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Abstract: Several strategies such as Vector Space Model (VSM), revised Vector Space Model (r'VSM), and
integration of additional elements such as stack trace and previously corrected bug report have been utilized to
improve the Information Retrieval (IR) based bug localization process. Most of the existing IR-based approaches
make use of source code files without filtering, which eventually increases the search space of the technique,
thereby slowing down the bug localization process. This study developed an enhanced IR-based bug localization
model as a viable solution. Specifically, an enhanced rVSM (e-rVSM) is developed based on the hybridization of
code coverage, stack traces, and spectrum information. Combining the stack trace and spectrum information as
additional features can enhance the accuracy of the IR-based technique by boosting the bug localization process.
Code coverage analysis was conducted to remove irrelevant source files and reduce the search space of the IR
technique. Then the filtered source files are preprocessed via tokenization and stemming from selecting relevant
features and removing unwanted words. The preprocessed data is further analyzed by finding similarities between
the preprocessed bug reports and source code files using the e-rVSM. Finally, scores for each source code and
suspected buggy files are ranked in descending order. The performance of the proposed e-rVSM is tested on two
open-source projects (Zxing and SWT), and its effectiveness is assessed using TopN rank (where N =5, 10), Mean
Reciprocal Rank (MRR), and Mean Average Precision (MAP). Findings from the experimental results revealed the
effectiveness of e-rVSM in bug localization. In particular, e-r'VVSM recorded a significant Top 5 (80.2%; 65%) and
Top 10 (89.1%; 75%) rank values on SWT and Zxing dataset respectively. Also, the proposed e-rVSM had MRR
values of 80% and 54% on the SWT dataset and MAP values of 61.22% and 47.23% on the Zxing dataset.
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1. Introduction

Software bugs are instances of unanticipated
behavior that affect the software's performance. It may
also be viewed as an unsuitable procedure in software
that would generally provide inaccurate results.
Software engineers often devote a significant amount
of time and resources to developing quality and reliable
software, yet despite this, software systems are still
vulnerable to software bugs or defects [1-3]. Moreover,
software bugs may not be present or noticed
immediately, but as update continues and complexity
increases, there is a likelihood of the presence of
software bugs. Therefore, software bug reports are
critical for every software development project. A
software user may warn the software development
team about unexpected consequences of using their
product by filing a bug report [4-8]. Software bug
reports are widely employed in various research
domains, including bug prediction, bug localization,
and bug triaging; they are submitted via the Bug
Tracking Systems (BTS) [9-11]. Software debugging
entails two stages: bug localization and bug fixing [12].
To formally address software bugs, software developers
and engineers set up software bug repositories to
collect software bug reports from users [13].

Bug localization is the process by which a bug is
located within the source code files. Although it is
necessary for the software development process,
particularly software maintenance, it is time-consuming
and incredibly costly [5, 7, 14, 15]. As reported in
several studies, software testing and debugging
activities take up 75% of the software development
cost. In comparison, software maintenance activities
consume roughly 90% of the software development life
cycle (SDLC) [16-18]. For example, Lucia et al. [19]
assessed 374 bugs from Rhino, Aspect], and Lucene
software repositories in their study. It was discovered
that 84-93% of software bugs are found in the first 20%
of the source code files. Also, in the respective study of
Zhou et al. [20] and Anvik et al. [21], it was disclosed
that 300 bug reports are filed daily. In the case of large
software products, the number of bug reports in the
repository may be so high that it will be difficult for the
software development team to address this large
number of bug reports in the least amount of time.

Furthermore, developers often do bug localization
manually, which is tedious. As a result, reliable ways to

automatically detect software bugs from bug reports
are necessary [7, 9, 14, 22, 23]. Several studies have
proposed automated bug localization techniques to
overcome this issue, which take as input bug reports
and use textual information from these reports'
summary and description fields to find the buggy
source code files. Many of these approaches are
information retrieval (IR)-based, and they usually work
by computing similarities between a reported bug and
source code files. Then, the source code files are
ranked based on their similarities to a reported bug [24-
27].

IR-based bug localization techniques have gained
significant attention due to their minimal external
dependencies [28-30]. Some of the existing IR-based
bug localization techniques such as \ector Space
Model (VSM) [31, 32], revised Vector Space Model
(rVSM) [20], Modified revised Vector Space Model
(MrVSM) [33], and Smoothed Unigram Model (SUM)
[34] has been reported to be effective in bug
localization. VSM was initially used for automatic bug
localization by finding the similarities between bug
reports and source code. Zhou et al. [20] extended
VSM to rVSM, which considered the complexity of the
source codes in finding similarities. Wong et al. [35]
introduced the magnifier parameter, b, to control how
much weight is given to complex or large source codes.
Wang et al. [11], Youm et al. [36], and Dao et al. [37],
in their respective studies, proposed the integration of
execution information and enhancement features into
VSM in other to improve the accuracy of the automatic
bug localization process.

Despite the effectiveness of these methods, there is
still a need for continuous development of
sophisticated methods with high bug localization
accuracy. From current studies, some features have
been identified as potential factors that can improve the
effectiveness of IR-based bug localization methods.
Specifically, features such as version control history
[33], source code metrics [36], code churn [38], stack
traces [35] and program execution details (coverage,
slicing and spectrum information) [11, 37, 39].
Collectively, the software team requires these features
(information) to fix the bug. Nonetheless, most of the
existing bug localization solutions usually consider the
whole source code files without filtering, which often
included irrelevant source code files that were not
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covered by any failure run. It naturally expands the
search space of IR-based techniques. Furthermore,
several of the notable IR-based bug localization
methods that utilized rVSM used a constant magnifier
parameter, b, across all projects, which did not give
ideal results due to the differences in the open-source
projects' features.

This study proposes an enhanced IR-based bug
localization with an automatic generation of magnifier
parameter b for the following: large source code files;
code coverage to filter the irrelevant source files;
integration of stack traces and spectrum information as
an additional feature boosting the accuracy of the
model.

Specifically, the significant contributions of this
work are highlighted below:

1. Integration of code coverage analysis into the bug
localization model for filtering the source code files to
reduce the search space of IR-based models

2. Automatic generation of the magnifier parameter
b for | arge source

3. Integration of stack traces analysis and spectrum
information to enhance bug localization accuracy of the
model.

The remainder of the paper is structured as follows:
Section 2 addresses major related works, and Section 3
explains the research methodology used in this study.
Section 4 presents and discusses the experimental
outcomes. Finally, Section 5 wraps up the research and
suggests prospective future studies.

2. Related Works

This section reviews previous efforts relevant to the
various methodologies for bug localization. They are
provided in terms of the approaches used in the
investigations.

VSM was first developed as an information retrieval
tool that can help find similarities between two
documents and rank them based on their similarity
scores. Poshyvanyk et al. [40] utilize an IR technique
(Latent Semantic Indexing - LSI) for feature location
named PROMISER. The developed method
experimented on three bugs in eclipse and five in
Mozilla, which is very small. In a related study, Lukins
et al. [41] used Latent Dirichlet allocation (LDA) for
automated bug localization; the approach was based on
grouping similar phrases into a subject and then
identifying terms that belong to that topic. Similarly,
Nguyen et al. [5] built a model called BugScout, an
automated solution that assists developers in reducing
the time they spend searching for problems. It was an
LDA-based strategy in which some of the technical
phrases in the bug report were utilized as topics in the
textual contents of bug reports and source code files. It
correlates bug reports and related buggy files by their
similar topics. It also included several improvement
features, such as past bug reports, to improve the

code

model's performance. However, LDA has the challenge
of determining a suitable number of topics to employ.
Besides, its ability to evolve or change with topics over
time is a significant drawback [42, 43].

In enhancing VSM, Zhou, et al. [20] proposed a
revised VSM (rVSM) that assigns weight based on the
difficulty of a code. They based their IR techniques on
previously corrected bug reports to maximize
performance. The rationale underlying their approach is
that VSM assigns the same weight to simple and
complex code, even though complex code contains
more errors than simple code. For their weights
determination, another equation was developed and
added to the standard VSM. The approach was tested
on four open-source projects, with the results
outperforming previous works. Also, Saha et al. [39]
improved the VSM by considering the bug report and
source code structures; more weight or importance was
assigned to titles in the bug report than a summary, and
the approach was based on the fact that the title of the

frepolt earsalsad help int Idvadizing bugS. Mongred adl [89] .

integrated rVSM with stack traces and codes
segmentation. Their experimental findings showed that
the two heuristics techniques integrated with rVSM
amplified its accuracy. Furthermore, they posited that
an additional parameter is introduced to control the
weight given to each source file with large size or
complex code. However, the suggested parameter
cannot be automatically determined or generated.

Some studies have also been conducted that
employed the dynamic technique. Ye et al. [44]
employed word embeddings for improving automated
bug localization. Their research aimed to close the
lexical gap by projecting natural language statements
and code snippets as meaning vectors in single
representation space. The word embeddings are
initially trained on API to get more similarities.
Takahashi et al. [45] utilized open-source code smells
as added information to improve the efficiency of IR-
based problem localization. Their technique indicated
that code smells may be utilized in conjunction with IR
to locate bugs. Le et al. [26] considered both static and
dynamic approaches for bug localization alongside
suspiciousness words in the bug report as an additional
feature to enhance its performance. Zhang et al. [25]
developed a spectrum-based bug localization using the
PageRank algorithm. Given the original program
spectrum information, the PageRank Algorithm is used
to recompute the spectrum information by considering
the contributions of various tests. In a study by Dao et
al. [37], execution traces were employed to improve the
performance of IR approaches. The three-execution
information was employed differently on three separate
IR- methods. Their research highlighted how execution
information might be integrated with the IR approach
to improve performance.

Nowadays, Machine Learning (ML) and Deep
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Learning (DL) methods have also been employed for
bug localization. Sangle et al. [46] combined ML and
DL methods with rVSM for bug localization. For
improving its accuracy, the proposed method employed
a Multilanguage project composed of Java and C-
language and certain extra features such as previously
addressed bug reports. Similarly, Mahajan and
Chaudhary [47] employed the textual contents of bug
reports and LDA, together with vectorization, to rank
problematic files. They used an approach that combines
LDA and vectorization to score the ranking files. Qiu et
al. [48] developed a Just-In-Time defect identification
and localization (JITO). Their proposed method was
created as a plugin in an Integrated Development
Environment (IDE) to assist developers in identifying
and locating bugs. Cheng et al. [49] designed a model
that combines IR technology, word embedding, and
Deep Neural Network (DNN). The IR technique was
used to determine the exact similarity between the bug
report and the source files; the terms in the bug report
and the source files of different code tokens are linked
by word embedding. The DNN technique integrated the
extracted features to determine the correlation between
the bug report and the source files. Xiao et al. [50]
proposed an approach based on employing a
convolutional neural network (CNN), random
ensemble forests (RF), and multi-grained scanning to
extract semantic and structural features from the word
vectors derived from bug reports and source files.
Tantithamthavorn et al. [51] studied the impact of the
choice of IR-based classifier configuration on the
model's performance and the required effort to examine
the source code entities before locating a bug at the
method level. Lam et al. [52] combined DNN with
rVSM. In this approach, IR was used to collect the
feature on the textual similarity between bug reports
and source files, while DNN was used to learn to relate
the terms in bug reports to potentially different code
tokens and terms in source files. Also, in a study by
Loyola et al. [53], their model was based on learning
feature representations from source changes extracted
from the project history at both syntax and code change
dependency perspectives to support bug localization. A
well-structured end-to-end architecture was
incorporated into the system to integrate feature
learning and ranking between bug reports and source
code changes.

Despite the reported effectiveness of these existing
methods, there is still a need for more sophisticated
ones as the implication for prompt and accurate bug
localization is vital to software development processes.
Consequently, an enhanced rVSM is proposed in this
study. Specifically, the suggested technique would use
a mathematical equation to automatically compute the
value of the magnifier
code files from various projects, even if they include
the same number of words, not having the same

par amet

magnifier value. This enhancement is expected to give
an improved result compared with Wong et al. [35],
where the parameter was manually determined and all
the projects used have the same value of the parameter,
which is considered inappropriate due to the different
characteristics of the projects. Furthermore, the
proposed method improves the localization process by
using code coverage before using the IR technique to
filter the source files. In addition, stack traces and
spectrum information are merged to improve the
performance of the proposed IR technique. However,
these two elements have not been combined to improve
the accuracy of the automatic bug localization process.

3. Methodology

This section outlines and describes the proposed e-
rVSM method, tested datasets, and performance
assessment metrics.

3.1. Enhanced Revised Vector Space Model (e-
rvVSM)

In the proposed e-rVSM, the entire process is
divided into four sections: code coverage analysis, data
preprocessing, development of e-rVSM, stack trace,
and spectrum information analysis. The code coverage
analysis is carried out before the application of the e-
rVSM; this is to ensure a reduction in the search space
as only source files identified to be failed will be
passed to the IR. Each of the stages in the model is
discussed in detail in the subsequent sections.

3.2. Code Coverage Analysis

The code coverage refers to all classes and methods
covered by the program execution. The coverage can
be achieved through code coverage analysis via code
coverage tools, where coverage is run to filter the
source files. This analysis helped determine source files
that failed and those that were passed. That aims to
help reduce the search space for the Information
Retrieval technique. Consequently, only failed source
files are passed to the IR-based model. The procedure
for the code coverage analysis is presented in fig. 1b.
Code coverage tools incorporated into an Integrated
Development Environment (IDE) for running and
report generation are required for carrying out this
analysis.

Iting in

@)
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INPUT: Source files collected from open-source project
OUTPUT: Passed source files and Failed source files
Step 1: Import Source code files
Step 2: Coverage Process
2.1 import Sowrce files RD
2.2 letTC be the total mimber of Test Cases
let NF be total mumber of failed test cases
let NP be rotal mimber of passed test cases
Run the sowrce file RD using jcrasher

n B W

NN RO NN

0  For each source file
7 list all classes C
2 For each class C
2.0 do
2.10 Generate test cases TC
211 Run TC using Junit
2.12 if (TC fails )
213 increment NF by 1
214 return failed (Class names C)
215 else
210 increment NP by 1
2.17 retun Passed (Class names C)
2.18 end do
2.19 generare report
220  endfor
2.21 end for

(b)
Fig. 1 (a) The framework of the proposed e-rVSM; (b) Code
coverage algorithm

Several tools can be used, including Jcrasher, Java
Code Coverage (JaCoCo) for Java applications, etc. In
this study, Jcrasher and JUnit are used to analyze.
These tools (Jerasher and Junit) try to reveal defects by
causing the program to throw undeclared runtime
exceptions. In addition, the error reporting phase was
made to be automatically generated as a CSV file.

3.3. Preprocessing of Source Codes and Bug
Reports

Preprocessing is one of the critical issues that must
be properly carried out when performing the IR
process. There are several ways of preprocessing data.
However, three preprocessing stages were used to
preprocess the source code files and bug reports for this
proposed model.

These stages are Tokenization, Removal of stop
words, identifier splitting, and stemming:

1) Tokenization involves breaking down the text
into terms for each source code file and bug reports.
This process was achieved using a java class called
string tokenizer. That enables the bug report, and the
source code files to be seen as a composition of terms.

2) Removal of stop words: Stop words refer to
punctuation, question marks, and any unwanted words
or character. Removing stop words that were used
includes removing java keywords and removing words
such as 'must’, 'is', 'so’, ‘are’, and a single character.

3) Stemming involves reducing a word to its root
form to enable similar words to be represented using
the same term. Stemming is usually used for words in
Information Retrieval (IR) systems so that words with
almost the same meaning are grouped as the same
concept. That was achieved through the use of a porter
stemming algorithm that is based on rules and cases.
The stemming process is presented based on the rules
generated to track words to be stemmed. For instance,
'‘Complete’, 'Completed', 'Completing' are reduced to
‘Complet’.

3.4. Development of e-rVSM

In this proposed IR- model, source code files are
considered a corpus, and bug reports as the query. The
IR technique takes the bug report as a query and creates
a model to search the source code files based on the
query from the bug report. The similarity score or the
level of relevance between the source code files and the
bug report is computed. In traditional or classical VSM,
the relevance score between a document represented as
d and a query g is computed as the cosine similarity
between their corresponding vector representations as
described in Equation 1:

Uy - Ug

similarity(q, d) = cos(g,d) = —=——
|Uq| |Ud|jj; (1)

where Ya and Y« are a vector of term weights for the

query g and document d respectively. Ye . Ua
represents the inner product of the two vectors. The
term weight w is computed based on the term
frequency (tf) and the inverse document frequency (idf).
Thus, the tf and idf are defined in Equation 2.

iitd) =log (fi) + 1, 1df () =log) o

where fiy denotes the number of occurrences of a term t
in document d, n; denotes the number of documents
that contain the term t, and #D represents the total
number of documents (source code files) in a particular
open-source project. Equation 2 is used by rVSM to
define tf and idf. Therefore, each term weights w in the

document vector Yd and its | Ye | are calculated in
Equation 3.

Weea = tfea X idf; = log fra +1) x log () @

[Tal= [Sreaog fia + 1) x1og(2))2
’ (4)

Similarly, the vectors of term weights for the query
Yz and | Ya | were obtained in Equations 5 and 6.
Weeq = tfiq X idf, = (log fig +1) x log ()

ok (Beeallog g + 1) x og(2)2 o

It is to be noted that classical or traditional VSM
does not favor large documents when ranking files. In
other words, large documents are often poorly

®)
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represented, whereas, in rVSM, large source code files
are given more consideration. Thus, L(Uy) is defined in
Equation 7 to model the document length in rVSM,

which is based on logistic function.
1

L(Up) = T =wormmeny @

Equation 7 is used to ensure that large documents
are given more consideration or higher scores during
ranking. To control how much favor is given to large
files size represented by the number of terms, this
proposed model (e-rVSM) intends to enhance the
r'VSM model by automatically deriving the value of the
magnifier parameter b e tinoduced by Wong et al.
[35]. It is calculated automatically using Equation 8

N x

ﬁetﬂ — (Zl 1 ;{(:rterms'l) X 100%

(8)
where N represents the total number of source code
files in each open-source project, #termsrepresent the
number of terms in the source code files, and K >= 10
With the parameter b e tinmoduced, Equation 8 now
becomes Equation 9.

L(Ud) = 1+ g~ BetaxNormiFeel ) ©)
Norm is the normalization of the values. The Norm
is defined as follows: (N - Nmir) / (Nmax- Nimin)
The scoring equation for the enhanced rVSM is
shown in Equation 10.
rVSMScores(q, d) = L(U3) x cos(q,d)
1 1 1

= —PFeraXNorm{[tel 5} T D
e JBecalloB eq + 1 xi0gG0)2

[Feca(toB eg + 1) xtea L )2

X Zeeanal(0 g + 1) x Qogfea + 1) x log() 2 (10)

3.5. Stack Trace Analysis

The stack trace information was retrieved from the
bug report. For analyzing a bug report with stack traces,
regular expressions are used. The regular expression
defined followed these three patterns:

k
Eb € Sstack

StackScore(b,st) = {
{ ) Eb S Sstackimporr

0 otherwise (11)

3.5.1. Spectrum Information Analysis

The spectrum suspiciousness score is calculated
using Tarantula, one of the techniques for extracting
spectrum information. It is rated efficient in generating
spectrum suspiciousness scores and, thus, most popular.
Equation 12 depicts the Tarantula equation used to
calculate the suspiciousness score of the program

element denoted as:
NF(d)

SpecScore(d) = =

pecseorelh =, 720 i

NF(d) denotes the Number of Failed test cases
executing the program element, NF denotes the total
number of failed test cases, and NP(d) refers to the
number of passed test cases that execute the program
element. NP represents the total number of passed test
cases. The values of SpecScorand StackScoreare also
normalized using the same normalized equation for
rVVSMScore.

3.5.2. Integration of Scores

All the three scores generated from rVSM are
denoted as rVSMScores in Equation 10. Stack trace
score represented as StackScorein Equation 11 and
spectrum  suspiciousness  score  represented  as
SpecScorean Equation 12 is integrated to rank the
buggy files. That will be achieved by finding the
average of the three scores as expressed in Equation 13.
The average score is used for ranking the source code
files suspected to (be buggy in descending order.

_ Ef{rvgtstispy

IntScore(d) 37 (13)

where rv; is the rVSMScores, s is the StackScore, and

1) STACK_TRACE_ | NF O_ RK(GE Xpis theSpecStore.

*M\\) OThis detects all bug reports with an open and
close bracket.

2) A (\W]*(\. ( 20 ( jidtexrdcty bhg)report
with a bracket, space and .java

3) M\s+([a-zA-Z][W\w ] & This compares the
source files detected with the source files in the corpus.
If such file exists then it is extracted and allocated
score based on Equation 11.

Given a bug report g, let strepresent the stack trace
in g, ST be the set of all stack traces; Siack represents
the set of files in the stack trace, Siackimport€Presents
the set of imported files from Syaccand Kk represents the
total number of all Syack and Sytackimport IN the corpus.
Then, with the regular expression earlier defined to
extract the stack traces, the stack trace score was
calculated using Equation 11.

3.6. Description of Open-Source Dataset

The datasets used to evaluate the proposed models
are source code files and bug reports from open-source
SWT and Zxing (Zebra Crossing) projects. These
datasets are publicly available and thus, downloaded
from their respective websites d this study based its
choice on the Java code platform and the android
application. Also, the preference for the selected
datasets extends to open-source projects that have been
previously used in existing research. For example,
SWT is part of the Eclipse foundation project and
consists of Seven Hundred and Thirty-Six (736) source
files and Ninety-Eight (98) bug reports. In contrast,
Zxing consists of Four Hundred and Twelve (412)
source code files and Twenty-Seven (27) bug reports. A
brief description of the datasets is presented in Table 1.
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Table 1 Studied open-source software projects

Project Description No. Source Files  No. of Bug Reports
SWT v3.1 A standard widget toolkit for Java was designed to provide efficient and 736 98

portable access to the GUI facilities of the OS on which it is implemented.
Zxing A barcode image processing library is licensed under apache and supports 1D 412 27

Product, 1D Industrial, and 2D barcodes.

3.7. Performance Evaluation Metrics

In terms of performance evaluation, bug localization
models based on the proposed and other methods were
analyzed using TopN, Mean Average Precision (MAP),
and Mean Reciprocal Rank (MRR) values. These
metrics are often used in existing SDP studies to assess
the performance of bug localization methods[11, 35, 46,
54].

1) Top N Rank: It is a metric used to calculate the
number of bug reports that have their buggy files found
and ranked within the top N, where N can be 1, 5, or 10.

2) Mean Average Precision (MAP): It is an IR
metric used in evaluating the ranking approaches; it
calculates the average precision values among a set of
queries. It emphasizes all the ranked buggy files. The
higher the value of MAP, the better the performance of
the approach. The Mean Average Precision is computed
by taking the mean of the average precision scores
across all queries.

3) Mean Reciprocal Rank (MRR): The reciprocal
rank of a query is the reciprocal of the position of the
first buggy files in the result that is ranked to be
suspicious. MRR is the mean of the reciprocal ranks of
the results of a set of queries Q.

4. Results and Discussion
The code coverage analysis on SWT Source Files
was based on classes in the source file. SWT is an

open-source from the Eclipse foundation. It is a
standard widget toolkit for JAVA, and 736 source files
are retrieved and compiled from this open-source
project. The files are first checked to see if all the
necessary executable .jar files needed for the running
by the Jcrasher are contained in the open-source folder
before it is imported to the NetBeans environment for
coverage analysis.

From these source files, Jcrasher generates a list of
6069 classes and several test cases for each class. It
then makes the Junit reproduce their error-revealing
behavior. The error listings are reported in the form of
CSV files. As presented in Table 2, in the column
meant for error, any value greater than 0 signifies that
the class has an error. Out of these classes generated,
only 1691 are found to contain error values greater than
0. That implies that these classes contain errors and are
therefore filtered out from the project.

Assimilar procedure is repeated for the Zxing dataset.
During this process, the Jcrasher automatically
retrieved all the classes in the open-source and
generated test cases for each. These source files contain
4034 classes, while 651 classes were found to contain
error values greater than 0. Similarly, these classes
contain errors and are removed from the project. Table
2 and Table 3 show the code coverage from SWT and
Zxing.

Table 2 Samples of code coverage analysis for SWT

SIN__ Source Files Classes No. TC Generated  Error/No. TC Failed
1 DND.java DNDTest2 3 3
2 DND.java DNDTest3 9 9
3 ImageData.java ImageDataTestl 34 1
4 ImageData.java ImageDataTest107 500 1
5 ImageData.java ImageDataTest108 170 36
6 ImageData.java ImageDataTest122 500 15
7 ImageData.java ImageDataTest123 61 12
8 ImageData.java ImageDataTest191 500 21
9 ImageData.java ImageDataTest192 470 30
10 ImageData.java ImageDataTest196 378 2
11 ImageData.java ImageDataTest2 396 3
12 ImageData.java ImageDataTest200 81 9
13 ImageData.java ImageDataTest215 500 17
14 ImageData.java ImageDataTest22 329 32
15 ImageData.java ImageDataTest4 315 1
16 ImageData.java ImageDataTest7 453 5
17 ImageData.java ImageDataTest91 500 3
18 ImageData.java ImageDataTest92 500 28
19 ImageData.java ImageDataTest93 299 18
20  Compatibility.java CompatibilityTest18 4 1
21 Compatibility.java CompatibilityTest19 303 60
22 PngDeflater.java PngDeflaterTest2 4 2
23 Library.java LibraryTest3 3 3
24 Library.java LibraryTest4 6 5
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Continuation of Table 2

25  XPCOMInit.java
26  XPCOMInit.java
27  XPCOMIInit.java

XPCOMInitTest2
XPCOMInitTest3
XPCOMInitTest4

216 109
216 109
1 1

Table 3 Samples of code coverage analysis for Zxing

SIN Source Code Files Test Cases No. of Test Error/No. of
Runs/Generated Failed TC

1 ParsedReaderResultTestCase.java  ParsedReaderResultTestCaseTests 1 1

2 SMSParsedResult.java SMSParsedResultTestl 500 32

3 SMSParsedResult.java SMSParsedResultTest10 500 35

4 SMSParsedResult.java SMSParsedResultTest100 500 21

5 SMSParsedResult.java SMSParsedResultTest101 500 39

6 SMSParsedResult.java SMSParsedResultTest102 500 37

7 SMSParsedResult.java SMSParsedResultTest103 500 35

8 SMSParsedResult.java SMSParsedResultTest104 500 30

9 SMSParsedResult.java SMSParsedResultTest105 500 28

10 SMSParsedResult.java SMSParsedResultTest106 500 50

11 SMSParsedResult.java SMSParsedResultTest107 500 35

12 SMSParsedResult.java SMSParsedResultTest108 500 36

13 SMSParsedResult.java SMSParsedResultTest109 500 29

14 SMSParsedResult.java SMSParsedResultTest11 500 36

15 SMSParsedResult.java SMSParsedResultTest110 500 36

16 SMSParsedResult.java SMSParsedResultTest111 500 23

4.1. Summary of the Code Coverage Analysis Result
Table 4 summarizes the code coverage analysis for
the two open-source projects used for this study. The

number of source files, classes generated, errors
detected, and the number of failed source files retrieved
for the two open sources are indicated in Table 4.

Table 4 Summary of the code coverage analysis

S/IN  Open-Source  No. of Source Files No. of Classes No. of Errors  No. Failed % Code
Projects Source Files Coverage
1. SWT 736 6069 1691 106 90%
2. Zxing 412 4034 651 52 85%
From Table 4, SWT has 736 source code files; 6069 coverage and bug report passed through the

classes were extracted by the Jcrasher, out of which
1691 contain an error and have about 90% code
coverage, while 106 source files were filtered out as
failed source files. Zxing has 412 source code files,
4034 classes were extracted, and 651 of them have
error values greater than 0. The percentage code
coverage is 85%, and the number of failed source files
filtered out is 52. Therefore, 106 and 52 source files are
filtered out as failed source files for SWT and Zxing,
respectively.

It can be deduced from the coverage that those
passed source files are irrelevant to failure and has
been removed, thereby reducing the search space of the
IR technique. These failed source files will be passed to
the preprocessing stage of the IR technique.

4.2. Preprocessing of Filtered Source Code Files and
Bug Reports

The preprocessing of the source files filtered after
the code coverage analysis and bug reports from the
two open-source projects were done through
Tokenization, Removal of stop words, identifier
splitting, and stemming. Also, the number of terms in
each source file was noted, and the number of
occurrences of such terms.

As a result, all the failed source files from code

preprocessing stage. Fig. 2 shows samples of a source
file and bug report after preprocessing.

Term Key(s):icancel, inform, dragEnter, Operat, complet, String, ERROR, CANNOT, INIT, DRAG,
successfulli, ERROR, INVALID, DATA, Unknown, Throw, press, DROP, MOVE, eclips, happen, ad,
pass, past, lllegalArgumentExcept, Kel, SELECTION, CLIPBOARD, FEEDBACK, SELECT, left, except,
sub, cut, DROP_TARGET_MOVE, kei, result, current, releas, NLS, IBM, term, defin, contain, set,
intern, right, FEEDBACK, SCROLL, store, matery, SWT, throw, v, DROP, LINK, invok, remov, Event,
oper, DRAG, SOURCE, KEY, dd, reserv, correct, ERROR, CANNQT, SET, CUPBOARD, di, spect!, dt,
swt, either, DragEnter, legal, Echps, implement, INIT, DRAG, MESSAGE, us, DropTargetlisten,
Fallur, given, accompani, initl, usual, last, NON, look, DragSourc, http, Oass, sinc, drop, cursor,
allow, string, origin, Contributor, non, fatal, button, appli, param, client, SWTError, modifi, org,
perform, distribut, target, chanc, RuntimeExcept, refer, chang, FEEDBACK, NONE, DND, mark, base,
CANNOT, SET, CUPBOARD, MESSAGE, sourc, select, Undefin, properti, visibl, program, type,
clipboard, three, DropAccept, displai, dnd, href, drag, enter, epl, applic, creat, item, method, made,
INVALID,DATA MESSAGE, termin, scroll, Drop, system, fieki, Object, DROP_DEFAULT, begin,
FEEDBACK_INSERT_AFTER, tabl, other, valu, widget, Sampl, DragSetData, Dragleav, copl, requr,
hresult, mechan, ESC, DragStart, event, map, getData, avall, Licens, setData, dragFinish, appropri,
Drag, ECS, report, Clipboard, FEEDBACK, EXPAND, logk, msg, argument, constant, data, &, Corpor,
Copyright, hit, wheney, SWTException, shown, www, html, DragOperationChang, occur, tree,
format, thrown, choos, Public, DragSourcelisten, expand, transfer, DROP_NONE, cleanup, effect,
updat, DropTarget, code, ODROP, TARGET, KEY, CLIPBOARD, link, Insert,
ERROR_CANNOT_INIT_DROP, error, platform, DragEnd, lang, make, provid, on, move, OR, recover,
0S5, DragOver, choosen, Error, Data, control, FEEDBACK, INSERT, BEFORE, boundari, illeg, mous,
dragOperationChang, APL INIT, DROP, MESSAGE, Limit, DROP, COPY, user

Term Value(s):1, 2,2,6,1,14,2,1,2,1,2,1,1,6,3,2,2,2,2,2,1,1,1,4,1,1,1,3,4,2,1,10, 2,

1,1,1,4,21,1,21,51,2,1,1,3,5,81,6,1,2,2,2,2,6,51,1,1,1,1,2,7,21,1,2,5,1,1,

10,2,6,2,1,6,22,7,2,2,1,1,2,1,1,5,3,1,5,3,6,3,1,15,1,1,1,2,1,13,2,2,2,9,5,1, 2,1,

1,2,2,1,1,1,1,1,18,1,1,2,.2,6,2,1,2,1,1,8,1,1,2,2,1,1,4,1,29,1,1,1,1,3,1,11,3,11,
2,1,23,1,22,27,1,1,2,1,1,12,2,3,12,10,2,1,2,3,3,3,2,1,1,1,5,2,3,1,1,1,1,2, 1.1,
7,1,15,33,1,1,1,2,2,14,5,1,3,1,1,3,3,2,2,1,1,1,6,3,6,1,2,1,1,2,2,2,1,1,4

Sum Value{s):654
Fig. 2 Source code files after preprocessing
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4.3. e-rVSM Results

4.3.1.SWT

The preprocessed source code files and bug reports
served as input into the IR. The total number of terms
and occurrences are used, and their weights are
calculated using Equation 8, as discussed in the
methodology section. Fig. 3 shows the experimental
result of the rvVSM.

A bug report served as a query into the 106
documents in the corpus. Each of these bug reports
followed the equations of IR and then had an rVSM
score for the source files in the corpus. In other words,
a bug report has a rVSMscore for 106 files. As
presented in Table 5, the value has been normalized
using the normalization equation within the range of
0.0to 1.0.

4.3.2.Zxing

The preprocessed source code files and bug reports
served as input into the IR. The total number of terms
and their corresponding occurrences are used; the
weight for each one of them is calculated. Fig. 4 shows
the result of the rVSM.

A bug report served as a query into the source files
referred to as documents or corpus. Each bug report
then has a r'VSMscore for the source files in the corpus.
In other words, all the 27 bug reports have distinct
rVVSMscore for 52 files used for Zxing.

YW O CDB « o v EID
Fig. 3 rVSM scores for SWT

YO LI s oS & a.n]
Fig. 4 rVSM scores for Zxing

4.4, Stack Trace Analysis Results

The regular expression generated detects and
extracts stack trace files and those imported to the stack
trace. Values of the stack trace for the source files were
generated using Equation 11. This analysis was carried
out for both SWT and Zxing. Fig. 5 and Fig. 6 show a
sample of the results of stackscore for SWT and Zxing.

Fig. 5 Stackscore for SWT

Fig. 6 Stackscore for Zxing
4.5. Spectrum Analysis Results

4.5.1. SWT Source Files

The spectrum suspiciousness score for 106 source
files in SWT was calculated as discussed in the study's
methodology. After the calculations, each of the source
files has a Specscore. Some of the results of Specscore
for SWT are shown in Table 5.

Table 5 Samples of specscore for SWT

SIN Source files SpecScore
1. DND 0.1
2. ImageData 1.0
3. Compatibility 0.1
4. PngDeflater 0.1
5. Library 0.1
6. XPCOMInit 0.5
7. nsEmbedString 0.3
8. nslAppShell 0.1
9. nslAuthInformation 0.1
10. nslBadCertListener2 0.2
11. nslBaseWindow 0.1
12. nsiCancelable 0.1
13. nslCategoryManager 0.1
14. Accessible 1.0
15. Color 1.0
16. FontData 0.3




Salihu & Abikoye. An Enhanced Information Retrieval-Based Bug Localization System with Code Coverage, Stack Traces, and Spectrum

Information, Vol. 49 No. 4 April 2022

117
Continuation of Table 5 Table 7 Samples of IntScore result for a bug report in SWT
17. Font 0.1 Bug ID Source Files rvsM Stack  Spec Int
18. ImageDatal.oader 0.1 108792 Path fcoore §c30re gcgore 3':70;3633
19. Path 0.9 Accessible 1.0 0.0 1.0 0.66667
20. Region 1.0 Color 1.0 0.0 1.0 0.66667
ImageData 1.0 0.0 1.0 0.66667
21. StyledText 0.9
Region 1.0 0.0 1.0 0.66667
22. Transform 0.1 PngDeflater 1.0 0.9 0.1 0.66667
23. COMObject 0.3 StyledText 1.0 0.0 0.9 0.63333
ImageDatal.oader 1.0 0.6 0.1 0.56667
i i nsiBaseWindow 1.0 0.6 0.1 0.56667
4.5.2. Zxing ®urce Files XPCOMInit 10 00 05 050000
_ The spectrum suspiciousness score for 52 source CoMOnect o 000y o
files is calculated using the equation for spectrum nsEmbedstring 1.0 00 03 043333
. . . ns|BadCertListener2 1.0 0.0 0.2 0.40000
analysis (See Equation 12). After the calculations, each Font 10 0.0 01 0.36667
source file has a score denoted as Specscore. Some of Eﬁgsform 13 gg 81 83222;
the results of this Specscore for Zxing are shown in Compatibility 10 0.0 0.1 0.36667
Table 6 nslAppShell 1.0 0.0 0.1 0.36667
' nslAuthlnformation 1.0 0.0 0.1 0.36667
nslCancelable 1.0 0.0 0.1 0.36667
nslCategoryManager 1.0 0.0 0.1 0.36667

Table 6 Samples of Specscore for Zxing
SpecScore Sourece files

1.0 BinaryBitmap.java
DecoderResult.java
InvertedLuminanceSource.java
MultiFormatReader.java
BlockedParsedResult.java
Decoder.java
DecoderConfig.java
DataMatrixWriter.java

Source files
PlanarYUVLuminanceSource.java

Spec Score

BitMatrix.java
SMSParsedResult.java
SMSParsedResults.java
RGBLuminanceSource.java
BitArray.java

GenericGF.java
PlanarYUVLuminanceSources.java

4.6. Integration of the Scores

All the scores from rVVSMScores, Stackscore, and
SpecScore were integrated to rank the source files in
descending order. Table 7 presents samples of files with
scores integrated and ranked files, respectively, using
SWT. A bug report with ID 108792 has its source files
integrated and ranked in descending order, as shown in
the tables.

Table 7 shows some of the results of returned files
after integrating the scores and ranked in descending
order for bug report with ID: 108792. From this, it can
be deduced that the predicted buggy files for this bug
report have Path.java as the first file in the returned
ranked files with the highest score.

For the Zxing dataset, three scores were integrated
to form the IntScore as the final score for all the source
files in this project. Table 8 presents some samples of
files that have been ranked for Zxing. In addition, a bug
report with ID 508 has its source files integrated and
ranked, as shown in Table 8.

Table 8 Result of ranked files for a bug report in Zxing

Bug ID  Source files rvVSM Stackscore  Spec IntScore
Score Score
508 PlanarYUVLuminanceSource.java 1.0 0.0 1.0 0.666667
PlanarYUVLuminanceSources.java 1.0 0.0 1.0 0.666667
BitMatrix.java 1.0 0.0 1.0 0.666667
InvertedLuminanceSource.java 1.0 0.0 0.9 0.633333
SMSParsedResult.java 1.0 0.0 0.8 0.600000
SMSParsedResults.java 1.0 0.0 0.8 0.600000
DecoderResult.java 1.0 0.3 0.1 0.466667
DataMatrixWriter.java 1.0 0.3 0.1 0.466667
BinaryBitmap.java 1.0 0.0 0.2 0.400000
GenericGF.java 1.0 0.1 0.1 0.400000
MultiFormatReader.java 1.0 0.0 0.2 0.400000
RGBLuminanceSource.java 1.0 0.0 0.2 0.400000
BitArray.java 1.0 0.0 0.1 0.366667
Decoder.java 1.0 0.0 0.1 0.366667
DecoderConfig.java 1.0 0.0 0.1 0.366667
BlockedParsedResult.java 1.0 0.0 0.1 0.366667

In Table 8, a bug report with ID 508 was ranked in
descending order based on the IntScore. The returned
ranked  files  show  that PlanarYUVLumi-
nanceSource.java was the first among the buggy files
ranked.

4.7. Performance Evaluation of the Developed
Model

The model was evaluated using the three widely
used IR-metrics: Top N rank (where N=5 or 10), Mean

Average Precision (MAP), and Mean Reciprocal Rank
(MRR) (See Section 3.3). Before each of the
parameters' values in the equation can be deduced, the
changelog files for the bug report must be known.
Since the bug reports used for this study have been
resolved, their bug tracking system is checked to see
the files that have been modified to resolve such bug
reports. This task is carried out for about one hundred
and forty-five bug reports used. For instance, Fig. 5
shows a sample of a changelog file for a bug report
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with ID 108792 in the SWT source project.

In Fig. 7, the changelog file for the bug report was
StyledText.javar his process is repeated for all the bug
reports, and their position in the returned ranked files is

noted; this is applied to calculate performance metrics.
Table 9 presents the values of these metrics for the two
open-source projects.

Table 9 Overall performance evaluation of the developed model

S/N_ Open-Source Projects Top5 (%) Top10(%) MRR MAP
1. SWT 80.20 89.10 80.00 61.22
2. Zxing 65.00 75.00 54.00 47.23

In Table 9, the Top N value is set to 5 and 10. For
SWT open-source, the Top 5 and Top 10 have 80.20%
and 89.10%, respectively, while the MRR and MAP are
80.00% and 61.22%. At the same time, Zxing has

= eclipse

65.00% for the Top 5 and 75.00% for the Top 10. The
MRR and MAP for Zxing are 54.00% and 47.23%,
respectively.

Bugzilla - Attachment #143546: patch for bug #108792

Home | New | Browse | Search | Search

fiew | Details | Raw Unified | Return to bug-168792
wollapse Al | Expand Al

(2] | Reports | Requests | Loa In | Terms of Use | Copynight Agent

|-) Edlipse SWT Custom Widgets/common/org/eclipse/swt/custom/StyledText.java (+2 lines)

Lines 9088-9094
super.zedsanid, top, ciiensAresWidsh, bottom - top, super.zedsavi(0, top, cileasi:
0ee false); 2088 Zalse)
9089 9089
9090 ] 9090 }
9091 int oldColumX = coluzaX;
9091 sesCazetlocation(); 9092 setCazetlocation();
9093 colusaX = oldColumnX;
9092 doMeuselinkOursoz(); 9094 daMeuselinkCursoz();
9093 ) 9095 ;
9004 /- 9096 /++

leturn to bug-108792

Fig. 7 Sample changelog file for bug ID 108792

4.8. Comparative Analysis of Proposed e-rVSM
with Existing Methods

The overall comparison of the proposed e-rVSM
with some existing bug localization methods is carried
out in this section. The existing works used for
comparison, as shown in Table 10, consist of
BugLocator [20], an automated IR-based bug
localization that used rVSM and the previously fixed
bug report. BLUIR [39] is also a bug localization
technique based on rVSM and BRTracer [35]

developed using rVSM, segmentation of bug reports,
and stack traces. From Table 10, it can be deduced that
the model outperformed these existing bug localization
methods. For SWT its Top 5, Top 10, MRR and MAP
has 80.20%, 89.10%, 80.00% and 61.22% respectively.
These values outperformed the existing works of
BugLocator, BLUIR, and BRTracer. Also, Zxing has
65.00%, 75.00%, 54.00%, and 47.23% for its Top 5,
Top 10, MAP, and MRR, respectively.

Table 10 Overall performance evaluation of the model

Source projects  Techniques Top 5 (%) Top 10 (%) MRR MAP

SWT BugLocator [20] 69.30 79.30 50.20 44,50
BLUIR [39] 75.00 86.00 66.00 58.00
BRTracer [35] 79.60 88.80 59.50 53.00
The e-rVSM 80.20 89.10 80.00 61.22

Zxing BugLocator [20] 60.00 70.00 50.00 44.00
BLUIR [39] 64.50 70.00 49.00 39.00
BRTracer [35] N/A N/A N/A N/A
The e-rVSM 65.00 75.00 54.00 47.23

From Table 10, it can be concluded that e-rVSM and BRTracer. Fig. 8 depicts the graphical

developed with the combination of stack traces and
spectrum information outperform BugLocator, BLUIR,

representation of the comparison.
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Comparison with Existing Methods

100

BugLocator BLUIR  BRTracer The e-rVSMBugLocator BLUIR ~ BRTracer The e-rVSM
SWT Zxing
B Top5 (%)W Top10 (%)™ MRR (%) & MAP (%)

Fig. 8 Graphical illustration of performance of the proposed and existing methods

5. Conclusions and Future Work

This study proposes and develops a novel model for
IR-based bug localization. The new model incorporates
code coverage analysis to filter source code files and
enhance the rVSM model with an automatic magnifier
parameter to represent significant source code file
scores appropriately. In addition, the accuracy of the IR
model was boosted with the stack trace analysis and
spectrum information. Findings from the experimental
result of the proposed model on open source projects
(SWT and Zxing) indicated the effectiveness of the
proposed IR-based technique for bug localization. The
successful combination of code coverage, stack trace
analysis, and spectrum information improved the
accuracy of bug localization. In addition, the code
coverage analysis introduced before applying the IR
technique helped reduce the search space and
minimized the time for the bug localization process.

As a limitation of this study, it is imperative to
explore and investigate other aspects of bug
localization. For example, machine learning (ML)
techniques and more enhancement features to the VSM
model will be investigated. Also, more and different
open source projects such as Eclipse and Aspect]
would be used for experimentation.
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