667

 Decoder.java 1.0 0.0 0.1 0.366667

 DecoderConfig.java 1.0 0.0 0.1 0.366667

 BlockedParsedResult.java 1.0 0.0 0.1 0.366667

In Table 8, a bug report with ID 508 was ranked in

descending order based on the IntScore. The returned

ranked files show that PlanarYUVLumi-

nanceSource.java was the first among the buggy files

ranked.

4.7. Performance Evaluation of the Developed

Model

The model was evaluated using the three widely

used IR-metrics: Top N rank (where N= 5 or 10), Mean

Average Precision (MAP), and Mean Reciprocal Rank

(MRR) (See Section 3.3). Before each of the

parameters' values in the equation can be deduced, the

changelog files for the bug report must be known.

Since the bug reports used for this study have been

resolved, their bug tracking system is checked to see

the files that have been modified to resolve such bug

reports. This task is carried out for about one hundred

and forty-five bug reports used. For instance, Fig. 5

shows a sample of a changelog file for a bug report

118

with ID 108792 in the SWT source project.

In Fig. 7, the changelog file for the bug report was

StyledText.java. This process is repeated for all the bug

reports, and their position in the returned ranked files is

noted; this is applied to calculate performance metrics.

Table 9 presents the values of these metrics for the two

open-source projects.

Table 9 Overall performance evaluation of the developed model

S/N Open-Source Projects Top 5 (%) Top 10 (%) MRR MAP

1. SWT 80.20 89.10 80.00 61.22

2. Zxing 65.00 75.00 54.00 47.23

In Table 9, the Top N value is set to 5 and 10. For

SWT open-source, the Top 5 and Top 10 have 80.20%

and 89.10%, respectively, while the MRR and MAP are

80.00% and 61.22%. At the same time, Zxing has

65.00% for the Top 5 and 75.00% for the Top 10. The

MRR and MAP for Zxing are 54.00% and 47.23%,

respectively.

Fig. 7 Sample changelog file for bug ID 108792

4.8. Comparative Analysis of Proposed e-rVSM

with Existing Methods

The overall comparison of the proposed e-rVSM

with some existing bug localization methods is carried

out in this section. The existing works used for

comparison, as shown in Table 10, consist of

BugLocator [20], an automated IR-based bug

localization that used rVSM and the previously fixed

bug report. BLUiR [39] is also a bug localization

technique based on rVSM and BRTracer [35]

developed using rVSM, segmentation of bug reports,

and stack traces. From Table 10, it can be deduced that

the model outperformed these existing bug localization

methods. For SWT its Top 5, Top 10, MRR and MAP

has 80.20%, 89.10%, 80.00% and 61.22% respectively.

These values outperformed the existing works of

BugLocator, BLUiR, and BRTracer. Also, Zxing has

65.00%, 75.00%, 54.00%, and 47.23% for its Top 5,

Top 10, MAP, and MRR, respectively.

Table 10 Overall performance evaluation of the model

Source projects Techniques Top 5 (%) Top 10 (%) MRR MAP

SWT BugLocator [20] 69.30 79.30 50.20 44.50

BLUiR [39] 75.00 86.00 66.00 58.00

BRTracer [35] 79.60 88.80 59.50 53.00

The e-rVSM 80.20 89.10 80.00 61.22

Zxing BugLocator [20] 60.00 70.00 50.00 44.00

BLUiR [39] 64.50 70.00 49.00 39.00

BRTracer [35] N/A N/A N/A N/A

The e-rVSM 65.00 75.00 54.00 47.23

From Table 10, it can be concluded that e-rVSM

developed with the combination of stack traces and

spectrum information outperform BugLocator, BLUiR,

and BRTracer. Fig. 8 depicts the graphical

representation of the comparison.

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

119

Fig 8. Graphical illustration of performance of proposed method and existing methods

0

10

20

30

40

50

60

70

80

90

100

BugLocator BLUiR BRTracer The e-rVSMBugLocator BLUiR BRTracer The e-rVSM

SWT Zxing

Comparison with Existing Methods

 Top 5 (%) Top 10 (%) MRR (%) MAP (%)

Fig. 8 Graphical illustration of performance of the proposed and existing methods

5. Conclusions and Future Work
This study proposes and develops a novel model for

IR-based bug localization. The new model incorporates

code coverage analysis to filter source code files and

enhance the rVSM model with an automatic magnifier

parameter to represent significant source code file

scores appropriately. In addition, the accuracy of the IR

model was boosted with the stack trace analysis and

spectrum information. Findings from the experimental

result of the proposed model on open source projects

(SWT and Zxing) indicated the effectiveness of the

proposed IR-based technique for bug localization. The

successful combination of code coverage, stack trace

analysis, and spectrum information improved the

accuracy of bug localization. In addition, the code

coverage analysis introduced before applying the IR

technique helped reduce the search space and

minimized the time for the bug localization process.

As a limitation of this study, it is imperative to

explore and investigate other aspects of bug

localization. For example, machine learning (ML)

techniques and more enhancement features to the VSM

model will be investigated. Also, more and different

open source projects such as Eclipse and AspectJ

would be used for experimentation.

References
[1] BALOGUN A. O., BASRI S., ABDULKADIR S. J. and

HASHIM A. S. Performance analysis of feature selection

methods in software defect prediction: a search method

approach. Applied Sciences, 2019, 9(13): 2764.

https://doi.org/10.3390/app9132764

[2] XIAO Y., KEUNG J., BENNIN K. E., and MI Q.

Improving bug localization with word embedding and

enhanced convolutional neural networks. Information and

Software Technology, 2019, 105: 17-29

https://doi.org/10.1016/j.infsof.2018.08.002

[3] BALOGUN A. O., BASRI S., MAHAMAD S.,

CAPRETZ L. F., IMAM A. A., ALMOMANI M. A.,

ADEYEMO V. E., and KUMAR G. A Novel Rank

Aggregation-Based Hybrid Multifilter Wrapper Feature

Selection Method in Software Defect Prediction.

Computational Intelligence and Neuroscience, 2021, 2021:

5069016. https://doi.org/10.1155/2021/5069016

[4] BETTENBURG N., PREMRAJ R., ZIMMERMANN T.,

and KIM S. Extracting structural information from bug

reports. Proceedings of the 2008 international working

conference on mining software repositories, New York,

2008, pp. 27-30. https://doi.org/10.1145/1370750.1370757

[5] NGUYEN A. T., NGUYEN T. T., AL-KOFAHI J.,

NGUYEN H. V., and NGUYEN T. N. A topic-based

approach for narrowing the search space of buggy files from

a bug report, Proceedings of 26th IEEE/ACM International

Conference on Automated Software Engineering, Lawrence,

2011, pp. 263-272.

https://doi.org/10.1109/ASE.2011.6100062

[6] SHI Z., KEUNG J., BENNIN K. E., and ZHANG X.

Comparing learning to rank techniques in hybrid bug

localization. Applied Soft Computing, 2018, 62: 636-648.

https://doi.org/10.1016/j.asoc.2017.10.048

[7] MILLS C., PANTIUCHINA J., PARRA E., BAVOTA G.,

and HAIDUC S. Are bug reports enough for text retrieval-

based bug localization? Proceedings of IEEE International

Conference on Software Maintenance and Evolution,

Madrid, 2018, pp. 381-392.

https://doi.org/10.1109/ICSME.2018.00046

[8] HERBOLD S., TRAUTSCH A., and LEDEL B. Large-

scale manual validation of bugfixing changes. Proceedings

of the 17th International Conference on Mining Software

Repositories, Pittsburgh, 2020, pp. 611-614.

https://doi.org/10.1145/3379597.3387504

[9] PINGCLASAI N., HATA H., and MATSUMOTO K.-I.

Classifying bug reports to bugs and other requests using

topic modeling. Proceedings of 20th Asia-pacific software

engineering conference, Bangkok, 2013, pp. 13-18.

https://doi.org/10.1109/APSEC.2013.105

[10] GU Y., XUAN J., ZHANG H., ZHANG L., FAN Q.,

XIE X., and QIAN T. Does the fault reside in a stack trace?

assisting crash localization by predicting crashing fault

residence. Journal of Systems and Software, 2019, 148: 88-

104. https://doi.org/10.1016/j.jss.2018.11.004

[11] WANG Y., HUANG Z., FANG B., and LI Y. Spectrum-

based fault localization via enlarging non-fault region to

https://doi.org/10.3390/app9132764
https://doi.org/10.1016/j.infsof.2018.08.002
https://doi.org/10.1155/2021/5069016
https://doi.org/10.1145/1370750.1370757
https://doi.org/10.1109/ASE.2011.6100062
https://doi.org/10.1016/j.asoc.2017.10.048
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1145/3379597.3387504
https://doi.org/10.1109/APSEC.2013.105
https://doi.org/10.1016/j.jss.2018.11.004

120

improve fault absolute ranking. IEEE Access, 2018, 6: 8925-

8933. https://doi.org/10.1109/ACCESS.2018.2796849

[12] KIM J., PARK J., and LEE E. A new hybrid algorithm

for software fault localization. Proceedings of the 9
th

International Conference on Ubiquitous Information

Management and Communication, New York, 2015, pp. 1-8.

https://doi.org/10.1145/2701126.2701207

[13] HASSELBRING W., CARR L., HETTRICK S.,

PACKER H., and TIROPANIS T. Open source research

software. Computer, 2020, 53(8): 84-88.

https://doi.ieeecomputersociety.org/10.1109/MC.2020.29982

35

[14] SINGH S., & SINGH S. K. A novel approach for bug

localization for Exception Handling and Multithreading

through mutation. Proceedings of Annual IEEE India

Conference, New Delhi, 2016, pp. 1-6

https://doi.org/10.1109/INDICON.2015.7443160

[15] KILIN¢ D., Y¦CALAR F., BORANDAĴ E., and

ASLAN E. MultiȤlevel reranking approach for bug

localization. Expert Systems, 2016, 33(3): 286-294.

https://doi.org/10.1111/exsy.12150

[16] ALAZZAWI A. K., RAIS H. M., BASRI S.,

ALSARIERA Y. A., CAPRETZ L. F., BALOGUN A. O., and

IMAM A. A. HABCSm: A Hamming Based t-way Strategy

based on Hybrid Artificial Bee Colony for Variable Strength

Test Sets Generation. International Journal of Computers

Communications & Control, 2021, 16(5).

https://doi.org/10.48550/arXiv.2110.03728

[17] AMEEN A. O., MOJEED H., BOLARIWA A.,

BALOGUN A., MABAYOJE M., USMAN-HAMZAH F.,

ABDULRAHEEM M., and MOJEED H. A. Application of

Shuffled Frog-Leaping Algorithm for Optimal Software

Project Scheduling and Staffing. Proceedings of International

Conference of Reliable Information and Communication

Technology, Langkawi, 2020, pp. 293-303.

https://doi.org/10.1007/978-3-030-70713-2_28

[18] VALDIVIA-GARCIA H., SHIHAB E., and

NAGAPPAN M. Characterizing and predicting blocking

bugs in open source projects. Journal of Systems and

Software, 2018, 143: 44-58.

https://doi.org/10.1016/j.jss.2018.03.053

[19] LUCIA L., LO D., JIANG L. THUNG F., and BUDI A.

Extended comprehensive study of association measures for

fault localization. Journal of Software: Evolution and

Process, 2014, 26(2): 172-219.

https://doi.org/10.1002/smr.1616

[20] ZHOU J., ZHANG H., and LO D. Where should the

bugs be fixed? more accurate information retrieval-based

bug localization based on bug reports. Proceedings of the

34th International Conference on Software Engineering,

Zurich, 2012, pp. 14-24.

https://doi.org/10.1109/ICSE.2012.6227210

[21] ANVIK J., HIEW L., and MURPHY G. C. Who should

fix this bug. Proceedings of the 28th international conference

on Software engineering, Pittsburgh, 2006, pp. 361-370.

https://doi.org/10.1145/1134285.1134336

[22] MILLS C., PARRA E., PANTIUCHINA J., BAVOTA

G., and HAIDUC S. On the relationship between bug reports

and queries for text retrieval-based bug localization.

Empirical Software Engineering, 2020, 25(5): 3086-3127.

https://doi.org/10.1007/s10664-020-09823-w

[23] BALOGUN A. O., BASRI S., MAHAMAD S.,

ABDULKADIR S. J., ALMOMANI M. A., ADEYEMO V.

E., AL-TASHI Q., MOJEED H. A., IMAM A. A., and

BAJEH A. O. Impact of feature selection methods on the

predictive performance of software defect prediction models:

An extensive empirical study. Symmetry, 2020, 12(7): 1147.

https://doi.org/10.3390/sym12071147

[24] WU R., WEN M., CHEUNG S.-C., and ZHANG H.

Changelocator: locate crash-inducing changes based on crash

reports. Empirical Software Engineering, 2018, 23(5): 2866-

2900. https://doi.org/10.1007/s10664-017-9567-4

[25] ZHANG X., YAO Y., WANG Y., XU F., and LU J.

Exploring metadata in bug reports for bug localization.

Proceedings of 24th Asia-Pacific Software Engineering

Conference, Nanjing, 2017, pp. 328-337.

https://doi.org/10.1109/APSEC.2017.39

[26] LE T.-D. B., THUNG F., and LO D. Will this

localization tool be effective for this bug? Mitigating the

impact of unreliability of information retrieval based bug

localization tools. Empirical Software Engineering, 2017,

22(4): 2237-2279. https://doi.org/10.1007/s10664-016-9484-

y

[27] WANG Y., YAO Y., TONG H., HUO X., LI M., XU F.,

and LU J. Bug localization via supervised topic modeling.

Proceedings of IEEE international conference on data

mining, 2018, pp. 607-616.

http://tonghanghang.org/pdfs/icdm2018_bug.pdf

[28] AKBAR S. A., & KAK A. C. A large-scale comparative

evaluation of IR-based tools for bug localization.

Proceedings of the 17th International Conference on Mining

Software Repositories, Seoul, 2020, pp. 21-31.

https://doi.org/10.1145/3379597.3387474

[29] FANG F., WU J., LI Y., YE X., ALJEDAANI W., and

MKAOUER M. W. On the classification of bug reports to

improve bug localization. Soft Computing, 2021, 25(11):

7307-7323. https://doi.org/10.1007/s00500-021-05689-2

[30] MURALI V., GROSS L., QIAN R., and CHANDRA S.

Industry-scale IR-based Bug Localization: A Perspective

from Facebook. Proceedings of IEEE/ACM 43rd

International Conference on Software Engineering: Software

Engineering in Practice, Madrid, 2021, pp. 188-197.

https://doi.org/10.48550/arXiv.2010.09977

[31] MORENO L., TREADWAY J. J., MARCUS A., and

SHEN W. On the use of stack traces to improve text

retrieval-based bug localization. Proceedings of IEEE

International Conference on Software Maintenance and

Evolution, Victoria, 2014, pp. 151-160.

https://doi.org/10.1109/ICSME.2014.37

[32] RAO S., & KAK A. Retrieval from software libraries

for bug localization: a comparative study of generic and

composite text models. Proceedings of the 8th Working

Conference on Mining Software Repositories, Pittsburgh,

2011, pp. 43-52. https://doi.org/10.1145/1985441.1985451

[33] RAHMAN S., GANGULY K. K., and SAKIB K. An

improved bug localization using structured information

retrieval and version history, Proceedings of 18th

International Conference on Computer and Information

Technology, Dhaka, 2015, pp. 190-195.

https://doi.org/10.1109/ICCITechn.2015.7488066

[34] ZHAI C., COHEN W. W., and LAFFERTY J. Beyond

independent relevance: methods and evaluation metrics for

subtopic retrieval. ACM SIGIR Forum, 2015, 49(1): 2-9.

https://doi.org/10.1145/2795403.2795405

[35] WONG C.-P., XIONG Y., ZHANG H., HAO D.,

ZHANG L., and MEI H. Boosting bug-report-oriented fault

https://doi.org/10.1109/ACCESS.2018.2796849
https://doi.org/10.1145/2701126.2701207
https://doi.ieeecomputersociety.org/10.1109/MC.2020.2998235
https://doi.ieeecomputersociety.org/10.1109/MC.2020.2998235
https://doi.org/10.1109/INDICON.2015.7443160
https://doi.org/10.1111/exsy.12150
https://doi.org/10.48550/arXiv.2110.03728
https://doi.org/10.1007/978-3-030-70713-2_28
https://doi.org/10.1007/978-3-030-70713-2_28
https://doi.org/10.1016/j.jss.2018.03.053
https://doi.org/10.1002/smr.1616
https://doi.org/10.1109/ICSE.2012.6227210
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1007/s10664-020-09823-w
https://doi.org/10.3390/sym12071147
https://doi.org/10.1007/s10664-017-9567-4
https://doi.org/10.1109/APSEC.2017.39
https://doi.org/10.1007/s10664-016-9484-y
https://doi.org/10.1007/s10664-016-9484-y
http://tonghanghang.org/pdfs/icdm2018_bug.pdf
https://doi.org/10.1145/3379597.3387474
https://doi.org/10.1007/s00500-021-05689-2
https://doi.org/10.48550/arXiv.2010.09977
https://doi.org/10.1109/ICSME.2014.37
https://doi.org/10.1145/1985441.1985451
https://doi.org/10.1109/ICCITechn.2015.7488066
https://doi.org/10.1145/2795403.2795405

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

121

localization with segmentation and stack-trace analysis.

Proceedings of IEEE International Conference on Software

Maintenance and Evolution, Victoria, 2014, pp. 181-190.

https://doi.org/10.1109/ICSME.2014.40

[36] YOUM K. C., AHN J., and LEE E. Improved bug

localization based on code change histories and bug reports.

Information and Software Technology, 2017, 82: 177-192.

https://doi.org/10.1016/j.infsof.2016.11.002

[37] DAO T., ZHANG L., and MENG N. How does

execution information help with information-retrieval based

bug localization. Proceedings of IEEE/ACM 25th

International Conference on Program Comprehension,

Buenos Aires, 2017, pp. 241-250.

https://doi.org/10.1109/ICPC.2017.29

[38] THUNG F. Automatic prediction of bug fixing effort

measured by code churn size. Proceedings of the 5th

International Workshop on Software Mining, New York,

2016, pp. 18-23. https://doi.org/10.1145/2975961.2975964

[39] SAHA R. K., LEASE M., KHURSHID S., and PERRY

D. E. Improving bug localization using structured

information retrieval. Proceedings of 28th IEEE/ACM

International Conference on Automated Software

Engineering, Silicon Valley CA, 2013, pp. 345-355.

https://doi.org/10.1109/ASE.2013.6693093

[40] POSHYVANYK D., GU£H£NEUC Y.-G., MARCUS

A., ANTONIOL G., and RAJLICH V. Feature location using

probabilistic ranking of methods based on execution

scenarios and information retrieval. IEEE Transactions on

Software Engineering, 2007, 33(6): pp. 420-432.

https://doi.org/10.1109/TSE.2007.1016

[41] LUKINS S. K., KRAFT N. A., and ETZKORN L. H.

Bug localization using latent dirichlet allocation. Information

and Software Technology, 2010, 52(9): 972-990.

https://doi.org/10.1016/j.infsof.2010.04.002

[42] JELODAR H., WANG Y., YUAN C., FENG X., JIANG

X., LI Y., and ZHAO L. Latent Dirichlet allocation (LDA)

and topic modeling: models, applications, a survey.

Multimedia Tools and Applications, 2019, 78(11): 15169-

15211. https://doi.org/10.48550/arXiv.1711.04305

[43] ARUN R., SURESH V., MADHAVAN C. V., and

MURTHY M. N. On finding the natural number of topics

with latent dirichlet allocation: Some observations.

Proceedings of Pacific-Asia conference on knowledge

discovery and data mining, Berlin, 2010, pp. 391-402.

https://doi.org/10.1007/978-3-642-13657-3_43

[44] YE X., SHEN H., MA X., BUNESCU R., and LIU C.

From word embeddings to document similarities for

improved information retrieval in software engineering.

Proceedings of the 38th international conference on software

engineering, Austin, 2016, pp. 404-415.

https://doi.org/10.1145/2884781.2884862

[45] TAKAHASHI A., SAE-LIM N., HAYASHI S., and

SAEKI M. A preliminary study on using code smells to

improve bug localization. Proceedings of the 26th

Conference on Program Comprehension, Pittsburgh, 2018,

pp. 324-327. https://doi.org/10.1145/3196321.3196361

[46] SANGLE S., MUVVA S., CHIMALAKONDA S.,

PONNALAGU K., and VENKOPARAO V. G. DRAST--A

Deep Learning and AST Based Approach for Bug

Localization. arXiv preprint, 2020: 2011.03449.

https://doi.org/10.48550/arXiv.2011.03449

[47] MAHAJAN G., & CHAUDHARY N. Improving Bug

Localization using IR-based Textual Similarity and

Vectorization Scoring Framework. International Journal of

Advances in Soft Computing & Its Applications, 2020, 12(2):

23-32. https://www.semanticscholar.org/paper/Improving-

Bug-Localization-using-IR-based-Textual-Mahajan-

Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf

[48] QIU F., YAN M., XIA X., WANG X., FAN Y.,

HASSAN A. E., and LO D. JITO: a tool for just-in-time

defect identification and localization. Proceedings of the

28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering, Singapore, 2020, pp. 1586-1590.

https://ink.library.smu.edu.sg/sis_research/5537

[49] CHENG S., YAN X., and KHAN A. A. A Similarity

Integration Method based Information Retrieval and Word

Embedding in Bug Localization. Proceedings of 20th

International Conference on Software Quality, Reliability

and Security, Macau, 2020, pp. 180-187.

https://doi.org/10.1109/QRS51102.2020.00034

[50] XIAO Y., KEUNG J., MI Q., and BENNIN K. E. Bug

localization with semantic and structural features using

convolutional neural network and cascade forest.

Proceedings of the 22nd International Conference on

Evaluation and Assessment in Software Engineering, New

York, 2018, pp. 101-111.

https://doi.org/10.1145/3210459.3210469

[51] TANTITHAMTHAVORN C., ABEBE S. L., HASSAN

A. E., IHARA A., and MATSUMOTO K. The impact of IR-

based classifier configuration on the performance and the

effort of method-level bug localization. Information and

Software Technology, 2018, 102: 160-174.

https://doi.org/10.1016/j.infsof.2018.06.001

[52] LAM A. N., NGUYEN A. T., NGUYEN H. A., and

NGUYEN T. N. Bug localization with combination of deep

learning and information retrieval. Proceedings of

IEEE/ACM 25th International Conference on Program

Comprehension, Buenos Aires, 2017, pp. 218-229.

https://doi.org/10.1109/ICPC.2017.24

[53] LOYOLA P., GAJANANAN K., and SATOH F. Bug

localization by learning to rank and represent bug inducing

changes. Proceedings of the 27th ACM International

Conference on Information and Knowledge Management,

Torino, 2018, pp. 657-665.

https://doi.org/10.1145/3269206.3271811

参考文:

[1] BALOGUN A. O., BASRI S., ABDULKADIR S. J. 和

HASHIM A. S. 软件缺陷预测中特征选择方法的性能分析

： 一 种 搜 索 方 法 。 应 用 科 学 , 2019, 9(13): 2764.

https://doi.org/10.3390/app9132764

[2] XIAO Y., KEUNG J., BENNIN K. E., 和 MI Q. 通过词

嵌入和增强的卷积神经网络改进错误定位。信息和软件

技 术 , 2019, 105: 17-29

https://doi.org/10.1016/j.infsof.2018.08.002

[3] BALOGUN A. O., BASRI S., MAHAMAD S.,

CAPRETZ L. F., IMAM A. A., ALMOMANI M. A.,

ADEYEMO V. E., 和 KUMAR G. 软件缺陷预测中一种新

的基于秩聚合的混合多过滤器包装特征选择方法。计算

https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1016/j.infsof.2016.11.002
https://doi.org/10.1109/ICPC.2017.29
https://doi.org/10.1145/2975961.2975964
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/TSE.2007.1016
https://doi.org/10.1016/j.infsof.2010.04.002
https://doi.org/10.48550/arXiv.1711.04305
https://doi.org/10.1007/978-3-642-13657-3_43
https://doi.org/10.1145/2884781.2884862
https://doi.org/10.1145/3196321.3196361
https://doi.org/10.48550/arXiv.2011.03449
https://www.semanticscholar.org/paper/Improving-Bug-Localization-using-IR-based-Textual-Mahajan-Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf
https://www.semanticscholar.org/paper/Improving-Bug-Localization-using-IR-based-Textual-Mahajan-Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf
https://www.semanticscholar.org/paper/Improving-Bug-Localization-using-IR-based-Textual-Mahajan-Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf
https://ink.library.smu.edu.sg/sis_research/5537
https://doi.org/10.1109/QRS51102.2020.00034
https://doi.org/10.1145/3210459.3210469
https://doi.org/10.1016/j.infsof.2018.06.001
https://doi.org/10.1109/ICPC.2017.24
https://doi.org/10.1145/3269206.3271811
https://doi.org/10.1145/3269206.3271811
https://doi.org/10.3390/app9132764
https://doi.org/10.1016/j.infsof.2018.08.002

122

智 能 和 神 经 科 学 , 2021, 2021: 5069016.

https://doi.org/10.1155/2021/5069016

[4] BETTENBURG N., PREMRAJ R., ZIMMERMANN T.,

和 KIM S. 从错误报告中提取结构信息。2008 年采矿软

件存储库国际工作会议论文集，纽约，2008 年，第 27-

30 页. https://doi.org/10.1145/1370750.1370757

[5] NGUYEN A. T., NGUYEN T. T., AL-KOFAHI J.,

NGUYEN H. V., 和 NGUYEN T. N. 一种基于主题的方法

，用于从错误报告中缩小错误文件的搜索空间，第 26 届

电气和电子工程师学会/计算机协会自动化软件工程国际

会 议 论 文 集 ， 劳 伦 斯 ， 2011 年 ， 第 263-272 页 .

https://doi.org/10.1109/ASE.2011.6100062

[6] SHI Z., KEUNG J., BENNIN K. E., 和 ZHANG X. 比较

混合错误定位中的学习排名技术。应用软计算, 2018, 62:

636-648. https://doi.org/10.1016/j.asoc.2017.10.048

[7] MILLS C., PANTIUCHINA J., PARRA E., BAVOTA G.,

和 HAIDUC S. 错误报告是否足以用于基于文本检索的错

误本地化？电气和电子工程师协会国际软件维护和演进

会 议 论 文 集 ， 马 德 里 , 2018, pp. 381-392.

https://doi.org/10.1109/ICSME.2018.00046

[8] HERBOLD S., TRAUTSCH A., 和 LEDEL B. 错误修复

更改的大规模手动验证。第 17 届国际挖掘软件存储库会

议 论 文 集 ， 匹 兹 堡 ， 2020 年 ， 第 611-614 页 .

https://doi.org/10.1145/3379597.3387504

[9] PINGCLASAI N., HATA H., 和 MATSUMOTO K.-I. 使

用主题建模将错误报告分类为错误和其他请求。第 20 届

亚太软件工程会议论文集，曼谷，2013 年，第 13-18 页.

https://doi.org/10.1109/APSEC.2013.105

[10] GU Y., XUAN J., ZHANG H., ZHANG L., FAN Q.,

XIE X., 和 QIAN T. 故障是否存在于堆栈跟踪中？通过预

测碰撞故障的位置来辅助碰撞定位。系统与软件杂志,

2019, 148: 88-104. https://doi.org/10.1016/j.jss.2018.11.004

[11] WANG Y., HUANG Z., FANG B., 和 LI Y. 基于频谱的

故障定位通过扩大非故障区域来提高故障绝对排序。电

气 和 电 子 工 程 师 协 会 访 问 , 2018, 6: 8925-8933.

https://doi.org/10.1109/ACCESS.2018.2796849

[12] KIM J., PARK J., 和 LEE E. 一种新的软件故障定位

混合算法。第九届泛在信息管理与通信国际会议论文集

， 纽 约 , 2015, 第 1-8 页 .

https://doi.org/10.1145/2701126.2701207

[13] HASSELBRING W., CARR L., HETTRICK S.,

PACKER H., 和 TIROPANIS T. 开源研究软件。电脑 ,

2020, 53(8): 84-88.

https://doi.ieeecomputersociety.org/10.1109/MC.2020.29982

35

[14] SINGH S., 和 SINGH S. K. 一种通过突变进行异常处

理和多线程错误定位的新方法。印度电气和电子工程师

学 会 年 度 会 议 论 文 集 ， 新 德 里 , 2016, pp. 1-6

https://doi.org/10.1109/INDICON.2015.7443160

[15] KILIN¢ D., Y¦CALAR F., BORANDAĴ E., 和

ASLAN E. 用于错误定位的多级重新排序方法。专家系

统, 2016, 33(3): 286-294. https://doi.org/10.1111/exsy.12150

[16] ALAZZAWI A. K., RAIS H. M., BASRI S.,

ALSARIERA Y. A., CAPRETZ L. F., BALOGUN A. O., 和

IMAM A. A. 用于可变强度测试集生成的基于混合人工蜂

群的基于汉明的吨路策略。国际计算机通信与控制杂志,

2021, 16(5). https://doi.org/10.48550/arXiv.2110.03728

[17] AMEEN A. O., MOJEED H., BOLARIWA A.,

BALOGUN A., MABAYOJE M., USMAN-HAMZAH F.,

ABDULRAHEEM M., 和 MOJEED H. A. 洗牌蛙跳算法在

优化软件项目调度和人员配置中的应用。国际可靠信息

和通信技术会议论文集，兰卡威，2020 年，第 293-303

页. https://doi.org/10.1007/978-3-030-70713-2_28

[18] VALDIVIA-GARCIA H., SHIHAB E., 和 NAGAPPAN

M. 表征和预测开源项目中的阻塞错误。系统与软件杂志

, 2018, 143: 44-58. https://doi.org/10.1016/j.jss.2018.03.053

[19] LUCIA L., LO D., JIANG L. THUNG F., 和 BUDI A.

故障定位关联度量的扩展综合研究。软件杂志：进化与

过 程 ， 2014, 26(2): 172-219.

https://doi.org/10.1002/smr.1616

[20] ZHOU J., ZHANG H., 和 LO D. 应该在哪里修复错误

？基于错误报告的更准确的基于信息检索的错误定位。

第 34 届国际软件工程会议论文集，苏黎世，2012 年，

第 14-24 页. https://doi.org/10.1109/ICSE.2012.6227210

[21] ANVIK J., HIEW L., 和 MURPHY G. C. 谁应该修复

这个错误。第 28 届国际软件工程会议论文集，匹兹堡，

2006 年 ， 第 361-370 页 .

https://doi.org/10.1145/1134285.1134336

[22] MILLS C., PARRA E., PANTIUCHINA J., BAVOTA

G., 和 HAIDUC S. 基于文本检索的错误本地化的错误报

告和查询之间的关系。实证软件工程, 2020, 25(5): 3086-

3127. https://doi.org/10.1007/s10664-020-09823-w

[23] BALOGUN A. O., BASRI S., MAHAMAD S.,

ABDULKADIR S. J., ALMOMANI M. A., ADEYEMO V.

E., AL-TASHI Q., MOJEED H. A., IMAM A. A., 和 BAJEH

A. O. 特征选择方法对软件缺陷预测模型预测性能的影响

： 一 项 广 泛 的 实 证 研 究 。 对 称 , 2020, 12(7): 1147.

https://doi.org/10.3390/sym12071147

[24] WU R., WEN M., CHEUNG S.-C., 和 ZHANG H. 变更

定位器：根据崩溃报告定位导致崩溃的更改。实证软件

工 程 , 2018, 23(5): 2866-2900.

https://doi.org/10.1007/s10664-017-9567-4

[25] ZHANG X., YAO Y., WANG Y., XU F., 和 LU J. 探索

https://doi.org/10.1155/2021/5069016
https://doi.org/10.1145/1370750.1370757
https://doi.org/10.1109/ASE.2011.6100062
https://doi.org/10.1016/j.asoc.2017.10.048
https://doi.org/10.1109/ICSME.2018.00046
https://doi.org/10.1145/3379597.3387504
https://doi.org/10.1109/APSEC.2013.105
https://doi.org/10.1016/j.jss.2018.11.004
https://doi.org/10.1109/ACCESS.2018.2796849
https://doi.org/10.1145/2701126.2701207
https://doi.ieeecomputersociety.org/10.1109/MC.2020.2998235
https://doi.ieeecomputersociety.org/10.1109/MC.2020.2998235
https://doi.org/10.1109/INDICON.2015.7443160
https://doi.org/10.1111/exsy.12150
https://doi.org/10.48550/arXiv.2110.03728
https://doi.org/10.1007/978-3-030-70713-2_28
https://doi.org/10.1016/j.jss.2018.03.053
https://doi.org/10.1002/smr.1616
https://doi.org/10.1109/ICSE.2012.6227210
https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1007/s10664-020-09823-w
https://doi.org/10.3390/sym12071147
https://doi.org/10.1007/s10664-017-9567-4

Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

123

错误报告中的元数据以进行错误本地化。第 24 届亚太软

件 工 程 会 议 论 文 集 ， 南 京 ， 2017 ， 第 328-337 页 .

https://doi.org/10.1109/APSEC.2017.39

[26] LE T.-D. B., THUNG F., 和 LO D. 这个本地化工具对

这个错误有效吗？减轻基于信息检索的错误定位工具不

可靠性的影响。实证软件工程, 2017, 22(4): 2237-2279.

https://doi.org/10.1007/s10664-016-9484-y

[27] WANG Y., YAO Y., TONG H., HUO X., LI M., XU F.,

和 LU J. 通过有监督的主题建模进行错误定位。电气和

电子工程师协会数据挖掘国际会议论文集, 2018, 第 607-

616 页. http://tonghanghang.org/pdfs/icdm2018_bug.pdf

[28] AKBAR S. A., 和 KAK A. C. 基于信息检索的错误定

位工具的大规模比较评估。第 17 届国际采矿软件存储库

会 议 论 文 集 ， 首 尔 , 2020, 第 21-31 页 .

https://doi.org/10.1145/3379597.3387474

[29] FANG F., WU J., LI Y., YE X., ALJEDAANI W., 和

MKAOUER M. W. 关于漏洞报告的分类以改进漏洞本地

化 。 软 计 算 , 2021, 25(11): 7307-7323.

https://doi.org/10.1007/s00500-021-05689-2

[30] MURALI V., GROSS L., QIAN R., 和 CHANDRA S.

基于行业规模信息可检索的错误本地化：来自脸书的观

点。电气和电子工程师协会/计算机机械协会第 43 届软

件工程国际会议论文集：实践中的软件工程，马德里,

2021, 第 188-197 页 .

https://doi.org/10.48550/arXiv.2010.09977

[31] MORENO L., TREADWAY J. J., MARCUS A., 和

SHEN W. 关于使用堆栈跟踪来改进基于文本检索的错误

定位。电气和电子工程师学会国际软件维护和演进会议

论 文 集 ， 维 多 利 亚 ， 2014 年 ， 第 151-160 页 .

https://doi.org/10.1109/ICSME.2014.37

[32] RAO S., 和 KAK A. 从软件库中检索错误定位：通用

和复合文本模型的比较研究。第八届挖掘软件存储库工

作 会 议 论 文 集 ， 匹 兹 堡 ， 2011 年 ， 第 43-52 页 .

https://doi.org/10.1145/1985441.1985451

[33] RAHMAN S., GANGULY K. K., 和 SAKIB K. 使用结

构化信息检索和版本历史改进的错误定位，第 18 届计算

机和信息技术国际会议论文集，达卡，2015 年，第 190-

195 页. https://doi.org/10.1109/ICCITechn.2015.7488066

[34] ZHAI C., COHEN W. W., 和 LAFFERTY J. 超越独立

相关性：子主题检索的方法和评估指标。信息检索特别

兴 趣 小 组 （ 计 算 机 协 会 ） 论 坛 , 2015, 49(1): 2-9.

https://doi.org/10.1145/2795403.2795405

[35] WONG C.-P., XIONG Y., ZHANG H., HAO D.,

ZHANG L., 和 MEI H. 通过分段和堆栈跟踪分析促进面

向错误报告的故障定位。电气和电子工程师学会国际软

件维护和演进会议论文集，维多利亚，2014 年，第 181-

190 页. https://doi.org/10.1109/ICSME.2014.40

[36] YOUM K. C., AHN J., 和 LEE E. 基于代码更改历史

和错误报告改进了错误本地化。信息和软件技术, 2017,

82: 177-192. https://doi.org/10.1016/j.infsof.2016.11.002

[37] DAO T., ZHANG L., 和 MENG N. 执行信息如何帮助

基于信息检索的错误本地化。电气和电子工程师协会/计

算机协会第 25 届程序理解国际会议论文集，布宜诺斯艾

利 斯 ， 2017 年 ， 第 241-250 页 .

https://doi.org/10.1109/ICPC.2017.29

[38] THUNG F. 自动预测由代码流失大小衡量的错误修

复工作量。第五届国际软件挖掘研讨会论文集，纽约，

2016 年 ， 第 18-23 页 .

https://doi.org/10.1145/2975961.2975964

[39] SAHA R. K., LEASE M., KHURSHID S., 和 PERRY

D. E. 使用结构化信息检索改进错误定位。第 28 届电气

和电子工程师协会/计算机协会自动化软件工程国际会议

论 文 集 ， 加 利 福 尼 亚 州 硅 谷 , 2013, 第 345-355 页 .

https://doi.org/10.1109/ASE.2013.6693093

[40] POSHYVANYK D., GU£H£NEUC Y.-G., MARCUS

A., ANTONIOL G., 和 RAJLICH V. 使用基于执行场景和

信息检索的方法的概率排序进行特征定位。电气和电子

工程师学会软件工程汇刊，2007，33(6)：第 420-432 页.

https://doi.org/10.1109/TSE.2007.1016

[41] LUKINS S. K., KRAFT N. A., 和 ETZKORN L. H. 使

用潜在狄利克雷分配的错误定位。信息和软件技术 ,

2010, 52(9): 972-990.

https://doi.org/10.1016/j.infsof.2010.04.002

[42] JELODAR H., WANG Y., YUAN C., FENG X., JIANG

X., LI Y., 和 ZHAO L. 潜在狄利克雷分配和主题建模：模

型、应用、调查。多媒体工具和应用程序, 2019, 78(11):

15169-15211. https://doi.org/10.48550/arXiv.1711.04305

[43] ARUN R., SURESH V., MADHAVAN C. V., 和

MURTHY M. N. 关于通过潜在狄利克雷分配找到主题的

自然数：一些观察。亚太知识发现和数据挖掘会议论文

集 ， 柏 林 ， 2010 年 ， 第 391-402 页 .

https://doi.org/10.1007/978-3-642-13657-3_43

[44] YE X., SHEN H., MA X., BUNESCU R., 和 LIU C. 从

词嵌入到文档相似性，以改进软件工程中的信息检索。

第 38 届国际软件工程会议论文集，奥斯汀，2016 年，

第 404-415 页. https://doi.org/10.1145/2884781.2884862

[45] TAKAHASHI A., SAE-LIM N., HAYASHI S., 和

SAEKI M. 使用代码异味改善错误定位的初步研究。第

26 届程序理解会议论文集，匹兹堡，2018 年，第 324-

327 页. https://doi.org/10.1145/3196321.3196361

https://doi.org/10.1109/APSEC.2017.39
https://doi.org/10.1007/s10664-016-9484-y
http://tonghanghang.org/pdfs/icdm2018_bug.pdf
https://doi.org/10.1145/3379597.3387474
https://doi.org/10.1007/s00500-021-05689-2
https://doi.org/10.48550/arXiv.2010.09977
https://doi.org/10.1109/ICSME.2014.37
https://doi.org/10.1145/1985441.1985451
https://doi.org/10.1109/ICCITechn.2015.7488066
https://doi.org/10.1145/2795403.2795405
https://doi.org/10.1109/ICSME.2014.40
https://doi.org/10.1016/j.infsof.2016.11.002
https://doi.org/10.1109/ICPC.2017.29
https://doi.org/10.1145/2975961.2975964
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/TSE.2007.1016
https://doi.org/10.1016/j.infsof.2010.04.002
https://doi.org/10.48550/arXiv.1711.04305
https://doi.org/10.1007/978-3-642-13657-3_43
https://doi.org/10.1145/2884781.2884862
https://doi.org/10.1145/3196321.3196361

124

[46] SANGLE S., MUVVA S., CHIMALAKONDA S.,

PONNALAGU K., 和 VENKOPARAO V. G. 荒漠化风险评

估支持工具 - 基于深度学习和抽象语法树的错误定位方

法 。 档 案 预 印 本 , 2020: 2011.03449.

https://doi.org/10.48550/arXiv.2011.03449

[47] MAHAJAN G., 和 CHAUDHARY N. 使用基于信息可

检索的文本相似性和矢量化评分框架改进错误定位。国

际 软 计 算 及 其 应 用 进 展 杂 志 , 2020, 12(2): 23-32.

https://www.semanticscholar.org/paper/Improving-Bug-

Localization-using-IR-based-Textual-Mahajan-

Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf

[48] QIU F., YAN M., XIA X., WANG X., FAN Y.,

HASSAN A. E., 和 LO D. 即时缺陷识别和定位的工具。

第 28 届欧洲软件工程会议和软件工程基础研讨会的计算

机协会联合会议论文集，新加坡，2020 年，第 1586-

1590 页. https://ink.library.smu.edu.sg/sis_research/5537

[49] CHENG S., YAN X., 和 KHAN A. A. 一种基于信息检

索和词嵌入的相似性集成方法在错误定位中。第 20 届软

件质量、可靠性和安全国际会议论文集，澳门, 2020, 第

180-187 页. https://doi.org/10.1109/QRS51102.2020.00034

[50] XIAO Y., KEUNG J., MI Q., 和 BENNIN K. E. 使用卷

积神经网络和级联森林进行具有语义和结构特征的错误

定位。第 22 届软件工程评估与评估国际会议论文集，纽

约 ， 2018 年 ， 第 101-111 页 .

https://doi.org/10.1145/3210459.3210469

[51] TANTITHAMTHAVORN C., ABEBE S. L., HASSAN

A. E., IHARA A., 和 MATSUMOTO K. 基于信息可检索的

分类器配置对方法级错误定位的性能和工作量的影响。

信 息 和 软 件 技 术 ， 2018, 102: 160-174.

https://doi.org/10.1016/j.infsof.2018.06.001

[52] LAM A. N., NGUYEN A. T., NGUYEN H. A., 和

NGUYEN T. N. 结合深度学习和信息检索的错误定位。

电气和电子工程师协会/计算机协会第 25 届程序理解国

际会议论文集，布宜诺斯艾利斯，2017 年，第 218-229

页. https://doi.org/10.1109/ICPC.2017.24

[53] LOYOLA P., GAJANANAN K., 和 SATOH F. 通过学

习排名和表示引起错误的变化来定位错误。第 27 届计算

机协会国际信息与知识管理会议论文集，都灵，2018 年

，第 657-665 页. https://doi.org/10.1145/3269206.3271811

https://doi.org/10.48550/arXiv.2011.03449
https://www.semanticscholar.org/paper/Improving-Bug-Localization-using-IR-based-Textual-Mahajan-Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf
https://www.semanticscholar.org/paper/Improving-Bug-Localization-using-IR-based-Textual-Mahajan-Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf
https://www.semanticscholar.org/paper/Improving-Bug-Localization-using-IR-based-Textual-Mahajan-Chaudhary/c7e5e583304d5b9694af2a15a38cddf4db68fedf
https://ink.library.smu.edu.sg/sis_research/5537
https://doi.org/10.1109/QRS51102.2020.00034
https://doi.org/10.1145/3210459.3210469
https://doi.org/10.1016/j.infsof.2018.06.001
https://doi.org/10.1109/ICPC.2017.24
https://doi.org/10.1145/3269206.3271811

