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Abstract: Phenol is a severe pollutant that harms the environment and, potentially, human health. This
study aimed to investigate the biodegradability of phenol by the plant growth-promoting bacterium R. nepotum.
That included studying the growth kinetics and the effects of growth conditions such as incubation temperature, pH,
and the use of different substrate concentrations. As the primary substrate, six different starting concentrations of
phenol were utilized. The ability of these cells to biodegrade phenol was greatly influenced by the culture
conditions. After 36 and 96 hours of incubation at pH 7 and a temperature of 28 C, this organism grew the fastest
and had the highest phenol biodegradation. The biodegradation rate is much higher at 700 mg/L, the highest of the
six concentrations tried. In less than 96 hours of incubation, more than 90% of the phenol (700 mg/L) had been
eliminated. The Haldane model has been the most accurate for determining the relationship between the initial
concentration of phenol and growth rate. In contrast, the refined Gompertz model provided the most accurate
depiction of phenol biodegradation over time. As predicted by the Haldane equation, the highest specific growth
rate, half-saturation coefficient, and Haldane's growth kinetics inhibition coefficient are 0.7161 hl, 15.8 parts per
million (ppm), and 292 parts per million (ppm), respectively. The equation of Haldane successfully fitted the
experimental data by reducing the SSR (sum of squared errors) to 3.8x10 ®. According to the results of the analysis
by GC-MS for the bacterial culture sample, the hydroxylase enzyme was the first to convert the phenol molecule
into catechol. The catechol was subsequently broken down into 2-hydroxymucconic semialdehyde by the 2,3-
dioxygenase enzyme, which occurred through the meta-pathway. It is the first study showing that R. nepotum, a
plant growth promoter, has high efficiency of phenol. In phenol-stressed conditions, this could help with
rhizoremediation and crop yield preservation.
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1. Introduction

The utilization of chemical substances, particularly
organic ones, like carbon or energy sources by living
cells such as microbes, is a vital characteristic of all life
forms. The most widely accepted narrative is that cells
evolved to accept such polluting natural compounds.
Many such compounds were caused by human
intervention, resulting in environmental problems due
to the resistance of mentioned microorganisms or their
reluctance to mineralize [1, 2]. Even at relatively low
amounts, phenol causes problems in the water supply,
such as odor and taste. Furthermore, it is hazardous to
various aquatic creatures at concentrations as low as
mg/liter [3, 4]. As a result of their potential toxicity,
phenol and its derivatives have been considered one of
the priority pollutants maintained by the US
Environmental Protection Agency (EPA) [5]. In
addition to being carcinogenic, phenol can cause
mortality when inhaled or absorbed through the skin.

Different strategies for phenol degradation,
including physical or chemical methods, have
significant disadvantages, including the requirement for
considerable effort, high expense, and the development
of unanticipated hazardous byproducts [3, 6]. Bacteria
play a critical role in biodegradation via specialized

enzymes called biocatalysts. Biocatalysts catalyze
biological reactions without using chemically derived
catalysts [7, 8]. These enzyme qualities facilitate their
usage and modification for industrial uses, such as
stabilizing enzymes across a temperature range, pH
values, and various difficult reaction circumstances.
Numerous enzymes have been addressed in various
areas, including medicine, biology, and industrial
applications such as livestock feed, biotransformation,
textiles, food, and leather [9-17].

For decades, agricultural crop production has been
resurrected using microorganisms promoting plant
growth [18, 19]. Improved nutritional bioavailability
and biosorption, decreased soil plant-bacteria via
pathogenic factor control, the construction of materials
that endorse plant growth, and the minimization of
pollutants from the soil, such as dangerous compounds
that can adversely impact plant growth benefits that
these microbes provide [20]. Plant growth-promoting
microorganisms, which can be employed instead of
herbicides, and genetically altered plants are examples
of such bacteria. Organic and inorganic fertilizers and
pesticides for genetically altered plants and pests are
produced by plant growth-promoting bacteria (PGPB).
In addition, PGPB could help soil organisms cope with
the effects of severe environmental stresses.



96

Desiccation and high concentrations of salts and heavy
metals are examples of these adverse conditions. As a
result, PGPB likely acts as a stimulant for regenerating
agricultural fields that were previously unfit for fodder
or nutrition farming.

The Al-Ghweiler Agricultural Station in Karak,
Jordan, was used to isolate R. nepotum. It was detected
using 16S rRNA techniques, and JOR18 MN083292
was allocated as the nucleotide entry number in
Genbank. A motile gram-negative rod does not form
spores [21]. It was discovered to be capable of
phosphate solubility and nitrogen fixation. For the first
time, this study looked at R. nepotum's capacity to
degrade phenol under various growth conditions,
including temperature, pH, and substrate concentration.
The Kkinetics of R. nepotum growth on phenol
biodegradation were also investigated  using
mathematical modeling.

2. Materials and Methods

2.1. Bacterial Strain

The Al-Ghweiler Agricultural Station in Al-Karak,
Jordan, provided the R. nepotum strain used in this
study. The identification of R. nepotum was made using
16S rRNA techniques (SUPREME laboratories,
ENEA-Casaccia, Rome, Italy) and a nucleotide
accession number in the Genbank given as (JOR18
MNO083292). The strain was deposited in the MIRRI-It
ENEA microbial collection in Italy.

2.2. Growth Culture Media

A phenol-free mineral medium was created. Three
different solutions were first prepared. The first step
was to make a 25,000 ppm phenol solution in deionized
water filtering sterilized. The mineral medium was
made by combining 1 gram K2HPO4, 1 gram
NH4NO3, 0.5 gram (NH4)2S04, 0.5 gram MgS04, 0.5
gram KH2PO4, 0.5 gram NacCl, 0.02 gram CaCl2, and
0.02 gram FeSO4 in 1 liter deionized water. Before
autoclaving, the correct volume of phenol was
transferred to 125 mL flasks to be changed later. The
third solution was Wolfe's mineral solution, which
mixed 1.5 g of nitrilotriacetic acid with 500 mL of
deionized water. The following ingredients were added
after adjusting the pH to 6.5 using KOH: 100 mg
ZnS0O,.7H20, 0.01 g, 10 mg H3BO3, 10 mg
CuS0,4.5H20, 100 mg ZnS0O,.7H20, 10 mg AIK (SOy)
,. 100 mg CoCl,.6H20, 100 mg CaCl2, 10 mg
CuSQ,4.5H20, 10 mg AIK (50,),.12H,0, and 10 mg
FeSO,.7H20. Then 500 mL of deionized water was
added, bringing the total amount to 1 liter. The
prepared Wolfe's mineral solution was sterilized using
filtration to avoid thermal deterioration. 0.5 mL of
Wolfe's solution was mixed with various amounts of
phenol to make the mineral media with phenol. For

example, to make 200 ppm of phenol, combine 0.4 mL
phenol solution with 0.5 mL Wolfe's mineral solution,
then add this mixture (0.9 mL) to 49.1 mL mineral
medium. As a result, mineral media containing phenol
concentrations of 200, 400, 700, 800, 1000, and 1200
ppm were created.

2.3. Plant Growth-Promoting Characteristics

Salkowski's reagent was used to indicate the ability
of R. nepotum to convert L-tryptophan to indole-3-
acetic acid (IAA), which can be detected by the
formation of a pink or red color [22]. The product,
IAA, is a carboxylic acid member of the auxin family.
Auxins are well-known to promote branching and root
growth in plants. Phosphate solubilization was
determined by cultivating R. nepotum in Pikovskaya
(PKO) medium at 30 ° C for seven days and
monitoring it regularly for 7 days. A transparent halo
enveloping the colonies clearly shows their ability to
solubilize phosphate. Chrome azurol S (CAS) agar
plates were used to detect the ability of R. nepotum to
produce siderophore, which was indicated by the
change in color from blue to orange [23]. Finally, the
NFb medium was used to test R. nepotum'’s ability to
fix nitrogen (semi-solid New Fabian broth). R. nepotum
was grown for 24 hours in Trypticase Soy Broth (TSB),
washed twice, and resuspended in phosphate-buffered
saline (PBS) to achieve a 600 nm absorbance of 0.5.
The prepared culture was then inoculated into 4 mL of
NFb medium and incubated at 28°C for 72 hours [24].
The sign of growth as a sub-surface pellicle on NFb
medium indicates the ability of R. nepotum to fix
nitrogen.

2.4. R. Nepotum Growth and the Biodegradation of
Phenol

Mineral media containing 700 ppm of phenol were
used to evaluate R. nepotum's ability to utilize phenol
as a single carbon source. First, R. nepotum grown to
the middle of the log phase was centrifuged (4000 rpm
for 15 min), washed, and resuspended in mineral media
to reach an absorbance of 0.2 at 600 nm. Then the
cultured bacteria were inoculated in a mineral medium
containing 700 ppm phenol. The growth of the phenol-
treated R. nepotum was monitored every 12 h for 96 h
using a spectrophotometer at 600 nm. In parallel,
uninoculated mineral media containing 700 ppm was
processed as a control.

2.5. Phenol Assay Procedure

The phenol concentration in the treated phenol
media cultured with R. nepotum was determined using
the 4-amino-antipyrine colorimetric method [25].
Ammonium hydroxide (0.5 N), 2% w/v 4-amino-
antipyrine, and 8% w/v potassium ferricyanide were
used to make the reaction mixture. After 15 min of
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incubation at room temperature, the OD of the mixture
was measured using a spectrophotometer at 510 nm.
The linear equation of the phenol standard curve was
used to calculate the phenol concentration. Because
many cells either stopped or showed no further
degradation during this time or replicated the elapsed
time during which all experiments were conducted, the
concentration of residual phenol converted during the
first 24 hours was used.

Calculating the average biodegradation of phenol,
as proposed by Loh and Wang [26], avoids
inaccuracies caused by widely differing lag stage
lengths while determining the critical time required for
complete biodegradation or when biodegradation is
paused [27].

2.6. Effect of Temperature and pH on the
Biodegradation of Phenol

R. nepotum grown in a mineral medium containing
700 ppm phenol was used in these tests. The pH effect
on the phenol degradation was monitored at pH values
of 5.5, 7, 8, and 9. The effect of the temperature was
evaluated at temperatures of 25, 28, 33, and 37C.

2.7. GC-MS Analysis

Phenol and phenol derivatives concentrations in the
cultured media were characterized using GCMS. An
amount of 30 ml of each cultured media after 96h was
collected and mixed with a stabilizer (4.5 ml of 10%
CuSO4). After pH adjustment, the samples were
extracted using dichloromethane. A rotary evaporator
was used to remove the solvent, and anhydrous
Na2S0O4 was used to over-dry the sample. The crude
extract was suspended in 5 mL methanol and subjected
to GCMS analysis using a Varian Chrompack CP-3800
GC-MS-200 (Saturn) with a DP-5 column (30 m 0.25
mm i.d., 0.25 m film thicknesses). The mobile phase
was helium gas at a flow rate of 1mL per minute. The
MS source temperature was set to 180 °C, and the
ionization voltage was 70 eV. After being held at 60 °C
for 1 minute, the column temperature was gradually
increased to 270 °C at a rate of 3 °C/min (isothermal).
Under similar conditions, hydrocarbon standards (C8-
C20) were evaluated.

Prior publications [28, 29] were used to identify the
GCMS spectra, which were identified by matching
their retention time and mass spectra to those in the
National Institute of Standards and Technology
(NIST)/Wiley collection, or by deducing the RTs using
legitimate standards.

2.8. HPL.C Analysis

An HPLC/UV-Vis detector (Shimadzu, LC-10A,
Tokyo, Japan) and a Luna C18 column were used in
this experiment (4.6 250 mm, 5 m, 100A0). In a
temperature-controlled column compartment, the

phenol compound concentration was tested at 30°C.
The mobile phase was made up of 0.1 percent acetic
acid (solvent A) and 1.1 v/iv  percent
(acetonitrile/methanol) (solvent B), with the following
settings: 0.1-1 minute, 95 percent A; 1-6 minutes, 50
percent A; 6-10 minutes, 5 percent A. A UV detector
with a volume of 10 liters and a flow rate of 1.0
mL/min was used (280 nm). Samples of culture media
containing 700 ppm phenol were examined at various
time intervals to validate the biodegradation of phenol
(0, 12, 24, 48, 72, and 96 hr).

2.9. Analytical Quality Assurance and Validation
Method

Four injections of phenol compound at five different
concentrations (50, 250, 500, 1000, and 1500 mg/L)
were used to determine linearity. The R2 value of
0.996 for phenol demonstrates good linearity.

The limits of detection (LOD) and quantitation were
determined by diluting the standard solution until the
signal-to-noise ratio (S/N) equaled three and ten,
respectively (LOQ). The LOD and LOQ levels were
2.45 and 8.17 mg/L, respectively. A relative standard
deviation (RSD) of 2.7 indicates that a good level of
precision was obtained. Next, blank samples were
spiked with varying quantities of standard phenol
solution (50, 500, and 1500 mg/L) for the recovery test.
All phenol compound recovery rates ranged between
83 and 106 percent at various spiking levels. These
results are within the acceptable range of 70-120
percent [30].

2.10. Mathematical Modeling

The logistic equation is commonly used to describe
the exponential and stationary stages of biomass
growth in a batch system. The logistic equation is
written in differential form as follows:

dX X
=i (1-5,)

where Em is the most significant specific growth rate
(hr-1) feasible in a particular environment, and A'm is
the higher cell concentration achievable in that
environment (OD600).
The following formula for cell concentration is
obtained by integrating the logistic equation:
Xﬂ_eﬂmf

1- (;,[—")(1 - ghmt)

where X is expressed as OD600 (starting inoculum).
Numerous kinetics models have been established to
define the connection between substrate concentration

5 and specific growth rate & .

When the substrate is available in high quantities
and growth is controlled by inhibitor concentration, the
Haldane equation has been the most commonly used

X=
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inhibitory expression:
_ Pmaxs

where umas IS the highest rate of Haldane's specific
growth (hr"), K: is the inhibition coefficient of
Haldane (ppm).

The growth patterns of investigational biomass at
varying primary concentrations of phenol were suited
to the logistic equation utilizing the approach of non-
linear regression. The used Solver add-in of Microsoft
Excel 2007 was applied to establish the fitted model for
parameters via lessening the SSR (sum of squared
error).

The logistic model parameters and experimental
values for varied initial phenol concentrations are
shown in Fig. 1.
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A 800 ppm
A 1000 ppm
O 1200 ppm
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Fig. 1 The effect of different concentrations of phenol on the
growth of R. nepotum

3. Results and Discussions

3.1. PGPB Characterization

R. nepotum was examined for its capability to
solubilize phosphate, synthesize indole-acetic acid, fix
nitrogen, and produce siderophore. As shown in table
1, R. nepotum is a nitrogen fixative bacteria and an
indole-acetic acid producer. However, it is neither a
phosphate solubilizer nor a siderophore producer.

The enzyme-nitrogenase complex, the formation of
which is dependent on the nif gene, regulates the
nitrogen fixation process. Bacterial growth was
measured in NFCC-medium with a 0.5 percent
bromothymol blue indicator [31]. Positive reactions,
with the indicator turning pink or red, are used to
identify isolates able to generate indole-3-acetic acid
(IAA). Salkowski's reagent produces a pink compound
that reacts with IAA, demonstrating the bacterial ability
to convert L-tryptophan to IAA or other derivatives
[22].

3.2. Growth Rates of R. Nepotum and
Biodegradation of Phenol

In the current investigation, the phenol-degrading
bacterium R. nepotum was used to biodegrade phenol.
A 16S rDNA analysis was used to identify this
bacterium.

Table 1 Nitrogen fixation, Siderophore production, Phosphate solubilization, and Auxin production of R. nepotum

Genbank Accession
number

Phylogenetic affiliation with
similarity (16S rDNA sequencing)

Plant Growth Promoting traits

Nitrogen
fixation

Siderophore Phosphate Auxin
production solubilization production

Rhizobium nepotum 99% JOR18 MN083292

- - ++

A minimum medium containing phenol was used as
a carbon, and an energy source was used to verify that
phenol was used. If organisms grow and biomass is
formed, it is almost certainly a result of these substrates
being consumed [3, 4, 26]. To determine the
biodegradability of phenol, uninoculated phenol-
containing minimal media broth (MMB) and inoculated
heat-killed phenol-containing culture broth were used
as negative controls. There was no evidence of phenol
biodegradation, indicating that the presence of R.
nepotum caused the biodegradation of phenol. Clearly,
R. nepotum can utilize high phenol concentrations as a
significant carbon and energy source (Table 2).

Table 2 R. nepotum biodegradation rate in different concentrations
of phenol
Biodegradation rate (ppm/h)

Concentration (ppm)

200 4.15
400 6.25
700 8.33
800 8.25
1000 8.3

1200 8.2

3.3. Phenol Biodegradation Growth Kinetics of an
R. Nepotum

As the primary substrate, six different amounts of
phenol were utilized (Fig. 1).

With the non-linear regression technique, the R.
nepotum growth biomass at various phenol
concentrations was adapted to the logistic equation. For
determining the model fitting parameters, the Solver
add-in in Microsoft Excel 2007 was used to minimize
the sum of squared error (SSR). Fig. 1 depicts the
logistic regression profiles and experimental results at
various phenol starting concentrations. The R. nepotum
growth biomass reached its maximum stationary
population size at a starting phenol concentration of
700 ppm. At an initial phenol level of 400 ppm, the
biomass, on the other hand, grew at its fastest pace.
Slow growth rates and small biomass size were
reported with a more significant phenol dose (1200
ppm) (Table 3).
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Table 3 Logistic growth Kinetic parameters for phenol
biodegradation by R. nepotum

Phenol By B Xm Xm SSR
Concentration (hrh) (ODgoo)

(ppm)

200 0.182 0.270 8.51x10°
400 0.244 0.289 8.46 x 10°
700 0.182 0.480 1.68 x 107
800 0.168 0.316 6.75x 10°
1000 0.111 0.150 6.78 x 10
1200 0.051 0.240 3.00x10°

By graphing the biomass increase throughout the
0.06

exponential phase, the specific growth rate (¥ ) for R.
nepotum treated with different phenol concentrations
was estimated. The particular growth rate is
represented by the slope of the plot versus time.

InXInx

Xo Xo

The Haldane equation provided a compelling
depiction of the relationship between the phenol
concentration and the growth rate (Fig. 2).

0.05

0.04

=
[
@

)

0.01

0

(@)

0 200 400

A non-linear regression technigue based on SSR
reduction was necessary to estimate Haldane's
parameters. According to the Haldane equation,
Haldane's growth kinetics inhibitory coefficient, half-
saturation coefficient, and the highest specific growth
rate were 292 ppm, 158 ppm, and 0.716 hl,
respectively (Table 4).

These experimental data fit the Haldane equation
with an SSR of 3.8 x10-3. Fig. 2 depicts a typical
growth kinetics trend for an inhibiting substrate.

The R. nepotum growth rate increases linearly with

600

800 1000 1200 1400

S° (ppm)
Fig. 2 Fitting of R. nepotum growth in the batch culture using the Haldane model

increasing phenol concentration up to approximately
200 ppm, at which point it declines as the phenol
concentration increases. The maximal specific growth
rate recorded by Haldane in this investigation is close
to values available in the published reports for phenol
microbial degradation in various bacterial mediums.

The half-saturation coefficient (11 ppm) of the
Haldane model says that phenol concentrations must
constantly stay low to achieve a specific growth rate
equal to half the maximum specific growth rate.

Table 4 Haldane's model parameters for the biodegradation of phenol by different bacteria

Microbial Strain 5,50 (ppm)  HMmax Hmax (hr-1) K; Ks (ppm) K; K; (ppm) Reference
Rhizobium nepotum 200-1200 0.716 15.8 292 This study
Pseudomonas putida 300-1000 0.031 63.9 450 [21]
Pseudomonas sp. 100-800 0.464 113.5 376.7 [32]
Mixed 0-800 0.26 25.4 173 [33]
Acinetobacter calcoaceticus ~ 60-500 0.542 36.2 145 [34]
Pseudomonas WUST-C1 0-1600 25 48.7 100.6 [35]
Pseudomonas putida 25-800 0.900 6.93 284.3 [26]

The biomass response to inhibitory substances is
measured by the inhibition coefficient of Haldane's
growth Kinetics. The value of the inhibitory constant
(121 ppm) shows that phenol effectively suppresses
biomass growth. The biodegradation of phenol was
simulated using the updated Gombertz model [14].

5=5, [1 - exp{—exp E—me{ﬂ,— )+ 1]}}

The modified Gombertz model [36] fits phenol
biodegradation profiles reasonably well. The model's
fitting parameters are listed in Table 5.
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Table 5 Parameters using the Gompertz model on the different
concentrations of phenol substrate

Phenol Concentration (ppm) R, R, AA
(mg/L.hr) (hr)
200 6.5 7.2
400 6.3 7.1
700 10.3 5.9
800 1.7 11.4
1000 8.9 14.6
1200 8.3 3.8

At lower initial phenol concentrations, the phenol
degradation rate increases as the concentration
increases. The highest phenol biodegradation rate
(10.30 ppm/h) was achieved at an initial phenol
concentration of 700 ppm. The rate of phenol
biodegradation, on the other hand, tends to be stable at
more significant initial phenol concentrations. As a
result of the growth profile and percent of phenol
removal, the 700 ppm was chosen for further testing
(Fig. 1 and 3).

pm)

entration (pg

Phenol cone

Time [hr}
Fig. 3 modified Gompertz model fitted to the growth of R. nepotum
at different phenol concentrations (mg/mL)

3.4. Effect of Temperature

Numerous physiological factors can occasionally
affect bacteria's ability to biodegrade phenol. These
parameters include phenol toxicity, pH, temperature,
carbon, energy sources, and concentrations of
microelements and macroelements. R. nepotum utilizes
phenol as a sole carbon and energy source in this work.
The factors to optimize are the incubation temperature
and medium pH.

The effects of incubation temperatures on phenol
degradation were investigated in this study. That was
done at four different temperatures: 25, 28, 33, and 37
degrees Celsius. When incubation temperatures were
altered, the results revealed a considerable difference in
degradation rate (Table 6).

Table 6 Effect of growth conditions on the biodegradation rate of
phenol by R. nepotum

Condition Value  Biodegradation rate (ppm/h)
25 7.5
Incubate 28 8.33
temperature (c) 33 7.3
37 7
5.5 4
7 8.33
pH 8 7.8

9 2

At 700 ppm phenol, any increase in temperature
beyond 33°C resulted in a decline in growth once the
temperature became less than 28°C. The temperature of
incubation had a significant effect on cell mass
formation and the rate of phenol degradation. Thus, the
degradation of phenol occurs physiologically at room
temperature, at which 28°C becomes the optimal
temperature for R. nepotum cells. The temperature has
been shown to have a physiologically significant
impact on phenol fate [37]. Because it was discovered
that 28°C is the best environmental factor for phenol
degradation, or possibly because temperature
influences the activities of the enzyme(s) involved [38,
39]. In the breakdown of organic pollutants, including
phenol, the temperature has been as significant (or even
more) than nutrition availability [40].

3.5. Effect of pH

The influence of pH on phenol concentration was
tested on an uninoculated culture when studying pH
settings to see if the phenol reduction was related to a
chemical process or anything else. As shown in table 6,
the biodegradation of phenol and the biomass growth
rates were optimum at a pH of 7.0. It can be indicated
that the pH of the medium has a critical effect on
microorganism growth and, consequently, on phenol
biodegradation [41]. The enzymes undoubtedly play a
role in this catabolism pathway, and their maximal
activity is, therefore, at pH 7.0. The appropriate pH
plays a vital role in the biodegradation of these
compounds, as previously noted. However, depending
on the type of bacteria, the ideal pH varies. For
example, Arthrobacter's optimal pH for the degradation
of 4-CBA was 6.8 [42], which was similar to Klebsiella
oxytoca's optimum pH for the degradation of phenol
[17, 28]. At the same time, Halomonas campisalis
degraded phenol and catechol at pH ranging from 8 to
11 [43].

R. nepotum has the same ability to decompose
phenol at pH 7 as Rhodococcus UKMP-5M [44],
Pseudomonas aeruginosa PDM [29], and Pseudomonas
sp. BZD-33 [45]. A range of aromatic compounds is
biodegradable by oxygenase enzymes and the
microorganisms that contain them [41, 46]. Several
studies have shown that the concentration of yeast
extract, which serves as carbon and nitrogen sources, is
critical for maximizing the rate of phenol or other
organic compound biodegradation.

Because phenol is the only carbon source, the high
rate of phenol breakdown by R. nepotum cells could be
explained by the availability of enough phenol-
degrading enzymes. Furthermore, because the bacteria
consume this substrate quickly, the usual reduction in
phenol toxicity is further improved [3, 4, 47, 48].



Qaralleh et al. Plant Growth-Promoting Rhizobium Nepotum Phenol Utilization: Characterization and Kinetics, Vol. 49 No. 4 April 2022

101

3.6. GC-MS Analysis

In general, bacteria degrade phenol in two phases.

The first is the hydroxylase enzyme's conversion of
phenol to catechol in the presence of oxygen. Then, the
catechol is degraded through either the ortho-pathway
or the meta-pathway in the second phase. For example,
catechol is degraded to cis-mucconic acid in the ortho-
pathway by 1,2-dioxygenase. Then, it is converted to 2-
hydroxymucconic semialdehyde in the meta-pathway
by the 2,3-dioxygenase enzyme.
The biodegradation of phenol by R. nepotum was
investigated using GCMS. As a control, phenol, and
catechol were used. Fig. 4 shows that phenol (m/z =
94.0) washed out after 5.099 minutes, while catechol
(m/z = 110.3) was stripped away after 8.194 minutes.

In comparison, R. nepotum degraded phenol to
catechol and catechol to 2-hydroxymucconic
semialdehyde using the GCMS analysis of the
recovered products from the culture media sample (fig.
5), demonstrating that R. nepotum is employing a meta-
pathway [41].
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Furthermore, all intermediate molecules created
throughout the degradation pathway underwent
multiple oxidation stages, resulting in the meta
pathway's synthesis of acetaldehyde and pyruvate,
which eventually degraded into carbon dioxide and
water.

However, due to the bacteria's efficient metabolism
of these chemicals, it was logical to find them in our
analysis. According to Fig. 6, catechol, acetaldehyde,
and propanal can be generated from the phenol
substrate, resulting in reverse Diels-Alder, coupling, or
condensation processes between those fragments and
phenol or catechol, as well as other fragments detected
by GS-MS. The GC-MS chromatograms for the tested
sample under investigation showed more than 15 peaks
with various retention times, as shown in Fig. 7.
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Fig. 6 The proposed Catechol-2,3-dioxygenase mechanism of
phenol biodegradation by R. nepotum

The catechol or phenol degradation and
condensation products were identified utilizing the
NIST mass spectral database after GC-MS
investigation of those significant peaks: Fig. 7 shows
that the degradation of phenol happened via a reverse
Diels-Alder reaction when 2-vinylfuran (1) was
produced at (RT = 4.75 minutes and m/z =94.3). As
illustrated in Fig. 7, the reaction of phenol and catechol

produced [1,1-biphenyl]-2,2',3,3-tetrol (3), [1,1-
biphenyl]-2,3-diol (2), 4-phenoxy-phenol (5) and
[11,21:24,31 terphenyl]-13,14,34-triol (4).

Condensation of acetaldehyde with phenol and/or
catechol, on the other hand, vyielded a3-(1-
hydroxyethyl) benzene-1,2-diol (6) (Fig. 7).
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The degradation sample produced a propanal (7)
and the condensation between propanal and phenol
and/or catechol generated a 4-(1-hydroxypropyl)
phenol (8), 3,3'-(1-hydroxypropane-1,1-
diyl)di(benzene-1,2-diol) (9), as shown in Fig. 4 and 5.
Other condensation and elimination products such as,
(2Z,42)-2,6-dihydroxy-6,6-bis(2-hydroxyphenyl) hexa-
2,4-dienoic acid (10), 3-(3,4-dihydroxyphenyl)-2-
hydroxypropanoic acid (12), (3E)-4-(3,4-
dihydroxyphenyl)-2-oxopent-3-enoic acid (12), 3-(4-
hydroxyphenyl)-2-oxopropanoic acid (13), 1,1'-[(1E)-
but-1-ene-1,3-diyl] dibenzene (14), 4-(5-hydroxy-4-
methylhexan-3-yl)phenol (15), as shown in Fig. 8, All
of these degradation and condensation products
demonstrate that catechol degradation occurs via the
meta-pathway mechanism (catechol-2,3-dioxygenase).

3.7. HPLC Analysis

As indicated previously, gas chromatographic
investigation (Fig. 9a-c) revealed that the degraded
sample lacked phenol. Thus, the disappearance of a
spectrum equivalent to phenol at 7 minutes and the
presence of catechol as a function of time provide
additional support for phenol degradation (Fig. 10).

Fig. 8 MS fragmentatii;riwpéttern of compounds (9-15)
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Fig. 9 HPLC chromatograms for phenol (a), catechol (b), and tested
sample (c) at O times
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4. Conclusion

Biological treatment has proven to be the most
promising and cost-effective method for phenol
removal. The ability of R. nepotum to biodegrade
phenol and promote synchronous plant growth was
revealed in this study. In phenol-stressed environments,
this could help with rhizoremediation and crop yield
preservation. This isolated soil bacterium, R. nepotum,
is a powerful phenol degrader that can withstand
phenol concentrations as high as 1200. When grown
under optimal conditions, R. nepotum was capable of
completely degrading 700 ppm of phenol in 96 hours.
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Using the Haldane inhibition model, the maximum
specific growth rate (max), half-saturation coefficient
(Ks), and Haldane's growth Kkinetics inhibition
coefficient (Ki) for phenol-dependent growth kinetics
were estimated to be 0.716 (h ™), 15.8 (mgL™) and 292
(mgL™) for phenol-dependent growth Kinetics,
respectively. Due to the wvolatile nature of this
compound during aeration and intense mixing,
however, these batch cultures have some limitations,
including poor oxygen transfer. As a result, the impact
of oxygen was neglected. It was supposed that the
isolated R. nepotum growth and the rate of phenol
degradation were inhibited exclusively by substrate
concentration at certain conditions, including initial pH
and temperature.
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