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Abstract: The fusion of multimodal images is a trending research area, especially in the field of medical
image processing. The purpose of image fusion is to classify medical images efficiently. The objective of the
research work is to do the fusion of multimodal medical images for doing medical image classification. In this
research, a new algorithm is proposed for the detection of brain tumors based on three main steps namely, fusion,
segmentation, and classification. A sparse theory-based vector selection (STVS) algorithm is proposed for image
fusion. In this algorithm, the multimodal images are first converted into patches. These patches are further
vectorized. The vectorized patches are employed in the creation of dictionaries. The generated dictionaries along
with the vectorized patches are used for the creation of sparse matrices. From the sparse matrices, a selection vector
is formed using which the fused image is generated. The segmentation of the fused image is done using
Intuitionistic fuzzy set-based k-means (IFSKM) clustering and the Otsu thresholding technique. The clusters of the
IFSKM are generated based on the Intuitionistic fuzzy set (IFS) scheme. Finally, classification is performed based
on a DCNN architecture. The proposed system is validated using the brain images from the Harvard Medical
School. Quantitative analysis reveals that the proposed scheme achieves the best performance in terms of fusion,
segmentation, and classification. The proposed STVS scheme attained high values of entropy, standard deviation,
PSNR in dB, mean square error (MSE), structural similarity index (SSIM), and homogeneity with the values of
7.33, 55.25, 42.85, 0.098, 64.31, and 53.52 respectively.
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1. Introduction

The mortality rate of brain tumors is constantly
increasing since more people are getting affected by
this disease. Thus, early detection of brain tumors is
very essential to increase the survival rate of humans.
Computer vision techniques are popularly being used
in recent days for the assessment of brain images [1].
These techniques make use of image processing for the
classification of brain images into various categories
[2]. Automatic identification of malignant cases is a
challenging task as the structural variation of the tumor
regions is more identical to that of non-tumor regions.
Various machine learning techniques are being used for
the classification of brain images. These techniques
perform classification in two steps hamely, training and
testing [3].

During the training stage, the labeled images are
given to the classification algorithm to train and
generate a classification model. This model is used
during testing based on the testing data. Thus, the
malignant images are identified from the benign
images [4]. This classification is necessary as the
malignant cases must be identified and treated at the
earlier stages for the easy recovery of the patients with
a brain tumor [5]. To increase the quality of
classification steps like pre-processing, fusion and
segmentation are performed with the brain image data.
Precise identification of the brain tumor region is an
important task as these regions contain the important
information necessary for classification. This region
identification is done using segmentation techniques
[6].

The segmentation techniques usually employ
clustering followed by thresholding. Clustering
techniques employ routing of pixels that constitute
similar features. Thresholding techniques are employed
for the separation of tumor pixels from non-tumour
pixels [7]. Two types of features are used for the
representation of brain images. These include deep
learning features and handcrafted features. The deep
learning features are extracted using convolutional
architectures [8].

In some cases, the combination of both types of
cases is used for the classification. Due to the changes

in lifestyle, aging factors, and heredity reasons more
and more populations are being affected by a brain
tumors. Deep learning techniques employed pre-trained
neural networks for the automatic generation of
features [9]. Though benign tumor comprises non-
cancer cells, their identification is also important since
such abnormal tissues cause abnormal functioning of
the brain. The treatment given for the cancerous and
non-cancerous brain tumor cases are different, thus
their identification is very important [10].

Various optimization techniques are also
employed in tumor detection. These techniques employ
algorithms based on bio-inspired techniques for the
identification of malignant cases. These bio-inspired
techniques use biological operations performed by
various organisms as a base for the classification.
Several quantities are optimized and the corresponding
parameters are detected [11]. The computation of the
computational complexity is vital since these
algorithms must be implemented in real-time. Since
many loT-based devices are employed for the
acquisition and transmission of data, real-time
processing is done. Thus, computational time and
computational complexity are important parameters
considered in brain tumor detection [12].

In this research, we propose a new scheme for the
detection of brain tumors using image fusion that is
based on the sparse representation theory.

The overall contributions of this paper are fourfold:

a) A new technique called sparse theory-based
vector selection (STVS) technique for image fusion is
presented.

b) The segmentation of the fused image is done
using a novel Intuitionistic fuzzy set-based k-means
(IFSKM) clustering.

c) Classification of the segmented clusters is done
using a new DCNN architecture.

d) Performance evaluation is done in terms of
various fusion, segmentation, and classification
metrics.

2. Literature Survey
Tan et al. [13] proposed a scheme for medical image
fusion based on neural networks. A new fusion strategy
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was proposed using energy as an attribute. Here, the
images were first converted to the transform domain
based on the non-subsampled Shearlet transform. The
transform coefficients were then fused based on the
energy content. Huang et al. [14] presented a review on
various schemes available for image fusion. The main
focus was provided on the usage of deep learning
techniques for the combination of multimodal medical
images. The popularly available medical image
datasets were listed and the analysis of the various
fusion techniques was done using popular fusion
metrics.

Rajalingam et al. [15] utilized deep guided filtering
algorithm for medical image fusion. Here, pathological
features of the individual images were united. The
images were decomposed based on frequencies. These
components were then fused using the filtration
technique to form filtered high-quality fused images.
Arif et al. [16] used fast curvelet transform for the
fusion of medical images. This transform was
implemented using a genetic algorithm. The
redundancy in the input images was fused based on the
curvet-based genetic methodology. After the
application of the curvelet transform, the ridgelet
transform was also applied to ensure the complete
fusion of important features from the medical images.

Wang et al. [17] performed image fusion based on a
contrast pyramid. The contrast pyramid features were
extracted and fused based on CNN. The Siamese neural
network was employed for the extraction of neural
network features. The output of the neural network
structure was used for the generation of the weight map
that was utilized for the image fusion. Yadav et al. [18]
utilized hybrid techniques for image fusion. The main
advantages of multimodal imaging techniques were
presented along with the advantages of multimodal
image fusion. Further, the techniques employed for the
fusion of images without the introduction of any flaws
were also discussed. The usage of various analysis
techniques in the denoising of the fused images was
also analyzed.

Du et al. [19] presented a scheme for image fusion
based on tensor features. The tensor features were
extracted from the individual multimodal images and
fused using three-layer image fusion techniques. The
differential features were extracted based on the
structure tensor components. These components were
combined using a novel special frequency metric.
Wang et al. [20] utilized sparse representation theory
for the adaptive fusion of the medical images. Here, the
input images were first split into four different images
having varying sizes. The features required for the
image fusion were extracted based on the Laplacian
Pyramid theory. The noise components present in the
higher frequency components were reduced based on
the sparse representation.

Magsood et al. [21]utilized sparse representation for
the image fusion based on two-scale decomposition.

Initially, to increase the discriminative nature of the
individual images, the contrast enhancement technique
was employed. The enhanced images were then
decomposed into two different components based on
the detail and base nature. Finally, fusion was done
using sparse theory. Chen et al. [22] presented a
scheme for the combination of multimodal medical
images using a Rolling guidance filter. The Rolling
guidance filter was employed to split the medical
images into structural and detail coefficients. These
coefficients were then merged based on the Laplacian
pyramid theory. This method attained better visual and
quantitative fusion quality compared to other
conventional systems.

Based on the different types of fusion techniques
being surveyed, we have implemented a new fusion
scheme in this research based on sparse theory and
vector selection techniques.

3. Proposed Methodology

The proposed methodology comprises three main
stages namely, multimodal medical image fusion,
image segmentation, and classification. This is depicted
in Fig. 1. In this research, we have employed a new
technique called the sparse theory-based vector
selection (STVS) technique for image fusion. The
segmentation of the fused image is done using
Intuitionistic fuzzy set-based k-means clustering
(IFSKM) clustering and Otsu thresholding technique.

Finally, classification is done wusing DCNN
architecture.
Multi-modal Multi-modal
medical image 1 medical image 2

l |
L2

Image fusion using STVS

v

Image segmentation using
IFSKM and Otsu

v

Image classification
using DCNN

Fig. 1 Flow chart of the proposed methodology

3.1. Image Fusion using Sparse Theory-Based
Vector Selection (STVS) Technique

The proposed image fusion scheme makes use of
sparse theory. The proposed algorithm is represented
by Algorithm 1. In this scheme, two input images are
considered namely, the multimodal image 1
MI1eRMxN and multimodal image 2 MI2eRMxN.
Initially, the first image is converted to patches

P1,05,05,.....0 of size nxn. Then, similar to the first
image, the second image is also converted to patches
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pZ,pZ,pz,....,.0t of size nxn. These patches are then

vectorized to form vectors of size n2x 1. The generated
vectors are then appended to form vector matrices

namely VM'eR"* and VM2 cR™® . Dictionary
learning was done using the ODL algorithm for
dictionaries DI1 and DI2 using VM1 and VM2. The
vector-matrix VM1 and dictionary DI1 are then used to
compute the sparse matrix SM1 using the LARS
technique. Similarly, the vector-matrix VM2 and
dictionary DI2 are used to compute the sparse matrix
SM2. The selection vector SV = {svl,sv2,...,svp} IS
then generated based on the I-1 norm value of the
sparse matrices. Using the selection vector, the fused

vector matrix VM " = {vflfvsz,...,vpr} is formed.

Finally, the fused image FI € RMxN is formed using
the patches selected from the fused vector. The entire
process is explained in four main steps below.

3.1.1 Patch Vectorization

Initially, the input multimodal image 1 MI1 e
RMxN and multimodal image 2 MI2 € RMxN are
converted to patches p,p;.p;,.....o5and pZ,pZ,ps,.....0
respectively. Here, N refers to the total number of
patches. The patch conversion is done using the sliding
window technique. In this work, we have employed a
sliding window of size nxnwithout overlap. This is
employed to reduce the overall computation
complexity of the sparse coding and dictionary learning
steps. The ith patch of the image MI1 and image MI2

are represented as p; and p? respectively. These

patches are then converted to vectors of size n2x1. This
process is done using the patch vectorization technique,
in which each squared patch is converted to a column
vector of length n2.

3.1.2. Edge Matrix Computation

In the case of multimodal medical images, it is
evident that each image contains complimentary
information. For instance, in the case of MRI and CT
images, the MRI images represent the soft tissue
regions and the CT images represent the bone regions.
Thus, the identification of edge information aids in the
identification of patches that contain more information.
In our work, the edge matrices are computed based on
the Histogram of Oriented Gradients (HOG) technique.
This helps in the identification of the patch that has
more salient information. The HOG descriptor converts
the image patch into L different orientation bins. These
bins are represented aspl, p2,...pL.These bins are
oriented such that they are spaced equally within the
angular region of 00-1800. Then, for the patch

pik,k €1,2, thejth orientation bin is represented using

the following equation (1),
Gi(p;). jel2,....L. 1)

3.1.3: Dictionary learning and Sparse coding

The sparse representation modeling technique is
popularly employed in the field of image fusion. This
modeling  technique has extraordinary  signal
representation capabilities. Using this modeling, the
over-complete dictionaries can be generated. In this
work, we have used the online dictionary learning
(ODL) algorithm. This algorithm is based on a convex
relaxation technique. Consider the edge matrixEMk, k
€1,2 that can be represented as EMk = [em]l,
em2,...,emk]. The optimization function for dictionary
generation is given by,

minEZ(%Hemi—leo-i

2
L+ 2ol

)

Where DIk, k € 1,2 represents the dictionaries for
image 1 and image 2 respectively. Further, ¢ = [ol,
02,...,0k] represents the sparse coefficients and A is the
regularization  parameter. Using the generated

dictionaries, sparse matrices SMlz{smll,smﬁ,...,smlp}

pfkel2 and SM? :{smf,smf,...,smé} are formed
using the Least angle regression (LARS) algorithm. In
this algorithm, the sparse coding step is performed
using

sm, [ arg minEHemI ~DI_sml +A[sm|,

a2 ?3)

Where t represents the iteration numberand t< T where
T is the total number of iterations. The generated sparse
matrices are used for the creation of a selection vector.
The selection vector selection vector
SV = {svl,sv2,...,svP} is generated by comparing the
magnitude of the sparse matrices of the two multimodal
images.

3.1.4. Fusion Rule

Using the selection vector, the fused vector matrix
VMF = {vle V) ,...,vpr} is formed. Each value of the
fused vector-matrix either has a value of 1 or a value of
2. Value 1 indicates the patch from the multi-modal
image 1 and a value of 2 represents the patch from the
multi-modal image 2. The fused vectors are then
converted to patches to form the fused image Fl
RMxN. This conversion is done similar to the initial
patch vectorization step but in a reverse manner. The
overall framework of image fusion using the STVS
technique is illustrated in Fig. 2.

M
. R
R
M

Fig. 2. The overall framework of image fusion using the STVS
technique

VM EM'

[
>

l

VM EM*
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Algorithm 1: Proposed sparse theory-based vector
selection (STVS) technique.

Input: Multimodal image 1 MI1eRMxN and
multimodal image 2 MI2eRMxN.

Output: Fused image FI € RMxN.

Steps:

e The input multimodal image 1 is converted to

patches py,p;.Ps,..... 0 Of size nxn.

e The input multimodal image 2 is converted to
patches p?,p3,pZ,....,0¢ of size nxn.
o The patches of image 1 and image 2 are vectorized

to form vectors of size n2 x 1.
o The formed vectors are then appended to form

vector matrices namelyVM® e R™P andvM 2 e R™*..

e Compute edge matrices for EM1 and EM2 using
VM1 and VM2 respectively using Histogram of
Oriented Gradients [23].

e Using ODL [24] algorithm form dictionaries DI1
and DI2 using EM1 and EM2respectively.

e Using vector-matrix VM1 and dictionary DI1
compute the sparse matrix using LARS [25] technique.

SM*={sm},sm,’,...,sm.'} @)

e Similarly, using vector-matrix VM2 and

dictionary DI2 compute the sparse matrix.
SM? ={sm?,sm/?,...,sm,’} 5)

e Form the selection vector SV = {svl,sv2,...,svP}
using

{1; if - [sm
sV, =
2: if ‘smi2

>[sm?

> ‘smil

(6)
Wherei = 1,2,...P.
e Form the

VMF = {vle RV ASRY 3 }
" :{smil; if sv,=1
b sm? i sy, =2 ™
Wherei=1, 2,...P.
e Convert the fused vectors to patches to form the

fused image
FI € RMxN.

fused vector-matrix

3.2. Tumor Segmentation using Intuitionistic Fuzzy
Set-Based K-means Clustering (IFSKM)

Clustering based on the k-means technique is
popularly employed in image segmentation. In this
technique, the image is divided into k number of
clusters. The regions having similar features are
grouped as a single cluster. In the k-means algorithm,
the initial k cluster centroids are referred to as the
following:

CE={Ce¢/i=12,.k} (8)

The main drawback of the k-means clustering is the
random selection of the initial centroid. In the proposed
segmentation scheme, the initial selection is done based
on the Intuitionistic fuzzy set (IFS) scheme. In the IFS
scheme, data Y is represented as

IFS ={y.n(y), A(y); yeY} (9)

n(y) represents the degree of belongingness of y in
Y andA(y) is the degree of non-belongingness of y in
Y

In the above equation, we find that

0=n(y)+A(y) <1 (10)

In the proposed IFSKM scheme, the initial centroids
are selected such that

CE ={ce,,n(ce), A(ce); ce, e CE} (11)

The clustered regions were then segmented based
on the Otsu thresholding scheme to form the segmented
regions.

3.3. Classification

The segmented image slices were then given as
input to the DCNN structure. This architecture is
shown in Figure 3. This structure comprises of pre-
trained GoogleNet, fully connected layers, and the
Long Short Term Memory (LSTM) classification
structure. The images were classified into two
categories namely, benign and malignant. The
GoogleNet is comprised of severs filters of varying
sizes. The first layer is comprised of filters of size
224x224. The second layer represented filters of size
112x112. The third layer consisted of filters of size
56x56 and the fourth layer utilized filters of size
28x28. In the final two layers, filters of sizes 14x14
and 7x7 were employed. The output of these layers was
given as input to the fully connected block (FC) that
comprised of 2 layers. These layers are comprised of
4096 nodes each. Finally, classification was done using
an LSTM structure to detect the malignant cases. The
main use of using the GoogleNet structure for pre-
training is because it produces a minimal error of about
5.5%.

Benign

X7
1414
| 1508
nzny X6

224X224

Malignant

4006 4096

Segmented slices Pre-trained GoogleNet

Fig. 3 The architecture of the proposed Deep Convolutional Neural
Network

4. Results and Discussion

The proposed framework was evaluated using both
qualitative and quantitative analysis. The qualitative
analysis was done to assess the performance of the
proposed fusion algorithm visually. The appearance of
the fused image was compared visually with that of the
individual multimodal images. This was done to
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evaluate the structural integrity of the fused images. In
the quantitative analysis, the proposed framework was
evaluated based on fusion, segmentation, and
classification algorithms. The proposed STVS fusion
algorithm was compared with popular fusion
algorithms like 2D discrete wavelet transform (DWT),
2D stationary wavelet transforms (SWT) and non-
subsampled contourlet transforms (NSCT). This
evaluation was done using fusion metrics like spatial
frequency, standard deviation, Mutual information,
Qydeas's (QAB/F) fusion metric, Mean structural
similarity (MSSIM), and Piella's fusion metric. The
proposed IFSKM segmentation algorithm was
evaluated quantitatively in terms of metrics like
Jaccard and Dice coefficient. Algorithms like the k-
means algorithm and watershed algorithm were used
for comparison with the proposed segmentation
algorithm. The classification performance of the
DCNN algorithm was assessed by comparison with
algorithms like k-nearest neighbor (k-NN), Random
Forest (RF), support vector machine (SVM), and sparse
representation-based classification (SRC).

5. Strengths and Limitations

e The sparse domain-based technique has the
benefits of good strength and low distortion, but it also
produces noise during fusion computation. As a result,
image fusion faces a de-noising issue.

e Sparse Representation approaches have acquired a
lot of traction in the transform area, and they've shown
to be effective in medical image analysis. However,
these approaches have flaws, such as 1st one when
different modalities are collected from the source
images, the fusion rule causes spatial inconsistencies in
the fused image.

eDue to the training and optimization of the
dictionaries, the filters employed for SR-based picture
fusion are time-dependent, and these algorithms are
also unable to dissect several types of images.

o Another constraint is the complex orientated shape
of source images, which cannot be correctly classified
using an existing lexicon.

o While research in the field of multi-modal image
fusion has yielded promising results, there are some
limitations.

e Additionally, a  morphological  ensemble
classification model based on SR for pixel-level picture
fusion. However, the proposed model's efficiency is
reduced by the blurring effect during deconstruction.

5.1. Parameter Settings

Six pairs of brain multimodal images were
considered for analysis of our work. The value of patch
size n was chosen to be 8. The brain images employed
in this research were obtained from Harvard Medical
School

(https://www.med.harvard.edu/aANIiB/home.html).
The value of the regularization parameterd was set as
0.5. The total number of iterations T in the LARS
algorithm was chosen as 100.

5.2. Experimental Setup

All the experiments done in this work were
accomplished with Matlab R2014b using a Laptop with
Intel core i5 @4 GHz using 6GB RAM.

5.3. Qualitative Analysis

Table 1 depicts the six different input source
multimodal images and the corresponding fusion
results obtained using the proposed STVS fusion
algorithm. From Table 1, it can be visually observed
that the fusion result has very good quality. It
represents the important features from both the input
images. This helps to improve the accuracy of
segmentation, thereby, increasing the quality of
classification.

Table 1. The source multimodal images and the fusion results
N Multimodal image Multimodal

0 h
1 image 2

Fused image

The fused images are subjected to segmentation
using the proposed IFSKM clustering and Otsu
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thresholding algorithms. These are shown in Fig. 4.
The segmentation results clearly show the region
containing the tumor regions. The segmented regions
are given as slice inputs to the DCNN architecture that
is used for the classification of brain images into two
categories namely, benign and the malignant category.

Fig. 4 Segmentation results were obtained for the 6 fused images
using IKSKM clustering and Otsu thresholding

The results of image fusion studies are shown in
Figure 4. By analyzing the partially expanded image,
the fused image created by the suggested method has a
good general visualization capability and a high image
contrast. The suggested enhancement algorithm
produces high-brightness fused pictures. Both
approaches perform poorly in the preservation of image
details, as evidenced by the partial enlargements
marked in green and red dashed frames. The specific
information of the image edge is not apparent,
according to the details assessment, which is not good
for human eye observing. When compared to the
source image, the fused image produced by the
suggested technique has a poor resemblance to the
source image and does not well retain the source
image's precise local structure. In some locations, the
suggested method's fused image is too smooth, and the
detailed image texture is not visible enough. The
suggested method produces a brilliant fused image that
does not properly maintain the detailed elements of the
original images. The presented scheme produced the
fused image shown in Figure 4, which has a high edge
brightness, which degrades the detailed texture features
of object boundaries.

5.4. Quantitative Analysis

In this research, analysis was performed for
evaluating the performance of the proposed fusion,
segmentation, and classification algorithms.

5.4.1. Evaluation of Proposed Fusion Methodology
The proposed fusion methodology is evaluated

using metrics like spatial frequency, standard deviation,

Mutual information, Qydeas's (QAB/F) fusion metric,

Mean structural similarity (MSSIM), and Piella’s fusion
metric.

Table 2 shows the variation of spatial frequency for
the 2D DWT, 2D SWT, NSCT, and the proposed
STVS algorithm. It is observed that the overall average
value of spatial frequency achieved for all the 6 images
using discrete wavelet transform is 18.08. The average
value of spatial frequency for the stationary wavelet
transform is 19.08 and that for the non-subsampled
contourlet transform is 20.67. The proposed STVS
fusion scheme attains the highest spatial frequency of
22.40.

Table 2 Spatial frequency for evaluation of image fusion
Spatial frequency

Image 2D 2D Non-
Set Discrete Stationary  Subsampled  Proposed
Wavelet Wavelet Contourlet STVS
Transform Transform Transform

1 17.43 17.99 20.99 22.41
2 18.64 18.47 21.43 22.64
3 19.65 18.93 20.48 21.64
4 17.89 19.74 19.86 21.95
5 16.94 19.70 19.93 23.21
6 17.94 19.67 21.34 22.58

Table 3 shows the variation of standard deviation
for the 2D DWT, 2D SWT, NSCT, and the proposed
STVS algorithm. It is observed that the overall average
value of standard deviation achieved for all the 6
images using discrete wavelet transform is 35.40. The
average value of standard deviation for the stationary
wavelet transform is 36.46 and that for the non-
subsampled contourlet transform is 38.38. The
proposed STVS fusion scheme attains the highest
standard deviation of 43.17.

Table 3 Standard deviation for evaluation of image fusion
Standard deviation

. 2D Non-
Image 2D Discrete Stationary  Subsampled  Proposed
Set  Wavelet
Transform Wavelet Contourlet STVS
Transform  Transform

1 35.23 36.94 37.83 40.52
2 36.53 36.84 37.65 41.53
3 34.13 35.32 38.95 45.37
4 36.32 35.95 38.32 46.23
5 34.98 36.83 38.63 44,55
6 35.24 36.93 38.93 40.85

Table 4 shows the variation of mutual information
(MI1) for the 2D DWT, 2D SWT, NSCT, and the
proposed STVS algorithm. It is observed that the
overall average value of MI achieved for all the 6
images using discrete wavelet transform is 3.41. The
average value of MI for the stationary wavelet
transform is 3.56 and that for the non-subsampled
contourlet transform is 3.66. The proposed STVS
fusion scheme attains the highest mutual information of
4.24.
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Table 4 Mutual information for evaluation of image fusion
Mutual information

Image 2D 2D Non-
Set Discrete Stationary Subsampled Proposed
Wavelet Wavelet Contourlet STVS
Transform Transform  Transform
1 3.21 3.46 3.64 4.21
2 3.12 3.65 3.86 4.15
3 3.53 3.56 3.74 4.36
4 3.47 3.85 3.86 4.26
5 3.66 3.24 3.63 4,27
6 3.47 3.64 3.25 4,19

Table 5 shows the variation of Qydeas’s (QAB/F)
fusion metric for the 2D DWT, 2D SWT, NSCT, and
the proposed STVS algorithm. It is observed that the
overall average value of Qydeas’s (QAB/F) fusion
metric achieved for all the 6 images using discrete
wavelet transform is 0.563. The average value of
Qydeas’s (QAB/F) fusion metric for the stationary
wavelet transform is 0.607 and that for the non-
subsampled contourlet transform is 0.665. The
proposed STVS fusion scheme attains the highest
Qydeas’s (QAB/F) fusion metric of 0.755.

Table 5 Qydeas’s (QAB/F) fusion metric for evaluation of image

fusion
QAB/F
Image ) 2D gD Non-
Set Discrete Stationary  Subsampled  Proposed
Wavelet Wavelet Contourlet STVS
Transform Transform Transform
1 0.525 0.634 0.629 0.723
2 0.554 0.568 0.694 0.784
3 0.582 0.593 0.663 0.734
4 0.539 0.612 0.635 0.764
5 0.584 0.615 0.689 0.783
6 0.599 0.624 0.681 0.742

Table 6 shows the variation of mean structural
similarity (MSSIM) for the 2D DWT, 2D SWT, NSCT,
and the proposed STVS algorithm. It is observed that
the overall average value of mean structural similarity
achieved for all the 6 images using discrete wavelet
transform is 0.678. The average value of mean
structural similarity for the stationary wavelet
transform is 0.742 and that for the non-subsampled
contourlet transform is 0.768. The proposed STVS
fusion scheme attains the highest mean structural
similarity of 0.867.

Table 6 Mean structural similarity (MSSIM) for evaluation of

image fusion
MSSIM
. 2D Non-
: n;gtge ZI?NIZ;/seclzte Stationary Subsampled Proposed
Wavelet Contourlet STVS
Transform
Transform Transform

1 0.679 0.753 0.789 0.841
2 0.684 0.785 0.743 0.866
3 0.694 0.732 0.794 0.854
4 0.695 0.714 0.785 0.863
5 0.663 0.743 0.763 0.886
6 0.653 0.726 0.734 0.896

Table 7 shows the variation of Piella’s fusion metric
for the 2D DWT, 2D SWT, NSCT, and the proposed
STVS algorithm. It is observed that the overall average
value of Piella’s fusion metric achieved for all the 6
images using discrete wavelet transform is 0.578. The
average value of Piella’s fusion metric for the
stationary wavelet transform is 0.630 and that for the
non-subsampled contourlet transform is 0.655. The
proposed STVS fusion scheme attains the highest
Piella’s fusion metric of 0.767.

Table 7 Piella’s fusion metric for evaluation of image fusion

Piella’s fusion metric

Image 2D 2D Non-
Set Discrete Stationary Subsampled Proposed
Wavelet Wavelet Contourlet STVS
Transform Transform  Transform

1 0.582 0.614 0.673 0.784
2 0.573 0.625 0.649 0.756
3 0.583 0.635 0.639 0.776
4 0.586 0.618 0.694 0.759
5 0.556 0.628 0.649 0.788
6 0.585 0.662 0.629 0.740

5.4.2. Segmentation Technique Evaluation

We have evaluated the proposed segmentation scheme
in terms of the Jaccard and Dice coefficient. Table 8
shows the comparison of the Jaccard coefficient for the
considered 6 images. It can be seen that the average
Jaccard coefficient for the k-means algorithm is
0.5591. The average Jaccard coefficient for the
watershed algorithm is 0.626. However, the average
Jaccard coefficient for the proposed IFSKM algorithm
is 0.7555. Thus, IFSKM achieves the best performance
in terms of the Jaccard coefficient.

Table8. Performance evaluation using Jaccard Coefficient
Jaccard Coefficient

Image hed
Set ~ Kemeans  Watershed o 0004 1FSKM
algorithm algorithm
1 0.553 0.623 0.743
2 0.562 0.540 0.775
3 0.522 0.616 0.735
4 0.567 0.637 0.727
5 0.562 0.688 0.789
6 0.589 0.652 0.764

Table 9 shows the comparison of the Dice
coefficient for the considered 6 images. It can be seen
that the average Dice coefficient for the k-means
algorithm is 0.6111. The average Dice coefficient for
the watershed algorithm is 0.6693. However, the
average Dice coefficient for the proposed IFSKM
algorithm is 0.7796. Thus, we infer that IFSKM
produces the best results in terms of the Dice
coefficient.
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Table 9 Performance evaluation using Dice Coefficient

Dice Coefficient

Image
Set K means Watershed Proposed IFSKM
algorithm algorithm
1 0.562 0.698 0.754
2 0.624 0.637 0.743
3 0.666 0.653 0.876
4 0.613 0.697 0.746
5 0.623 0.674 0.784
6 0.579 0.657 0.775

Table 10 shows the comparison of structural
similarity index (SSIM) for the considered 6 images. It
can be seen that the average SSIM for the k-means
algorithm is 0.756. The average SSIM for the
watershed algorithm is 0.868. However, the average
SSIM for the proposed IFSKM algorithm is 0.941.
Thereby, we can say that the SSIM of the proposed
IFSKM is the best.

Table 10 Performance evaluation using SSIM

SSIM
Image
Set Kmeans  Watershed Proposed IFSKM
algorithm algorithm
1 0.734 0.898 0.942
2 0.752 0.887 0.912
3 0.766 0.812 0.953
4 0.723 0.894 0.947
5 0.773 0.865 0.977
6 0.789 0.852 0.917

5.4.3. Evaluation of Classification Algorithms

The classification performance of the DCNN
algorithm was evaluated by comparison with
algorithms like k-NN, RF, SVM, and SRC. Table 11
shows the comparison of overall accuracy. From Table
11, it is clear that the accuracy of k-NN is 79.32%. The
accuracy achieved by RF is 83.12% and that of SVM is
91.58%. The accuracy of SRC is 91.58%. However, the
proposed DCNN has the highest accuracy of 94.93%.

Table 11. Comparison of Overall Accuracy

Classification algorithm  Overall classification accuracy (%)

k-NN 79.32
RF 83.21
SVM 89.37
SRC 91.58
DCNN 94.93

Fig. 5 shows the comparison of overall specificity.
From Figure 4, it is clear that the specificity of k-NN is
81.23%. The specificity achieved by RF is 83.72% and
that of SVM is 85.46%. The specificity of SRC is
88.74%. However, the proposed DCNN has the highest
specificity of 94.82%.
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Fig. 5 Comparison of specificity

Fig. 6 shows the comparison of overall precision.
From Figure 5, it is clear that the precision of k-NN is
78.32%. The precision achieved by RF is 81.43% and
that of SVM is 85.83%. The precision of SRC is
89.65%. However, the proposed DCNN has the highest
precision of 95.37%.
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Fig. 6 Comparison of precision

Fig. 7 shows the comparison of overall recall. From
Figure 6, it is clear that the recall of k-NN is 83.78%.
The recall achieved by RF is 85.93% and that of SVM
is 89.73%. The recall of SRC is 91.37%. However, the
proposed DCNN has the highest recall 93.82%.
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Fig. 7 Comparison of recall

Fig. 8 shows the comparison of the F-score. From
Figure 7, it is clear that the F-score of k-NN is 79.42%.
The F-score achieved by RF is 84.82% and that of
SVM is 88.57%. The F-score of SRC is 90.94%.
However, the proposed DCNN has the highest F-score
of 93.72%.
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Fig. 8 Comparison of F-score

Table 12 shows the comparison of overall
classification time. From Table 12, it is clear that the
classification time of Kk-NN is 29.57ms. The
classification time achieved by RF is 21.43ms and that
of SVM is 18.32ms. The classification time of SRC is
10.74ms. However, the proposed DCNN has a minimal
classification time of 8.56ms. Since this time is very
less, the proposed scheme can be easily implemented in
real-time applications.

Table 12 Comparison of classification time
Classification algorithm Classification time (ms)

k-NN 29.57
RF 21.43
SVM 18.32
SRC 10.74
DCNN 8.56

6. Advantage of the Proposed
Methodology

The main advantage of the proposed methodology is
the improved fusion performance. This helps to form
fused images that have complementary information
from both the input images. The other advantage is the
high quality of segmentation obtained using the
proposed segmentation algorithm. Further, we have
attained the highest accuracy in the detection and
classification of brain tumors.

7. Drawback of the Proposed
Methodology

The only drawback of the proposed scheme is the
increased complexity of the image fusion algorithm.

8. Conclusion

Medical images of many forms can aid in the
accurate detection of diseases. X-rays, CT scans, MRIs,
and PET scans are examples of common medical
imaging procedures [26-29]. Due to the obvious
various imaging methods, there are considerable
disparities in the attention being paid to various modal

medical images of individual organs and tissues. When
it comes to the diagnosis of diseases, single-type
images frequently fall short of offering advanced and
appropriate information. To diagnose a patient's
condition, clinicians must typically synthesize
numerous distinct kinds of medical images from the
same perspective, which is inconvenient and decreases
diagnostic performance. Multi-modal medical picture
fusion has been efficiently applied to medical diagnosis
as a response to these challenges. Multi-modal medical
image fusion integrates data from several kinds of
medical images and shows the integrated image in a
fused image as a key benefit. Because of its broad
built-in  library ~ compatibility,  state-of-the-art
approaches for multimodal imagery fusion use
MATLAB R2020b (MathWorks Inc., MA, USA) to
generate simulated results. Microsoft Windows 10 is
installed on a computing system that contains an Intel
Core i7 9750H 2.59 GHz processor and 16 GB of
memory. The multimodal brain image datasets
consisting of CT and MR images were acquired. Each
of the given datasets has 500 grayscale images chosen
for measuring performance. The dimensions of the
input photos are standardized at 256 x 256 pixels.

The images created by our proposed method were
compared to the images generated by the preceding
algorithms utilizing different datasets, namely Data-1
through Data-6. The proposed method is evaluated to
the Discrete Wavelet Transform (DWT), dual-tree

complex wavelet transforms (DTCWT), non-
subsampled contourlet transform (NSCT),
Convolutional Neural Network (CNN), and the

proposed algorithm for graphical quality assessment of
the Data-1 dataset. An MRI image shows information
about soft tissues, whereas a CT image shows data
about hard tissues and their architecture. It is crucial to
combine important information from the preceding
photos into a single fused image for better
identification. The stated collection of algorithms
performs multimodal image fusion in this approach.
The qualitative results show that DWT, DTCWT,
NSCT, and CNN perform poorly in terms of contrast
and visual effect. It's worth noting that these algorithms
can't preserve data in the fused image, which
corresponds to the appropriate assessment metric Ml,
which is related to the concentration of extracting
information.

In this research, we have proposed a new technique
for the detection of brain tumors based on image
fusion, segmentation, and classification. Image fusion
was performed using a new technique called the sparse
theory-based vector selection (STVS) technique. The
segmentation of the tumor regions from the fused
images was performed using Intuitionistic fuzzy set-
based k-means clustering (IFSKM) clustering and the
Otsu thresholding technique. Finally, the segmented
results were classified using a new DCNN architecture.
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The proposed DCNN architecture is comprised of a
pre-trained GoogleNet structure, fully connected
layers, and the LSTM classification structure. The
images were classified into two categories namely,
benign and malignant. The average Jaccard coefficient
for the proposed IFSKM algorithm was 0.7555.
Similarly, the average Dice coefficient for the proposed
IFSKM algorithm was 0.7796. It was also shown that
the classification performance of the proposed DCNN
classification framework was high with a value of
94.93% accuracy, 94.82% specificity, 95.37%
precision, 91.37% recall, and 93.72% F-score.

8.1. Future Work

In the future, we have planned to implement image
fusion based on the combination of Laplacian pyramid
and sparse representation theory to enhance the quality
of image fusion so that the accuracy of brain tumor
detection is enhanced.
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