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Abstract: The fusion of multimodal images is a trending research area, especially in the field of medical 

image processing. The purpose of image fusion is to classify medical images efficiently. The objective of the 

research work is to do the fusion of multimodal medical images for doing medical image classification. In this 

research, a new algorithm is proposed for the detection of brain tumors based on three main steps namely, fusion, 

segmentation, and classification. A sparse theory-based vector selection (STVS) algorithm is proposed for image 

fusion. In this algorithm, the multimodal images are first converted into patches. These patches are further 

vectorized. The vectorized patches are employed in the creation of dictionaries. The generated dictionaries along 

with the vectorized patches are used for the creation of sparse matrices. From the sparse matrices, a selection vector 

is formed using which the fused image is generated. The segmentation of the fused image is done using 

Intuitionistic fuzzy set-based k-means (IFSKM) clustering and the Otsu thresholding technique. The clusters of the 

IFSKM are generated based on the Intuitionistic fuzzy set (IFS) scheme. Finally, classification is performed based 

on a DCNN architecture. The proposed system is validated using the brain images from the Harvard Medical 

School. Quantitative analysis reveals that the proposed scheme achieves the best performance in terms of fusion, 

segmentation, and classification. The proposed STVS scheme attained high values of entropy, standard deviation, 

PSNR in dB, mean square error (MSE), structural similarity index (SSIM), and homogeneity with the values of 

7.33, 55.25, 42.85, 0.098, 64.31, and 53.52 respectively. 

Keywords: multimodal, fusion, segmentation, intuitionistic fuzzy set, structural similarity index, 
classification. 

使用多模态医学图像融合检测脑肿瘤的备用理论 

摘要：多模态图像的融合是一个趋势研究领域，尤其是在医学图像处理领域。图像融合

的目的是对医学图像进行有效分类。研究工作的目标是进行多模态医学图像的融合以进行医

学图像分类。在这项研究中，提出了一种基于融合、分割和分类三个主要步骤的脑肿瘤检测

新算法。提出了一种基于稀疏理论的图像融合向量选择算法。在该算法中，首先将多模态图

像转换为补丁。这些补丁被进一步矢量化。矢量化补丁用于创建字典。生成的字典以及矢量

化补丁用于创建稀疏矩阵。从稀疏矩阵中，形成一个选择向量，使用该向量生成融合图像。

融合图像的分割是使用基于直觉模糊集的 k-均值聚类和大津阈值技术完成的。基于直觉模糊
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集的 k-均值的集群是基于直觉模糊集 方案生成的。最后，基于深度卷积神经网络架构进行分

类。所提出的系统使用来自哈佛医学院的大脑图像进行了验证。定量分析表明，该方案在融

合、分割和分类方面取得了最佳性能。所提出的基于稀疏理论的向量选择方案的熵、标准差

、峰值信噪比（dB）、均方误差、结构相似性指数和同质性值分别为 7.33、55.25、42.85、

0.098、64.31 和 53.52. 

关键词：多模态、融合、分割、直觉模糊集、结构相似性指数、分类。 

 
 

1. Introduction 
The mortality rate of brain tumors is constantly 

increasing since more people are getting affected by 

this disease. Thus, early detection of brain tumors is 

very essential to increase the survival rate of humans. 
Computer vision techniques are popularly being used 

in recent days for the assessment of brain images [1]. 

These techniques make use of image processing for the 

classification of brain images into various categories 
[2]. Automatic identification of malignant cases is a 

challenging task as the structural variation of the tumor 

regions is more identical to that of non-tumor regions. 
Various machine learning techniques are being used for 

the classification of brain images. These techniques 

perform classification in two steps namely, training and 
testing [3]. 

During the training stage, the labeled images are 

given to the classification algorithm to train and 

generate a classification model. This model is used 
during testing based on the testing data. Thus, the 

malignant images are identified from the benign 

images [4]. This classification is necessary as the 
malignant cases must be identified and treated at the 

earlier stages for the easy recovery of the patients with 

a brain tumor [5]. To increase the quality of 
classification steps like pre-processing, fusion and 

segmentation are performed with the brain image data. 

Precise identification of the brain tumor region is an 

important task as these regions contain the important 
information necessary for classification. This region 

identification is done using segmentation techniques 

[6]. 
The segmentation techniques usually employ 

clustering followed by thresholding. Clustering 

techniques employ routing of pixels that constitute 

similar features. Thresholding techniques are employed 
for the separation of tumor pixels from non-tumour 

pixels [7]. Two types of features are used for the 

representation of brain images. These include deep 
learning features and handcrafted features. The deep 

learning features are extracted using convolutional 

architectures [8].  
In some cases, the combination of both types of 

cases is used for the classification. Due to the changes 

in lifestyle, aging factors, and heredity reasons more 
and more populations are being affected by a brain 

tumors. Deep learning techniques employed pre-trained 

neural networks for the automatic generation of 
features [9]. Though benign tumor comprises non-

cancer cells, their identification is also important since 

such abnormal tissues cause abnormal functioning of 
the brain. The treatment given for the cancerous and 

non-cancerous brain tumor cases are different, thus 

their identification is very important [10].  

 Various optimization techniques are also 
employed in tumor detection. These techniques employ 

algorithms based on bio-inspired techniques for the 

identification of malignant cases. These bio-inspired 
techniques use biological operations performed by 

various organisms as a base for the classification. 

Several quantities are optimized and the corresponding 
parameters are detected [11]. The computation of the 

computational complexity is vital since these 

algorithms must be implemented in real-time. Since 

many IoT-based devices are employed for the 
acquisition and transmission of data, real-time 

processing is done. Thus, computational time and 

computational complexity are important parameters 
considered in brain tumor detection [12].  

In this research, we propose a new scheme for the 

detection of brain tumors using image fusion that is 

based on the sparse representation theory. 
The overall contributions of this paper are fourfold: 

a) A new technique called sparse theory-based 

vector selection (STVS) technique for image fusion is 
presented. 

b) The segmentation of the fused image is done 

using a novel Intuitionistic fuzzy set-based k-means 
(IFSKM) clustering. 

c) Classification of the segmented clusters is done 

using a new DCNN architecture. 

d) Performance evaluation is done in terms of 
various fusion, segmentation, and classification 

metrics. 

 

2. Literature Survey 
Tan et al. [13] proposed a scheme for medical image 

fusion based on neural networks. A new fusion strategy 
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was proposed using energy as an attribute. Here, the 

images were first converted to the transform domain 

based on the non-subsampled Shearlet transform. The 
transform coefficients were then fused based on the 

energy content. Huang et al. [14] presented a review on 

various schemes available for image fusion. The main 
focus was provided on the usage of deep learning 

techniques for the combination of multimodal medical 

images. The popularly available medical image 
datasets were listed and the analysis of the various 

fusion techniques was done using popular fusion 

metrics. 

Rajalingam et al. [15] utilized deep guided filtering 
algorithm for medical image fusion. Here, pathological 

features of the individual images were united. The 

images were decomposed based on frequencies. These 
components were then fused using the filtration 

technique to form filtered high-quality fused images. 

Arif et al. [16] used fast curvelet transform for the 
fusion of medical images. This transform was 

implemented using a genetic algorithm. The 

redundancy in the input images was fused based on the 

curvet-based genetic methodology. After the 
application of the curvelet transform, the ridgelet 

transform was also applied to ensure the complete 

fusion of important features from the medical images. 
Wang et al. [17] performed image fusion based on a 

contrast pyramid. The contrast pyramid features were 

extracted and fused based on CNN. The Siamese neural 

network was employed for the extraction of neural 
network features. The output of the neural network 

structure was used for the generation of the weight map 

that was utilized for the image fusion. Yadav et al. [18] 
utilized hybrid techniques for image fusion. The main 

advantages of multimodal imaging techniques were 

presented along with the advantages of multimodal 
image fusion. Further, the techniques employed for the 

fusion of images without the introduction of any flaws 

were also discussed. The usage of various analysis 

techniques in the denoising of the fused images was 
also analyzed. 

Du et al. [19] presented a scheme for image fusion 

based on tensor features. The tensor features were 
extracted from the individual multimodal images and 

fused using three-layer image fusion techniques. The 

differential features were extracted based on the 
structure tensor components. These components were 

combined using a novel special frequency metric. 

Wang et al. [20] utilized sparse representation theory 

for the adaptive fusion of the medical images. Here, the 
input images were first split into four different images 

having varying sizes. The features required for the 

image fusion were extracted based on the Laplacian 
Pyramid theory. The noise components present in the 

higher frequency components were reduced based on 

the sparse representation.  

Maqsood et al. [21]utilized sparse representation for 
the image fusion based on two-scale decomposition. 

Initially, to increase the discriminative nature of the 

individual images, the contrast enhancement technique 

was employed. The enhanced images were then 
decomposed into two different components based on 

the detail and base nature. Finally, fusion was done 

using sparse theory. Chen et al. [22] presented a 
scheme for the combination of multimodal medical 

images using a Rolling guidance filter. The Rolling 

guidance filter was employed to split the medical 
images into structural and detail coefficients. These 

coefficients were then merged based on the Laplacian 

pyramid theory. This method attained better visual and 

quantitative fusion quality compared to other 
conventional systems. 

Based on the different types of fusion techniques 

being surveyed, we have implemented a new fusion 
scheme in this research based on sparse theory and 

vector selection techniques.  

 

3. Proposed Methodology 
The proposed methodology comprises three main 
stages namely, multimodal medical image fusion, 

image segmentation, and classification. This is depicted 

in Fig. 1. In this research, we have employed a new 
technique called the sparse theory-based vector 

selection (STVS) technique for image fusion. The 

segmentation of the fused image is done using 
Intuitionistic fuzzy set-based k-means clustering 

(IFSKM) clustering and Otsu thresholding technique. 

Finally, classification is done using DCNN 

architecture. 

 
Fig. 1 Flow chart of the proposed methodology 

 

3.1. Image Fusion using Sparse Theory-Based 

Vector Selection (STVS) Technique 

The proposed image fusion scheme makes use of 
sparse theory. The proposed algorithm is represented 

by Algorithm 1. In this scheme, two input images are 

considered namely, the multimodal image 1 

MI1RMN and multimodal image 2 MI2RMN. 

Initially, the first image is converted to patches 
11

3
1
2

1
1 n,....,p,p,pp  of size nn. Then, similar to the first 

image, the second image is also converted to patches 
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22
3

2
2

2
1 n,....,p,p,pp of size nn. These patches are then 

vectorized to form vectors of size n2 1. The generated 
vectors are then appended to form vector matrices 

namely PnRVM 
21 and PnRVM 

22 . Dictionary 

learning was done using the ODL algorithm for 
dictionaries DI1 and DI2 using VM1 and VM2. The 

vector-matrix VM1 and dictionary DI1 are then used to 

compute the sparse matrix SM1 using the LARS 
technique. Similarly, the vector-matrix VM2 and 

dictionary DI2 are used to compute the sparse matrix 

SM2. The selection vector SV = {sv1,sv2,…,svp} is 

then generated based on the l-1 norm value of the 
sparse matrices. Using the selection vector, the fused 

vector matrix  F
P

FFF vfvfvfVM ,...,2,1   is formed. 

Finally, the fused image FI  RMN is formed using 

the patches selected from the fused vector. The entire 

process is explained in four main steps below. 
 

3.1.1 Patch Vectorization 

Initially, the input multimodal image 1 MI1  

RMN and multimodal image 2 MI2  RMN are 

converted to patches 11
3

1
2

1
1 n,....,p,p,pp and 22

3
2
2

2
1 n,....,p,p,pp  

respectively. Here, N refers to the total number of 

patches. The patch conversion is done using the sliding 

window technique. In this work, we have employed a 

sliding window of size nnwithout overlap. This is 

employed to reduce the overall computation 
complexity of the sparse coding and dictionary learning 

steps. The ith patch of the image MI1 and image MI2 

are represented as 1
ip  and 2

ip  respectively. These 

patches are then converted to vectors of size n21. This 

process is done using the patch vectorization technique, 

in which each squared patch is converted to a column 
vector of length n2. 

 

3.1.2. Edge Matrix Computation 
In the case of multimodal medical images, it is 

evident that each image contains complimentary 

information. For instance, in the case of MRI and CT 

images, the MRI images represent the soft tissue 
regions and the CT images represent the bone regions. 

Thus, the identification of edge information aids in the 

identification of patches that contain more information. 
In our work, the edge matrices are computed based on 

the Histogram of Oriented Gradients (HOG) technique. 

This helps in the identification of the patch that has 
more salient information. The HOG descriptor converts 

the image patch into L different orientation bins. These 

bins are represented as1, 2,…L.These bins are 

oriented such that they are spaced equally within the 

angular region of 00-1800. Then, for the patch

2,1,kpk
i , thejth orientation bin is represented using 

the following equation (1), 
( ), 1, 2,..., .i jG j L 

 (1) 

3.1.3: Dictionary learning and Sparse coding 

The sparse representation modeling technique is 

popularly employed in the field of image fusion. This 
modeling technique has extraordinary signal 

representation capabilities. Using this modeling, the 

over-complete dictionaries can be generated. In this 
work, we have used the online dictionary learning 

(ODL) algorithm. This algorithm is based on a convex 

relaxation technique. Consider the edge matrixEMk, k 

1,2 that can be represented as EMk = [em1, 

em2,…,emk]. The optimization function for dictionary 
generation is given by, 

2

12,
1

1 1
min ( )

2k

k

i i i
DI

i

em DI



  

 

 
 (2) 

Where DIk, k  1,2 represents the dictionaries for 

image 1 and image 2 respectively. Further, σ = [σ1, 

σ2,…,σk] represents the sparse coefficients and  is the 
regularization parameter. Using the generated 

dictionaries, sparse matrices  11
2

1
1

1 ,...,, PsmsmsmSM 

2,1,kpk
i and  22

2
2
1

2 ,...,, PsmsmsmSM   are formed 

using the Least angle regression (LARS) algorithm. In 

this algorithm, the sparse coding step is performed 

using 
2

1 2 1

1
arg min

2
i t t

sm

sm em DI sm sm 
 (3) 

Where t represents the iteration numberand  t< T where 
T is the total number of iterations. The generated sparse 

matrices are used for the creation of a selection vector. 

The selection vector selection vector 

SV = {sv1,sv2,…,svP} is generated by comparing the 
magnitude of the sparse matrices of the two multimodal 

images. 

 
3.1.4. Fusion Rule 

Using the selection vector, the fused vector matrix 

 F
P

FFF vfvfvfVM ,...,, 21  is formed. Each value of the 

fused vector-matrix either has a value of 1 or a value of 

2. Value 1 indicates the patch from the multi-modal 
image 1 and a value of 2 represents the patch from the 

multi-modal image 2. The fused vectors are then 

converted to patches to form the fused image FI  

RMN. This conversion is done similar to the initial 

patch vectorization step but in a reverse manner. The 

overall framework of image fusion using the STVS 
technique is illustrated in Fig. 2. 

 
Fig. 2. The overall framework of image fusion using the STVS 

technique 
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Algorithm 1: Proposed sparse theory-based vector 

selection (STVS) technique. 

Input: Multimodal image 1 MI1RMN and 

multimodal image 2  MI2RMN. 

Output: Fused image FI  RMN. 

Steps: 
 The input multimodal image 1 is converted to 

patches 11
3

1
2

1
1 n,....,p,p,pp of size nn. 

 The input multimodal image 2 is converted to 

patches 22
3

2
2

2
1 n,....,p,p,pp  of size nn. 

 The patches of image 1 and image 2 are vectorized 

to form vectors of size n2  1. 

 The formed vectors are then appended to form 

vector matrices namely PnRVM 
21 and PnRVM 

22 . 

 Compute edge matrices for EM1 and EM2  using 

VM1 and VM2  respectively using Histogram of 
Oriented Gradients [23]. 

 Using ODL [24] algorithm form dictionaries DI1 

and DI2 using EM1 and EM2respectively. 

 Using vector-matrix VM1 and dictionary DI1 

compute the sparse matrix using LARS [25] technique. 
1 1 1 1

1 2{ , ,..., }PSM sm sm sm
 (4) 

 Similarly, using vector-matrix VM2 and 
dictionary DI2 compute the sparse matrix. 

2 2 2 2

1 2{ , ,..., }PSM sm sm sm
 (5) 

 Form the selection vector SV = {sv1,sv2,…,svP} 

using  
1 2

2 1

1;

2;

i i

i

i i

if sm sm
sv

if sm sm

 
 

  (6) 

Wherei = 1,2,…P. 

 Form the fused vector-matrix

 FFFF
PvfvfvfVM ,...,, 21  

1

2

; 1

; 2

i iF

i

i i

sm if sv
vf

sm if sv

 
 

  (7) 
Where i = 1, 2,…P. 

 Convert the fused vectors to patches to form the 

fused image  

FI  RMN. 

 

3.2. Tumor Segmentation using Intuitionistic Fuzzy 
Set-Based K-means Clustering (IFSKM) 

Clustering based on the k-means technique is 

popularly employed in image segmentation. In this 

technique, the image is divided into k number of 
clusters. The regions having similar features are 

grouped as a single cluster. In the k-means algorithm, 

the initial k cluster centroids are referred to as the 
following: 

{ / 1,2,... }iCE Ce i k 
 (8) 

The main drawback of the k-means clustering is the 

random selection of the initial centroid. In the proposed 

segmentation scheme, the initial selection is done based 
on the Intuitionistic fuzzy set (IFS) scheme. In the IFS 

scheme, data Y is represented as 
{ , ( ), ( ); }IFS y y y y Y    (9) 

(y) represents the degree of belongingness of y in 

Y and(y) is the degree of non-belongingness of y in 

Y.  
In the above equation, we find that 
0 ( ) ( ) 1y y     (10) 

In the proposed IFSKM scheme, the initial centroids 

are selected such that 

{ , ( ), ( ); }i i i iCE ce ce ce ce CE  
 (11) 

The clustered regions were then segmented based 

on the Otsu thresholding scheme to form the segmented 
regions. 

 

3.3. Classification 
The segmented image slices were then given as 

input to the DCNN structure. This architecture is 

shown in Figure 3. This structure comprises of pre-
trained GoogleNet, fully connected layers, and the 

Long Short Term Memory (LSTM) classification 

structure. The images were classified into two 

categories namely, benign and malignant. The 
GoogleNet is comprised of severs filters of varying 

sizes. The first layer is comprised of filters of size 

224×224. The second layer represented filters of size 
112×112. The third layer consisted of filters of size 

56×56 and the fourth layer utilized filters of size 

28×28. In the final two layers, filters of sizes 14×14 

and 7×7 were employed. The output of these layers was 
given as input to the fully connected block (FC) that 

comprised of 2 layers. These layers are comprised of 

4096 nodes each. Finally, classification was done using 
an LSTM structure to detect the malignant cases. The 

main use of using the GoogleNet structure for pre-

training is because it produces a minimal error of about 
5.5%. 

 
Fig. 3 The architecture of the proposed Deep Convolutional Neural 

Network 

 

4. Results and Discussion 
The proposed framework was evaluated using both 

qualitative and quantitative analysis. The qualitative 

analysis was done to assess the performance of the 
proposed fusion algorithm visually. The appearance of 

the fused image was compared visually with that of the 

individual multimodal images. This was done to 



Shabe et al., Spare Theory for the Detection of Brain Tumor using Multimodal Medical Image Fusion, Vol. 49 No. 3 March 2022 
123 

 

evaluate the structural integrity of the fused images. In 

the quantitative analysis, the proposed framework was 

evaluated based on fusion, segmentation, and 
classification algorithms. The proposed STVS fusion 

algorithm was compared with popular fusion 

algorithms like 2D discrete wavelet transform (DWT), 
2D stationary wavelet transforms (SWT) and non-

subsampled contourlet transforms (NSCT). This 

evaluation was done using fusion metrics like spatial 
frequency, standard deviation, Mutual information, 

Qydeas's (QAB/F) fusion metric, Mean structural 

similarity (MSSIM), and Piella's fusion metric. The 

proposed IFSKM segmentation algorithm was 
evaluated quantitatively in terms of metrics like 

Jaccard and Dice coefficient. Algorithms like the k-

means algorithm and watershed algorithm were used 
for comparison with the proposed segmentation 

algorithm. The classification performance of the 

DCNN algorithm was assessed by comparison with 
algorithms like k-nearest neighbor (k-NN), Random 

Forest (RF), support vector machine (SVM), and sparse 

representation-based classification (SRC). 

 

5. Strengths and Limitations 
 The sparse domain-based technique has the 

benefits of good strength and low distortion, but it also 

produces noise during fusion computation. As a result, 

image fusion faces a de-noising issue. 

 Sparse Representation approaches have acquired a 
lot of traction in the transform area, and they've shown 

to be effective in medical image analysis. However, 

these approaches have flaws, such as 1st one when 

different modalities are collected from the source 
images, the fusion rule causes spatial inconsistencies in 

the fused image. 

 Due to the training and optimization of the 

dictionaries, the filters employed for SR-based picture 
fusion are time-dependent, and these algorithms are 

also unable to dissect several types of images. 

 Another constraint is the complex orientated shape 

of source images, which cannot be correctly classified 

using an existing lexicon. 

 While research in the field of multi-modal image 
fusion has yielded promising results, there are some 

limitations. 

 Additionally, a morphological ensemble 

classification model based on SR for pixel-level picture 
fusion. However, the proposed model's efficiency is 

reduced by the blurring effect during deconstruction. 

 

5.1. Parameter Settings 

Six pairs of brain multimodal images were 

considered for analysis of our work. The value of patch 

size n was chosen to be 8. The brain images employed 
in this research were obtained from Harvard Medical 

School 

(https://www.med.harvard.edu/aANliB/home.html). 

The value of the regularization parameter was set as 

0.5. The total number of iterations T in the LARS 

algorithm was chosen as 100.  
 

5.2. Experimental Setup 

All the experiments done in this work were 
accomplished with Matlab R2014b using a Laptop with 

Intel core i5 @4 GHz using 6GB RAM. 

 

5.3. Qualitative Analysis 
Table 1 depicts the six different input source 

multimodal images and the corresponding fusion 

results obtained using the proposed STVS fusion 
algorithm. From Table 1, it can be visually observed 

that the fusion result has very good quality. It 

represents the important features from both the input 

images. This helps to improve the accuracy of 
segmentation, thereby, increasing the quality of 

classification.  

 
Table 1. The source multimodal images and the fusion results 

No 
Multimodal image 

1 

Multimodal 

image 2 
Fused image 

1 

   

2 

   

3 

   

4 

   

5 

   

6 

   

 

The fused images are subjected to segmentation 
using the proposed IFSKM clustering and Otsu 

https://www.med.harvard.edu/aANliB/home.html
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thresholding algorithms. These are shown in Fig. 4. 

The segmentation results clearly show the region 

containing the tumor regions. The segmented regions 
are given as slice inputs to the DCNN architecture that 

is used for the classification of brain images into two 

categories namely, benign and the malignant category. 

 

 
Fig. 4 Segmentation results were obtained for the 6 fused images 

using IKSKM clustering and Otsu thresholding 

 

The results of image fusion studies are shown in 
Figure 4. By analyzing the partially expanded image, 

the fused image created by the suggested method has a 

good general visualization capability and a high image 

contrast. The suggested enhancement algorithm 
produces high-brightness fused pictures. Both 

approaches perform poorly in the preservation of image 

details, as evidenced by the partial enlargements 
marked in green and red dashed frames. The specific 

information of the image edge is not apparent, 

according to the details assessment, which is not good 
for human eye observing. When compared to the 

source image, the fused image produced by the 

suggested technique has a poor resemblance to the 

source image and does not well retain the source 
image's precise local structure. In some locations, the 

suggested method's fused image is too smooth, and the 

detailed image texture is not visible enough. The 
suggested method produces a brilliant fused image that 

does not properly maintain the detailed elements of the 

original images. The presented scheme produced the 
fused image shown in Figure 4, which has a high edge 

brightness, which degrades the detailed texture features 

of object boundaries. 

 

5.4. Quantitative Analysis 

In this research, analysis was performed for 

evaluating the performance of the proposed fusion, 
segmentation, and classification algorithms. 

 

5.4.1. Evaluation of Proposed Fusion Methodology 

The proposed fusion methodology is evaluated 
using metrics like spatial frequency, standard deviation, 

Mutual information, Qydeas's (QAB/F) fusion metric, 

Mean structural similarity (MSSIM), and Piella's fusion 

metric. 

Table 2 shows the variation of spatial frequency for 
the 2D DWT, 2D SWT, NSCT, and the proposed 

STVS algorithm. It is observed that the overall average 

value of spatial frequency achieved for all the 6 images 
using discrete wavelet transform is 18.08. The average 

value of spatial frequency for the stationary wavelet 

transform is 19.08 and that for the non-subsampled 
contourlet transform is 20.67. The proposed STVS 

fusion scheme attains the highest spatial frequency of 

22.40.  

 
Table 2 Spatial frequency for evaluation of image fusion 

Image 

Set 

Spatial frequency 

2D 

Discrete 

Wavelet 

Transform 

2D 

Stationary 

Wavelet 

Transform 

Non-

Subsampled 

Contourlet 

Transform 

Proposed 

STVS 

1 17.43 17.99 20.99 22.41 
2 18.64 18.47 21.43 22.64 
3 19.65 18.93 20.48 21.64 
4 17.89 19.74 19.86 21.95 
5 16.94 19.70 19.93 23.21 

6 17.94 19.67 21.34 22.58 

 

Table 3 shows the variation of standard deviation 

for the 2D DWT, 2D SWT, NSCT, and the proposed 

STVS algorithm. It is observed that the overall average 
value of standard deviation achieved for all the 6 

images using discrete wavelet transform is 35.40. The 

average value of standard deviation for the stationary 
wavelet transform is 36.46 and that for the non-

subsampled contourlet transform is 38.38. The 

proposed STVS fusion scheme attains the highest 

standard deviation of 43.17.  
 
Table 3 Standard deviation for evaluation of image fusion 

Image 

Set 

Standard deviation 

2D Discrete 

Wavelet 

Transform 

2D 

Stationary 

Wavelet 

Transform 

Non-

Subsampled 

Contourlet 

Transform 

Proposed 

STVS 

1 35.23 36.94 37.83 40.52 
2 36.53 36.84 37.65 41.53 
3 34.13 35.32 38.95 45.37 
4 36.32 35.95 38.32 46.23 
5 34.98 36.83 38.63 44.55 
6 35.24 36.93 38.93 40.85 

 

Table 4 shows the variation of mutual information 
(MI) for the 2D DWT, 2D SWT, NSCT, and the 

proposed STVS algorithm. It is observed that the 

overall average value of MI achieved for all the 6 

images using discrete wavelet transform is 3.41. The 
average value of MI for the stationary wavelet 

transform is 3.56 and that for the non-subsampled 

contourlet transform is 3.66. The proposed STVS 
fusion scheme attains the highest mutual information of 

4.24.  
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Table 4 Mutual information for evaluation of image fusion 

Image 

Set 

Mutual information 

2D 

Discrete 

Wavelet 

Transform 

2D 

Stationary 

Wavelet 

Transform 

Non-

Subsampled 

Contourlet 

Transform 

Proposed 

STVS 

1 3.21 3.46 3.64 4.21 

2 3.12 3.65 3.86 4.15 
3 3.53 3.56 3.74 4.36 
4 3.47 3.85 3.86 4.26 
5 3.66 3.24 3.63 4.27 
6 3.47 3.64 3.25 4.19 

 

Table 5 shows the variation of Qydeas’s (QAB/F) 
fusion metric for the 2D DWT, 2D SWT, NSCT, and 

the proposed STVS algorithm. It is observed that the 

overall average value of Qydeas’s (QAB/F) fusion 
metric achieved for all the 6 images using discrete 

wavelet transform is 0.563. The average value of 

Qydeas’s (QAB/F) fusion metric for the stationary 

wavelet transform is 0.607 and that for the non-
subsampled contourlet transform is 0.665. The 

proposed STVS fusion scheme attains the highest 

Qydeas’s (QAB/F) fusion metric of 0.755.  
 

Table 5 Qydeas’s (QAB/F) fusion metric for evaluation of image 
fusion 

Image 

Set 

QAB/F 

2D 

Discrete 

Wavelet 

Transform 

2D 

Stationary 

Wavelet 

Transform 

Non-

Subsampled 

Contourlet 

Transform 

Proposed 

STVS 

1 0.525 0.634 0.629 0.723 
2 0.554 0.568 0.694 0.784 
3 0.582 0.593 0.663 0.734 
4 0.539 0.612 0.635 0.764 
5 0.584 0.615 0.689 0.783 
6 0.599 0.624 0.681 0.742 

 

Table 6 shows the variation of mean structural 
similarity (MSSIM) for the 2D DWT, 2D SWT, NSCT, 

and the proposed STVS algorithm. It is observed that 

the overall average value of mean structural similarity 

achieved for all the 6 images using discrete wavelet 
transform is 0.678. The average value of mean 

structural similarity for the stationary wavelet 

transform is 0.742 and that for the non-subsampled 
contourlet transform is 0.768. The proposed STVS 

fusion scheme attains the highest mean structural 

similarity of 0.867.  

 
Table 6 Mean structural similarity (MSSIM) for evaluation of 

image fusion 

Image 

Set 

MSSIM 

2D Discrete 

Wavelet 

Transform 

2D 

Stationary 

Wavelet 

Transform 

Non-

Subsampled 

Contourlet 

Transform 

Proposed 

STVS 

1 0.679 0.753 0.789 0.841 

2 0.684 0.785 0.743 0.866 
3 0.694 0.732 0.794 0.854 
4 0.695 0.714 0.785 0.863 
5 0.663 0.743 0.763 0.886 
6 0.653 0.726 0.734 0.896 

 

Table 7 shows the variation of Piella’s fusion metric 

for the 2D DWT, 2D SWT, NSCT, and the proposed 
STVS algorithm. It is observed that the overall average 

value of Piella’s fusion metric achieved for all the 6 

images using discrete wavelet transform is 0.578. The 
average value of Piella’s fusion metric for the 

stationary wavelet transform is 0.630 and that for the 

non-subsampled contourlet transform is 0.655. The 
proposed STVS fusion scheme attains the highest 

Piella’s fusion metric of 0.767.  

 
Table 7 Piella’s fusion metric for evaluation of image fusion 

Image 

Set 

Piella’s fusion metric 

2D 

Discrete 

Wavelet 

Transform 

2D 

Stationary 

Wavelet 

Transform 

Non-

Subsampled 

Contourlet 

Transform 

Proposed 

STVS 

1 0.582 0.614 0.673 0.784 
2 0.573 0.625 0.649 0.756 
3 0.583 0.635 0.639 0.776 
4 0.586 0.618 0.694 0.759 
5 0.556 0.628 0.649 0.788 
6 0.585 0.662 0.629 0.740 

 

5.4.2. Segmentation Technique Evaluation 

We have evaluated the proposed segmentation scheme 
in terms of the Jaccard and Dice coefficient. Table 8 

shows the comparison of the Jaccard coefficient for the 

considered 6 images. It can be seen that the average 
Jaccard coefficient for the k-means algorithm is 

0.5591. The average Jaccard coefficient for the 

watershed algorithm is 0.626. However, the average 

Jaccard coefficient for the proposed IFSKM algorithm 
is 0.7555. Thus, IFSKM achieves the best performance 

in terms of the Jaccard coefficient. 

 
Table8. Performance evaluation using Jaccard Coefficient 

Image 

Set 

Jaccard Coefficient 

K-means 

algorithm 

Watershed 

algorithm 
Proposed IFSKM 

1 0.553 0.623 0.743 
2 0.562 0.540 0.775 
3 0.522 0.616 0.735 
4 0.567 0.637 0.727 
5 0.562 0.688 0.789 
6 0.589 0.652 0.764 

 

Table 9 shows the comparison of the Dice 

coefficient for the considered 6 images. It can be seen 
that the average Dice coefficient for the k-means 

algorithm is 0.6111. The average Dice coefficient for 

the watershed algorithm is 0.6693. However, the 
average Dice coefficient for the proposed IFSKM 

algorithm is 0.7796. Thus, we infer that IFSKM 

produces the best results in terms of the Dice 
coefficient. 
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Table 9 Performance evaluation using Dice Coefficient 

Image 

Set 

Dice Coefficient 

K means 

algorithm 

Watershed 

algorithm 
Proposed IFSKM 

1 0.562 0.698 0.754 

2 0.624 0.637 0.743 

3 0.666 0.653 0.876 

4 0.613 0.697 0.746 

5 0.623 0.674 0.784 

6 0.579 0.657 0.775 

 

Table 10 shows the comparison of structural 

similarity index (SSIM) for the considered 6 images. It 

can be seen that the average SSIM for the k-means 
algorithm is 0.756. The average SSIM for the 

watershed algorithm is 0.868. However, the average 

SSIM for the proposed IFSKM algorithm is 0.941. 
Thereby, we can say that the SSIM of the proposed 

IFSKM is the best. 

 
Table 10 Performance evaluation using SSIM 

Image 

Set 

SSIM 

K means 

algorithm 

Watershed 

algorithm 
Proposed IFSKM 

1 0.734 0.898 0.942 

2 0.752 0.887 0.912 

3 0.766 0.812 0.953 

4 0.723 0.894 0.947 

5 0.773 0.865 0.977 

6 0.789 0.852 0.917 

 
5.4.3. Evaluation of Classification Algorithms 

The classification performance of the DCNN 

algorithm was evaluated by comparison with 

algorithms like k-NN, RF, SVM, and SRC. Table 11 
shows the comparison of overall accuracy. From Table 

11, it is clear that the accuracy of k-NN is 79.32%. The 

accuracy achieved by RF is 83.12% and that of SVM is 
91.58%. The accuracy of SRC is 91.58%. However, the 

proposed DCNN has the highest accuracy of 94.93%. 

 
Table 11. Comparison of Overall Accuracy 

Classification algorithm Overall classification accuracy (%) 

k-NN 79.32 

RF 83.21 

SVM 89.37 

SRC 91.58 

DCNN 94.93 

 

Fig. 5 shows the comparison of overall specificity. 

From Figure 4, it is clear that the specificity of k-NN is 

81.23%. The specificity achieved by RF is 83.72% and 
that of SVM is 85.46%. The specificity of SRC is 

88.74%. However, the proposed DCNN has the highest 

specificity of 94.82%.  

 
Fig. 5 Comparison of specificity 

 

Fig. 6 shows the comparison of overall precision. 

From Figure 5, it is clear that the precision of k-NN is 
78.32%. The precision achieved by RF is 81.43% and 

that of SVM is 85.83%. The precision of SRC is 

89.65%. However, the proposed DCNN has the highest 
precision of 95.37%. 

 
Fig. 6 Comparison of precision 

 

Fig. 7 shows the comparison of overall recall. From 
Figure 6, it is clear that the recall of k-NN is 83.78%. 

The recall achieved by RF is 85.93% and that of SVM 

is 89.73%. The recall of SRC is 91.37%. However, the 

proposed DCNN has the highest recall 93.82%. 

 
Fig. 7 Comparison of recall 

 
Fig. 8 shows the comparison of the F-score. From 

Figure 7, it is clear that the F-score of k-NN is 79.42%. 

The F-score achieved by RF is 84.82% and that of 
SVM is 88.57%. The F-score of SRC is 90.94%. 

However, the proposed DCNN has the highest F-score 

of 93.72%.  
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Fig. 8 Comparison of F-score 

 

Table 12 shows the comparison of overall 

classification time. From Table 12, it is clear that the 
classification time of k-NN is 29.57ms. The 

classification time achieved by RF is 21.43ms and that 

of SVM is 18.32ms. The classification time of SRC is 
10.74ms. However, the proposed DCNN has a minimal 

classification time of 8.56ms. Since this time is very 

less, the proposed scheme can be easily implemented in 

real-time applications. 
 

Table 12 Comparison of classification time 

Classification algorithm Classification time (ms) 

k-NN 29.57 
RF 21.43 

SVM 18.32 
SRC 10.74 

DCNN 8.56 

 

6. Advantage of the Proposed 

Methodology 
The main advantage of the proposed methodology is 

the improved fusion performance. This helps to form 
fused images that have complementary information 

from both the input images. The other advantage is the 

high quality of segmentation obtained using the 
proposed segmentation algorithm. Further, we have 

attained the highest accuracy in the detection and 

classification of brain tumors. 

 

7. Drawback of the Proposed 

Methodology 
The only drawback of the proposed scheme is the 

increased complexity of the image fusion algorithm. 

 

8. Conclusion 
Medical images of many forms can aid in the 

accurate detection of diseases. X-rays, CT scans, MRIs, 

and PET scans are examples of common medical 

imaging procedures [26-29]. Due to the obvious 
various imaging methods, there are considerable 

disparities in the attention being paid to various modal 

medical images of individual organs and tissues. When 

it comes to the diagnosis of diseases, single-type 

images frequently fall short of offering advanced and 
appropriate information. To diagnose a patient's 

condition, clinicians must typically synthesize 

numerous distinct kinds of medical images from the 
same perspective, which is inconvenient and decreases 

diagnostic performance. Multi-modal medical picture 

fusion has been efficiently applied to medical diagnosis 
as a response to these challenges. Multi-modal medical 

image fusion integrates data from several kinds of 

medical images and shows the integrated image in a 

fused image as a key benefit. Because of its broad 
built-in library compatibility, state-of-the-art 

approaches for multimodal imagery fusion use 

MATLAB R2020b (MathWorks Inc., MA, USA) to 
generate simulated results. Microsoft Windows 10 is 

installed on a computing system that contains an Intel 

Core i7 9750H 2.59 GHz processor and 16 GB of 
memory. The multimodal brain image datasets 

consisting of CT and MR images were acquired. Each 

of the given datasets has 500 grayscale images chosen 

for measuring performance. The dimensions of the 
input photos are standardized at 256 x 256 pixels. 

The images created by our proposed method were 

compared to the images generated by the preceding 
algorithms utilizing different datasets, namely Data-1 

through Data-6. The proposed method is evaluated to 

the Discrete Wavelet Transform (DWT), dual-tree 

complex wavelet transforms (DTCWT), non-
subsampled contourlet transform (NSCT), 

Convolutional Neural Network (CNN), and the 

proposed algorithm for graphical quality assessment of 
the Data-1 dataset. An MRI image shows information 

about soft tissues, whereas a CT image shows data 

about hard tissues and their architecture. It is crucial to 
combine important information from the preceding 

photos into a single fused image for better 

identification. The stated collection of algorithms 

performs multimodal image fusion in this approach. 
The qualitative results show that DWT, DTCWT, 

NSCT, and CNN perform poorly in terms of contrast 

and visual effect. It's worth noting that these algorithms 
can't preserve data in the fused image, which 

corresponds to the appropriate assessment metric MI, 

which is related to the concentration of extracting 
information. 

In this research, we have proposed a new technique 

for the detection of brain tumors based on image 

fusion, segmentation, and classification. Image fusion 
was performed using a new technique called the sparse 

theory-based vector selection (STVS) technique. The 

segmentation of the tumor regions from the fused 
images was performed using Intuitionistic fuzzy set-

based k-means clustering (IFSKM) clustering and the 

Otsu thresholding technique. Finally, the segmented 

results were classified using a new DCNN architecture. 
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The proposed DCNN architecture is comprised of a 

pre-trained GoogleNet structure, fully connected 

layers, and the LSTM classification structure. The 
images were classified into two categories namely, 

benign and malignant. The average Jaccard coefficient 

for the proposed IFSKM algorithm was 0.7555. 
Similarly, the average Dice coefficient for the proposed 

IFSKM algorithm was 0.7796. It was also shown that 

the classification performance of the proposed DCNN 
classification framework was high with a value of 

94.93% accuracy, 94.82% specificity, 95.37% 

precision, 91.37% recall, and 93.72% F-score. 

 

8.1. Future Work 

In the future, we have planned to implement image 

fusion based on the combination of Laplacian pyramid 
and sparse representation theory to enhance the quality 

of image fusion so that the accuracy of brain tumor 

detection is enhanced. 
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